#### **SECOND NOTICE OF DEFICIENCIES (NOD)**

HWMA/RCRA PART B PERMIT APPLICATION, VOLUME 14
FOR STORAGE AND TREATMENT UNITS AT THE
IDAHO NUCLEAR TECHNOLOGY AND ENGINEERING CENTER (INTEC)
LIQUID WASTE MANAGEMENT SYSTEM (ILMWS)
IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY
EPA ID No. ID4890008952

The following list of deficiencies was compiled by the Idaho Department of Environmental Quality (DEQ). The list identifies deficiencies found in Volume 14, Revision 1, Books 1 through 4 of the INEEL Part B Permit Application. While a specific form for a Permit Application does not exist, the list of deficiencies is organized in accordance with the RCRA Part B Checklist.

#### **GENERAL COMMENTS**

1. It appears that not all of the waste streams managed by the ILWMS have been identified in the response to NOD #1 or the first paragraph of Section C-1. If the list of "typical waste streams" is not complete, the revised Part B Permit Application must include the rest of the waste streams. Otherwise, the Department of Energy (DOE) must demonstrate that the list is representative of the wastes managed by the ILWMS.

#### **RESPONSE:**

The list of waste streams managed by the INTEC Liquid Waste Management System (ILWMS), provided in the response to the first Notice of Deficiency (NOD), represents all wastes currently treated in that system. However, other waste streams not currently identified may be processed by that system in the future, provided that they meet the ILWMS waste acceptance criteria and process tolerance limits identified in Sections C-2a(1) and D-8b(5) of this Part B Permit Application.

The first paragraph of Section C-1 of the Permit B Permit Application was revised to read as follows:

"The INTEC units described in this permit application are used to manage a variety of wastes generated from INEEL activities. Waste streams managed by the ILWMS include:

- Liquids generated incidental to conducting debris treatment, decontamination, and descaling activities on INEEL equipment, piping, and valves
- Rain water and snow melt that infiltrate into sumps and other containment areas
- Water from radioactive fuel storage basins and pools
- Mop water and other cleaning liquids generated incidental to cleanup activities conducted in radiological areas
- Analytical residues, excess samples, and expired analytical standards generated by sampling and analytical laboratory activities

- Solutions from preventative maintenance and corrective maintenance leak tests on process piping and valves
- Aqueous service wastes, such as steam condensate
- ILWMS treatment residuals that may require further processing
- Other waste streams not currently identified that conform to the ILWMS waste acceptance criteria and process tolerance limits identified in Sections C-2(a)(1) and D-8(b)(5), respectively."
- 2. DOE has not sufficiently addressed the requirements in IDAPA 58.01.05.008 and .012 [40 CFR §§ 264 Subpart AA and 270.24]. In addition to the process vents associated with the deep tanks, evaporators, and fractionators, the revised Part B Permit Application must include all sparged tanks (continuous or intermittent) equipped with process vents. The regulations in IDAPA 58.01.05.008 [40 CFR 264 Subpart AA] do not differentiate whether a process vent emits continuously or intermittently. The Part B Permit Application, Revision 1, has also failed to demonstrate whether the <u>cumulative</u> organic emissions from <u>all affected process vents</u> can be maintained below 3 lb/hr or 3.1 tons/yr. This limit cannot be exclusively utilized for a single vent. DOE must revise the total organic emission determination.

#### **RESPONSE:**

The only process vent associated with the units identified in the Part B Permit Application is the INTEC main stack. The tanks included in the ILWMS are not equipped with process vents. Instead, emissions from these units are vented to either the Vessel Offgas System and/or the Process Offgas System, which eventually lead to the INTEC main stack.

The only sources of volatile and semi-volatile organics managed by the ILWMS are small quantities of laboratory wastes that are discarded to the CPP-601 Deep Tanks. Engineering Design File (EDF)-2432 was prepared and included as Attachment 1 to the first NOD response, which was submitted to the DEQ in December 2002. This EDF reviewed the inventory of organics sent from CPP-602, CPP-630, and CPP-684 to the Deep Tanks and determined that although the organic concentration in the Deep Tanks may exceed 10 ppmw, making 40 CFR 264 Subpart AA applicable to this system, associated emissions of volatile organic compounds (VOC) are much less than 3 lb/hr and 3.1 tons/yr.

Other INTEC processes may generate small quantities of non-volatile organics that are also managed by the ILWMS. These non-volatile organics are primarily generated through decontamination and debris treatment activities in CPP-659. Decontamination activities elsewhere at the INTEC may result in the discharge of additional small quantities of non-volatile organics to the ILWMS.

A review of the INEEL Chemical Management System for the past five years indicates that the following quantities of non-volatile organics are routinely managed in the ILWMS on an annual basis. Material Safety Data Sheets for these products are included as Attachment 1 to this NOD response.

• Alkaline Rust Remover (> 60% sodium hydroxide, 10-20% triethanolamine, 1-10% sodium gluconate, 1-10% diethanolamine); 600 lbs/yr

- Oxalic Acid (99.6% oxalic acid, 0.4% inert salts); 58 lbs/yr
- Radiacwash (> 85% mineral water, 6 % octylphenol, 5.7 % tetrasodium ethylenediamine, 2.9% citric acid); < 4 gal/yr
- Small quantities of oil/grease from decontamination/debris treatment of equipment.

The only sources of volatile and semi-volatile organics to the ILWMS are the Analytical Laboratories, via the CPP-601 Deep Tanks. EDF-2432, previously submitted, conservatively assumes that organics volatilize immediately and completely upon introduction to the Deep Tanks and determined the organic emissions to be 0.035 ton/yr, approximately two orders of magnitude lower than the 3.1 tons/yr limit. By assuming complete volatilization of organics in the Deep Tanks, this value includes any potential emissions that could occur from the Process Equipment Waste Evaporator (PEWE) or Liquid Effluent Treatment and Disposal (LET&D) facilities.

Because the New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS) is considered a segment of the ILWMS treatment train and will be added as a modification to the final permit, its contribution to the overall emission of organics must also be considered. Included as Attachment 2 to this NOD response is "NWCF Evaporator Tank System 2001 Offgas Emissions Inventory," INEEL/EXT-02-00198, February 2002. This report provides offgas and liquid stream characterization of the ETS while processing typical wastes from the Tank Farm Facility during May and June, 2001. The analytical results from the offgas sampling event indicate that the hourly total emissions rate for all volatile and semi-volatile organic emissions was less than 0.02 lbs/hr or less than 0.09 ton/yr. Thus, the combined contributions from all units that manage volatile and semi-volatile organics in the ILWMS = 0.035 ton/yr + 0.09 ton/yr = 0.125 ton/yr. This value is considerably less than the 3.1 tons/yr limit prescribed in 40 CFR Part 264 Subpart AA.

3. The Risk Assessment of Potential Hazardous Air Pollutant Emissions from the ILWMS (Attachment 2, Book 1 of 4, Part B Permit Application) does not satisfy the requirements of IDAPA 58.01.05.008 [40 CFR § 264.601]. This regulation requires that permits for miscellaneous units contain such terms and provisions as necessary to protect human health and the environment. Unlike other hazardous waste management units that have technology based performance criteria (e.g., incinerators or landfills), the permit conditions and performance standards for miscellaneous units are based on the risk assessment and engineering judgment. A combination of [40 CFR §§ 264.601 (c) and 264.601(c)(5)] reads as follows:

"Prevention of any releases that may have adverse effects on human health or the environment due to waste migration in the air considering the existing quality of the air, including other sources of contamination and their cumulative impact on the air."

Fugitive emissions from fixed sources and stationary emission sources, regardless of their status under HWMA, must be considered under this regulation.

The impact of sources and their cumulative impact are to be assessed on a site by site (or area by area) basis. At some facilities, it may be that adding the separate screening level risk assessments is the most efficient means to consider the cumulative risk. At other facilities, it may be necessary to conduct a complex assessment of cumulative risk, evaluating realistic and/or actual (e.g., background) emission scenarios.

Considering the complicated nature and variables associated with the INEEL, DEQ recommends that the DOE develop a risk assessment work plan to support evaluation of cumulative impacts from emission sources. At a minimum, the work plan should identify the following:

- 1. Sources of contamination to be included in the risk assessment;
- 2. The air dispersion model to be used;
- 3. Exposure models, both human receptor scenarios and ecological receptors, to be evaluated;
- 4. Emission estimates for each contaminant from each emission source:
- 5. Meteorological data to be included in the dispersion model;
- 6. Toxicity data for each chemical identified in the emissions estimate;
- 7. Proposed human health protectiveness criteria for both carcinogenic and non-carcinogenic risks; and,
- 8. Proposed ecological protectiveness criteria.

In order to avoid unnecessary protraction of the permitting process, DEQ is strongly suggesting that the work plan be approved prior to actual assessment of risk.

#### **RESPONSE:**

Per 40 CFR § 264.601, miscellaneous units must be located, designed, constructed, operated, maintained, and closed in a manner that will ensure protection of human health and the environment. Protection of human health and the environment includes prevention of releases due to migration of waste constituents in the groundwater, surface water, or air.

Protection of groundwater and surface water are ensured since Buildings CPP-604, CPP-641, CPP-649, CPP-659 Annex, CPP-1618, and CPP-601 are fully enclosed buildings equipped with secondary containment and leak detection devices to prevent the release of hazardous and mixed waste constituents. Sections F-4b and F-4c of the Part B Permit Application provide information regarding protection against runoff and contamination of water supplies. This response specifically addresses an evaluation of the impacts to the air from operation of the ILWMS.

Based on discussions with the DEQ on May 21, 2003, "Risk Assessment of Potential Hazardous Air Pollutant Emissions from the INTEC Liquid Waste Management System," submitted as Attachment 2 to the first NOD response for Volume 14 in December 2002, is considered to be adequate for addressing incremental human health impacts for the public from ILWMS releases. This assessment calculates individual contaminant risk and hazard quotients (HQ) using risk or HQ per unit release factors determined from the New Waste Calcining Facility (NWCF) Screening Level Risk Assessment (SLRA). This method is technically appropriate if: 1) the ILWMS has the same source release geometry (e.g., stack height, flow rate) as that modeled for the NWCF SLRA; 2) the meteorological data used in the NWCF SLRA modeling are appropriate for the ILWMS; and 3) the exposure scenarios evaluated in the NWCF SLRA are appropriate for the ILWMS. All three of these conditions were evaluated and determined to be consistent for the ILWMS. Therefore, the method of calculating ILWMS impacts from NWCF impacts on a

contaminant-specific basis is a technically appropriate method for risk assessment of the ILWMS emissions.

Ecological risk assessments use modeled soil concentrations as a starting point for calculating impacts to ecological receptors. Modeled soil concentrations for specific contaminants are directly proportional to the contaminant release rates for a given time of exposure. Based on this, and conditions 1-3 described above, ecological impacts for the ILWMS may be calculated in the same manner as human health effects, i.e., multiplying the ecological receptor HQ per g/s released from the NWCF Screening Level Ecological Risk Assessment (SLERA) by the ILWMS contaminant emission rates and then summing the HQs to obtain a total hazard index (HI).

Per 40 CFR § 264.601(c)(5), only sources that release pollutants to the air will be evaluated for "their cumulative impact on the air." The evaluation will exclude incremental impacts from non-air pathway sources (e.g., exposure via soil ingestion or absorption directly from buried solid waste). For the INEEL CERCLA Disposal Facility (ICDF), this would include the airborne emissions calculated in the Short-term Risk Assessment. It would not consider the impacts calculated for ecological receptors in the Screening Level Ecological Risk Assessment (SLERA) for the ICDF, because these impacts were calculated based on direct exposure to calculated design inventory landfill waste concentrations, without transport to the air. Further, the impacts calculated in the ICDF SLERA are not appropriate for use in this evaluation because the ICDF SLERA used very conservative (maximum design inventory) landfill waste concentrations and specifically states that the analysis was developed to support facility design only and should not be used to approximate actual site conditions.

A revised risk evaluation for ILWMS emissions is proposed, which will include the following:

- 1. A summary of the human health and ecological risk calculations from ILWMS emissions using the above-described methods.
- 2. Discussion on the relative importance of evaluating cumulative impacts on human health for <u>determination of ILWMS permitting.</u> The human impacts from ILWMS emissions (risk = 7E-08 and HI = 0.0024) are less than 1/100 (< 1%) of the currently used human health criteria for RCRA risk assessments (1E-05 risk or 0.25 HI). The potential ecological impacts are also likely a very small fraction of the accepted ecological criteria based on the results of the NWCF SLERA and the fact that the ILWMS emission rates are much smaller than the NWCF emission rates. Assessment of incremental impacts from existing sources becomes much less important when the impacts from the source evaluated are very small compared to acceptable impact criteria. When the impacts from the incremental source are 1% or less of the criteria, evaluation of existing source impacts has two likely outcomes: 1) the impacts from the existing sources will not increase the cumulative impacts beyond the criteria; or 2) the impacts from the incremental source will not appreciably change the existing air quality. For example, if the existing ambient air quality results in a risk of less than or equal to 9.8E-06 (slightly less than the risk criteria of 1E-05), adding in the ILWMS risk (7E-08) gives a cumulative risk of 9.9E-06; still less than the risk criteria. If the existing air quality results in a risk of 1E-05 or greater (greater than or equal to the risk criteria), adding in the ILWMS risk gives a cumulative risk of 1.007E-05 (or less). This is quantitatively the same value as the existing air quality risk within 2 significant figures, which is the maximum number normally justified given the uncertainty in the risk assessment process.
- 3. <u>Summary of ICDF cumulative impacts on human health.</u> One of the major sources of concern relating to cumulative impacts with the ILWMS is the ICDF, which is currently

being constructed just southwest of the INTEC fence line. The maximum human health impacts to the public calculated for this facility (ICDF Short-term Risk Assessment) using very conservative (maximum design inventory) assumptions were determined to be low enough ( $\leq$  3E-08 risk and  $\leq$  0.01 HI) that their cumulative impacts with the ILWMS emissions are well less than the risk criteria (7E-08 + 3E-08 = 1E-07). The cumulative HI from the ICDF and ILWMS would be  $\leq$  0.0124, far less than the 0.25 HI criteria. These cumulative impacts will be summarized. No additional human health risk assessment is planned for ICDF.

- 4. Area screening for cumulative ecological impacts. Cumulative impacts from ILWMS and existing sources may become an issue for on-site ecological impacts because of the much closer proximity of the receptors to the sources (right outside facility fence lines). To address this concern, screening modeling of existing sources will be performed to determine the INEEL facilities whose plumes significantly overlap with the ILWMS (INTEC main stack) plume. For this initial modeling, the following five areas will be evaluated: 1) INTEC main stack; 2) ICDF ground-level releases (from the landfills and evaporation ponds); 3) TRA; 4) CFA; and 5) RWMC. These facilities were selected based on their location within the INTEC main stack plume footprint determined in the NWCF SLRA. For this initial screening modeling only, TRA, CFA, and RWMC will be evaluated using a single 10-m high centrally located point source (this is reasonable given the lack of a single large source at these facilities and their relatively large distance from the INTEC maximum impact location, located approximately 1 km southwest of INTEC). The latest EPA version of the ISC3 model will be used for the modeling with 5-years of National Oceanic and Atmospheric Administration (NOAA) meteorological data from the Grid 3 tower, located 2-km north of INTEC. Unit release annual average air concentration will be modeled and plotted (as isopleths). If a facility contributes less than 10% of the total relative air concentration (from all sources) at the ILWMS maximum on-site impact location (located outside area fence lines), then that facility will be excluded from further analysis (its plume dispersion pattern does not significantly overlap that from the ILWMS). If a facility contributes more than 10% of the total relative air concentration at the ILWMS maximum impact location (located outside area fence lines), then refined modeling will be done for quantified sources at that facility using actual source characteristics (e.g., location, release height, flow rates).
- 5. Evaluation of cumulative ecological impacts from contributing sources. If a facility contributes 10% or more of total impact at the ILWMS maximum impact location using the above screening modeling, the following additional analyses will be performed to evaluate cumulative ecological impacts at the maximum impact location for the INTEC main stack (same as that modeled for NWCF):
  - Emissions from the ILWMS and contributing sources will be evaluated for pollutants with existing emissions rate data (either calculated or measured) and reliable toxicological data. Radionuclides will not be evaluated.
  - Cumulative deposition rates from contributing facilities will be calculated using the ISC3 model.
  - Cumulative soil concentrations will be calculated using approved EPA human health risk assessment guidance.
  - Ecological impacts will be assessed using HQs calculated by dividing the modeled soil concentrations by ecologically-based screening levels (EBSLs), as described in the

"Guidance Manual for Conducting Screening Level Ecological Risk Assessments at the INEL," INEL-95/0190, 1995. The HQs will then be summed across all pollutants to obtain an HI. This method was used in both the NWCF and ICDF SLERAS.

- The proposed ecological protectiveness criterion for initial screening of impacts is an HI of 1.0. An HI of 1.0 is considered appropriate because of the conservative nature of the EBSL approach and because this assessment takes into account cumulative impacts.
- A qualitative uncertainty analysis will be included which discusses the uncertainty associated with ecological modeling assumptions and parameters values used in the assessment.
- 6. For certain pollutants (e.g., mercury), existing measurements may be used in lieu of modeled concentrations for existing source impacts if the model predictions show unacceptable impacts.

Upon receipt of DEQ concurrence with the approach presented above, the INEEL will complete the risk evaluation proposed. Transmittal of the final certified report to the DEQ is anticipated within 270 calendar days after receipt of concurrence.

#### **SPECIFIC COMMENTS**

#### C. WASTE CHARACTERISTICS

4. DEQ does not concur with the response to NOD #24. The PEWE and LET&D are mixed waste treatment units. While DEQ does not regulate the radioactive component of the waste, DOE is requesting alternate handling and sampling of the waste due to radiation concerns. DEQ cannot evaluate the validity of these requests without information on the radiological component (e.g. isotopes, hazards associated with radioactive materials, etc.) of the waste. Thus, information on the radiological component of the waste must be included in the revised Section C of the Permit Application.

#### **RESPONSE:**

The following description was added after the second paragraph of Section C-1 of the Part B Permit Application:

"Radionuclides that contribute the majority of the activity for wastes managed in the ILWMS include Y-90, Sr-90, Cs-137, Ba-137m, Pu-238, Sm-151, Pu-241, Pm-147, Eu-155, Eu-154, Pu-239, Am-241, Co-60, Ni-63, Cs-134, Sb-125, H-3, Pu-240, Tc-99, Cd-113m, Te-125m, Pa-233, Np-237, Eu-152, Zr-93, Cm-244, Fe-55, Nb-93m, Nb-94, Ru-106, Rh-106, Cs-135, U-234, Ce-144, and Pr-144. Units that comprise the ILWMS are capable of handling high-level, transuranic, and low-level radioactive wastes. Activities of typical wastes range from <20 nCi/g to 50,000 nCi/g. The exposure rates associated with these process solutions routinely exceed 100 mrem/hr and can pose a potentially serious hazard to workers at the INEEL if appropriate protective measures such as time, distance, and shielding are not applied. As a result the INEEL is requesting the use of alternate handling and sampling techniques as proposed in this permit application."

Specific waste characterization information, including radioactive waste analyses, is maintained in the operating record.

# C-1. Chemical and Physical Analyses: IDAPA 58.01.05.008 and .012 [40 CFR §§ 264.13(a) and 270.14(b)(2)]

5. Page C-5, line 3 through 4, appears to indicate that there are test methods equivalent to the methods set forth in the Subpart C of 40 CFR 261 approved by the Director of the Idaho DEQ. Clarify if these methods have actually been approved by the Director and revise the Part B Permit Application to include a brief description of each of the equivalent methods.

#### **RESPONSE:**

The analyses noted in this Part B Permit Application do not require variances/deviations from the test methods identified in Tables C-1 and C-2. The application language referenced on page C-5 of the Part B Permit Application is included to assure the DEQ that when such variances are necessary, appropriate equivalent method approval by the Director of the DEQ will be sought.

6. Page C-5, line 7 through 9, states that "With few exceptions, units that comprise the ILWMS manage land disposal restricted waste liquids that exhibit the characteristics of corrosivity and toxicity, and contain one or more listed constituents." In the revised Part B Permit Application, clarify the exceptions referred to in the sentence.

#### **RESPONSE:**

Information from lines 18 through 20 on page C-5 of the Permit B Permit Application was incorporated into the referenced paragraph to provide clarification. The description on page C-5 now reads:

"Except for the CPP-641 Westside Waste Holdup Tanks (VES-WL-103, VES-WL-104, and VES-WL-105), units that comprise the ILWMS manage land disposal restricted waste liquids that exhibit the characteristics of corrosivity and toxicity, and contain one or more listed constituents. Transfer lines from the Westside Waste Holdup Tanks include sections of tile-encased lines. Because of compatibility concerns regarding waste acids and the grout used for the tile-encasement, these tanks are prohibited from managing wastes exhibiting the characteristic of corrosivity (EPA HWN D002)."

7. The Part B Permit Application must provide detailed physical and chemical characteristics, based on analytical data and/or acceptable process knowledge, of waste being stored and/or treated in each of the ILWMS tank systems and miscellaneous units. For example, the Engineering Design File (EDF) for VOC Emissions from ALD Inputs to the INTEC Deep Tanks (see Attachment 1 of the Part B Permit Application, Revision 1), page 2 of 6, 3<sup>rd</sup> and 4<sup>th</sup> paragraphs, provide sufficient information pertaining to chemical characteristics of the waste being stored and treated in the CPP-601 Deep Tanks. The revised Part B Permit Application must provide equivalent quality of information/description for each unit associated with the ILWMS.

#### **RESPONSE:**

Attachments 3a through 3k to this NOD response contain analytical results for representative samples from tanks included in the ILWMS. Due to the level of redundancy designed into the system, several tanks and miscellaneous treatment units may manage the same waste. The following matrix is provided to show which analytical results are representative of wastes in the various segments of the ILWMS.

| Tank(s)/Treatment Unit(s)    | Description                                                                                                                                                                 | Typical Analytical Results            |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| VES-NCC-119                  | Fluoride Hot Sump Tank                                                                                                                                                      | See Attachment 3a                     |
| VES-NCC-122                  | Non-Fluoride Hot Sump Tank                                                                                                                                                  | See Attachment 3b                     |
| VES-NCD-123/VES-NCD-129      | Decon Holdup and Collection<br>Tanks                                                                                                                                        | See Attachment 3c                     |
| VES-WL-132                   | CPP-604 Evaporator Feed<br>Sediment Tank –<br>fed through VES-WL-133                                                                                                        | See Attachment 3d                     |
| VES-WL-133                   | CPP-604 Evaporator Feed<br>Collection Tank                                                                                                                                  | See Attachment 3d                     |
| VES-WL-102                   | CPP-604 Surge Tank for<br>VES-WL-133 – fed through<br>VES-WL-133                                                                                                            | See Attachments 3d and 3e             |
| VES-WL-109                   | CPP-604 Evaporator Head<br>Tank – fed from<br>VES-WL-133                                                                                                                    | See Attachment 3d                     |
| EVAP-WL-129 /<br>EVAP-WL-161 | Process Equipment Waste<br>Evaporators – fed from<br>VES-WL-133                                                                                                             | See Attachment 3d                     |
| VES-WL-134                   | CPP-604 Process Condensate<br>Surge Tank – may be used for<br>series operation of the PEW<br>evaporators or for storage<br>capacity of concentrated<br>acidic LET&D bottoms | See Attachment 3j<br>or Attachment 3k |
| VES-WL-131                   | CPP-604 Process Condensate<br>Surge Tank – feeds to the<br>Process Condensate<br>Collection Tanks                                                                           | See Attachment 3j                     |
| VES-WL-108                   | CPP-604 Process Offgas<br>Knock Out Pot – collected<br>liquid would drain to either<br>VES-WL-133 or<br>VES-WL-131                                                          | See Attachment 3d or Attachment 3j    |

| Tank(s)/Treatment Unit(s)                                                                                      | Description                                                                                                                                                                                                                     | Typical Analytical Results |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| VES-WL-101<br>VES-WL-111                                                                                       | CPP-604 Bottoms Collection<br>Tanks – sample drawn from<br>sample station WL-613 in<br>1983/Bottoms historically<br>transferred to Tank Farm<br>Tanks VES-WM-186                                                                | See Attachment 3f          |
| VES-WL-103, VES-WL-104, and VES-WL-105                                                                         | CPP-641 Westside Waste Holdup Tanks - these tanks have been emptied to the maximum extent allowed by the transfer pumps, without causing damage to the pump bearings, and no transfers of waste to this system are taking place | See Attachment 3g          |
| VES-WM-100, VES-WM-101, and VES-WM-102                                                                         | CPP-604 Tank Farm Tanks                                                                                                                                                                                                         | See Attachment 3h          |
| VES-WG-100, VES-WG-101,<br>VES-WH-100, and<br>VES-WH-101                                                       | CPP-601 Deep Tanks                                                                                                                                                                                                              | See Attachment 3i          |
| VES-WL-135, VES-WL-136,<br>VES-WL-137, VES-WL-138,<br>VES-WL-139, VES-WL-142,<br>VES-WL-144, and<br>VES-WL-150 | Process Waste Liquid Tanks –<br>may collect PEW evaporator<br>condensate                                                                                                                                                        | See Attachment 3j          |
| VES-WL-106, VES-WL-107, and VES-WL-163                                                                         | CPP-604 Process Condensate<br>Collection Tanks                                                                                                                                                                                  | See Attachment 3j          |
| VES-WLK-197                                                                                                    | CPP-1618 Acid Fractionator<br>Waste Feed Head Tank – fed<br>from CPP-604 Process<br>Condensate Collection Tanks                                                                                                                 | See Attachment 3j          |
| FRAC-WLL-170 and<br>FRAC-WLK-171                                                                               | CPP-1618 Acid Fractionators – fed from CPP-604 Process Condensate Collection Tanks                                                                                                                                              | See Attachment 3j          |
| VES-WLL-195                                                                                                    | CPP-1618 Acid Fractionator<br>Bottoms Tank                                                                                                                                                                                      | See Attachment 3k          |

| Tank(s)/Treatment Unit(s) | Description                                                                       | Typical Analytical Results |
|---------------------------|-----------------------------------------------------------------------------------|----------------------------|
| VES-NCR-171               | CPP-659 Annex LET&D<br>Nitric Acid Recycle Tank –<br>fed from VES-WLL-195         | See Attachment 3k          |
| VES-NCR-173               | CPP-659 Annex LET&D<br>Nitric Acid Recycle Head<br>Tank – fed from<br>VES-NCR-171 | See Attachment 3k          |

8. The response to NOD #29 states that "Sampling and analysis has demonstrated that when these small quantities of ignitable waste are aggregated with other waste in the CPP-601 Deep Tanks to facilitate treatment, the characteristic of ignitability is lost." In the absence of a summary of past studies, which have been conducted on wastes in the Deep Tanks, DEQ is unable to reach the same conclusion. The revised Section C must clearly justify the absence of the characteristic of ignitability in the deep tank.

#### **RESPONSE:**

As indicated in Table C-3 of the Part B Permit Application, process samples are taken from the CPP-601 Deep Tanks (VES-WG-100, VES-WG-101, VES-WH-100, and VES-WH-101) prior to each transfer to the PEWE system. These process samples are analyzed for flashpoint to ensure they do not exhibit the characteristic of ignitability. Attachment 4 to this NOD response contains templates for the parameters analyzed for process samples from the WG and WH tanks. This attachment also includes examples of results from recent process sampling activities from these tanks demonstrating that these mixtures are not ignitable.

9. Clarify whether or not the contents in the WWH tanks are corrosive.

#### **RESPONSE:**

Before the tanks were emptied to their current levels demineralized water was added until the pH of the waste was greater than or equal to 2.0 and less than or equal to 12.5 to ensure transferred waste was compatible with the grout used for tile-encased transfer lines. Attachment 5 to this NOD response shows analytical results of the material contained in the WWH tanks. These results show that the wastes in all 3 tanks exhibit a pH  $\geq$  2.0 and  $\leq$  12.5.

10. Results of the Balance of Plant sampling conducted in FY 1999 and 2000 (Book 1 of 4 of the Part B Permit Application) identify "unknown" volatile and semi-volatile organics (VOCs and SVOCs). The revised Section C must comprehensively discuss these unknown VOCs and SVOCs, include justifications as to why they were not/could not be identified, and discuss the fate of these unknown components throughout the ILMWS.

#### **RESPONSE:**

EPA guidance (Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA/R-94/012, 1994; Guidance on Collection of Emissions Data to Support Site-Specific Risk Assessments at Hazardous Waste Combustion Facilities, EPA530-D-98-002, August 1998; and USEPA Contract Laboratory Program Statement of Work for Organic Analysis, Multimedia, Multi-Concentration, OLM04.2, May 1999) specifies the identification and quantification of tentatively identified compounds (TICs) that are observed in the VOC and SVOC chromatograms. Results of the Balance of Plant sampling conducted in fiscal years (FY) 1999 and 2000 were reviewed by Analytical Laboratory personnel to identify TICs based on this guidance. Identification and quantification of these TICs was done according to the EPA Contract Laboratory Program guidelines. These guidelines indicate that chromatogram peaks with the greatest apparent concentrations should be tentatively identified and quantified. Additionally, all peaks with favorably matched retention times and apparent primary ion concentration down to 10% relative intensity (based on area) with respect to the primary ion of the nearest internal standard, should be identified and reported in their estimated concentration. Relative major ion intensities should agree within +/- 20%. Compound identifications were made using National Institute of Standards and Technology /EPA/National Institute of Health (May 1992) equivalent mass spectral library data. These are tentative identifications because there were no reference standards analyzed at the same chromatogram retention time as the tentatively identified compounds.

The reportable concentrations for these TICs were estimated by comparing the compound total area count (or peak height) to the total area count (or peak height) of the nearest internal standard free from interferences on the total or reconstructed ion chromatogram, and assuming a relative response factor (RRF) of 1.0. Results were reported on a separately identified list and flagged as estimated. The RRF is compound-specific, and cannot be determined in the TIC evaluation. The revised report specifies the corresponding internal standards used in the calculation of TIC concentrations.

For this effort, the "match quality" (Q), an agreement between the unknown peak and potentially matching library compounds, was required to be at least 85% for the unknown peak to be identified as a specific compound. This degree of matching may result in false-positive identification of TICs in the sample. Therefore, it may be necessary to re-examine results that, in the judgment of the project technical lead and quality assurance office, seem incredible. This list, however, will help identify any constituents that should be added to the VOC and SVOC target analyte list for future sampling. Any compounds that failed to meet a minimum match quality of 85% continue to be listed as "unidentified."

Based on the review of Balance of Plant analytical results for sampling conducted in FY 1999 and 2000, all reported compounds, with two exceptions, continue to be "unknown" (657 reported), "unknown hydrocarbons" (30 reported) or substituted benzenes (17 reported) in the referenced data packages since the relative major ion intensities exceeded the +/-20% criteria. The exceptions are as follows:

- Benzoic acid in VES-NCD-123 at an estimated level of 21 ug/L
- Chloroform in VES-WL-106 at an estimated level of 12 ug/L.

Both of these TICs are short-chain hydrocarbons that may be present in extremely low concentrations. EDF-2432 was prepared and included as Attachment 1 to the first NOD response, which was submitted to the DEQ in December 2002. This EDF reviewed the inventory of organics sent from CPP-602, CPP-630, and CPP-684 to the Deep Tanks. The EDF conservatively assumed that all "unidentified" volatile organic compounds were isopropanol, which was then readily converted to acetone; considered a worst-case volatile organic. The EDF concluded that although the organic concentration in the Deep Tanks may exceed 10 ppmw, making 40 CFR 264 Subpart AA applicable to this system, associated emissions of volatile organic compounds (VOC) are much less than 3 lb/hr and 3.1 tons/yr. The TICs and estimated concentrations identified from this review of FY 1999 and 2000 Balance of Plant sampling data do not alter this conclusion.

Provided as Attachment 6 to this NOD response are the analytical results identifying the TICs described above.

### C-lc. Waste in Miscellaneous Treatment Units: IDAPA 58.01.05.008 [40 CFR § 264.601(a)(1)]

11. Response to NOD #35 does not fully address DEQ's concern. The revised Section C must provide detailed physical and chemical characteristics, based on analytical data and/or acceptable process knowledge, of the evaporator and fractionator bottoms and overheads.

#### **RESPONSE:**

See the response to item No. 7 of this NOD.

# C-2. Waste Analysis Plan: IDAPA 58.01.05.008 and .012 [40 CFR §§ 264.13(b) and (c), and 270.14(b)(3)]

12. One of the objectives of the WAP (6<sup>th</sup> bullet) is to provide additional requirements for the characterization and acceptance of ignitable and reactive wastes. It is DEQ's understanding that the ILWMS will not manage wastes that exhibit the characteristic of reactivity (EPA HWN D003). Clarify this discrepancy in the revised Section C.

#### **RESPONSE:**

The DEQ is correct. The INEEL will not manage wastes exhibiting the characteristic of reactivity in the ILWMS. The 6<sup>th</sup> bullet under Section C-2 of the Part B Permit Application has been revised to read:

- "Provide additional requirements for the characterization and acceptance of ignitable wastes."
- 13. One of the examples of process knowledge described in Section C uses analytical reports from non-SW-846 chemical analyses, outdated chemical analyses, or information from similar processes. Justify the validity of these analyses being used as process knowledge in lieu of acceptable knowledge based on valid analytical techniques (EPA Guidance Manual for Waste Analysis at Facilities that Generate, Treat, Store and Dispose of Hazardous Wastes).

#### **RESPONSE:**

Non-SW-846 chemical analyses are process sampling results that do not necessarily follow SW-846 sample collection or QA/QC protocol prescriptively. The results, however, supply information related to the characteristics of the waste that may be used as process knowledge during RCRA characterization. If process sample results are inconsistent with the waste characterization information provided by the generator or indicate that the waste generating process may have changed, then the waste is recharacterized.

Outdated chemical analyses are not used to support process knowledge for RCRA characterization of wastes managed by the ILWMS. The reference to outdated chemical analyses has been removed from the Part B Permit Application.

The sixth bullet of Section C-2a of the Part B Permit Application was revised to read:

• "Analytical reports from non-SW-846 chemical analyses or information from similar processes."

#### C-2a(1). Waste Acceptance Criteria

14. State the concentration limits for both total suspended solids and total dissolved solids acceptable to the ILWMS.

#### **RESPONSE:**

There are no concentration limits for TSS or TDS. All physical and chemical operational constraints and tolerance limits are identified in Section D-8b(5) of the Part B Permit Application.

#### C-2c(1). Standard Sampling Methods

15. Samples from the ILWMS are typically collected through double hypodermic needle (double-needle) samplers, sample nozzles, or spigots. The double-needle samplers may lose VOCs and SVOCs to either headspace of the sample vial or to the carrier gases used to move/collect the sample. DOE must demonstrate that the use of the double-needle sampling system does not impact the accuracy of the VOC and SVOC analytical data.

### **RESPONSE:**

Appendix C-2 has been added to the Part B Permit Application. This appendix contains a report from Science Applications International Corporation entitled; "Final Report for Organics Partitioning Resulting from Operation of an INTEC Double-Needle Sampler, Revision 1," dated September 24, 2002. This report shows that volatile organics taken from a double-needle sampler closely correlate to samples taken from a spigot at a PEWE mock-up facility. In fact, in several instances, the level of volatile organics measured from samples taken through the double-needle sampler was slightly greater, or more conservative, than that for samples taken from the spigot.

The following description was added to the end of the first paragraph of Section C-2c(1) of the Part B Permit Application:

"Appendix C-2 contains a report from Science Applications International Corporation entitled, "Final Report for Organics Partitioning Resulting from Operation of an INTEC

Double-Needle Sampler, Revision 1," dated September 24, 2002. This study compares organic concentrations obtained from double-needle and spigot sampling techniques to determine whether potential stripping of organics occurs. The results of these tests indicate that INTEC sample collection and handling procedures do not significantly affect the concentration of volatile or semi-volatile organic constituents in the waste stream."

#### C-2c(3). Process Sampling

16. Exhibit C-1 of the Volume 14 Permit Application, Revision 0, shows two additional process sampling locations, the feed collection tanks and the bottom collection tanks, which are not identified in Table C-3 of the Permit Application, Revision 1. Clarify this discrepancy in the revised Section C.

#### **RESPONSE:**

Table C-3 in the Part B Permit Application identifies ILWMS typical process sampling locations and the parameters tested. Exhibit D-1, PEWE System Flow Diagram and Inputs, of the permit application has been revised to indicate that the Bottoms Collection Tanks and the PEWE Feed Tanks are not routinely sampled.

Bottoms collected in VES-WL-101 and VES-WL-111 are transferred to either the Tank Farm Facility or the Evaporator Tank System where sampling can occur. Since these tank systems were designed and constructed to manage the types of waste to be processed, there is no need to collect process samples prior to waste transfers.

VES-WL-102 and VES-WL-133 contain samplers; however, the sample lines are plugged and not serviceable. Process samples are taken upstream of the PEWE Feed Tanks to ensure that process tolerance limits are met. VES-WL-132 is not equipped with a sampler.

17. Justify why the analytical parameters seem to vary with the sampling location. Each waste stream must meet the same acceptance profile before it can be received to the evaporators.

#### **RESPONSE:**

Table C-3 identifies typical ILWMS process sampling locations and parameters. Process sampling differs from RCRA characterization sampling in that process samples are collected solely to ensure optimum operation of the miscellaneous treatment units. RCRA characterization and waste verification/acceptance are completed prior to receiving waste streams into the ILWMS. Process samples are taken after acceptance of the waste into the system to ensure performance criteria associated with the miscellaneous treatment units are satisfied for each consecutive step in the treatment train. Process samples are not taken for RCRA characterization of wastes. However, if process sampling results are inconsistent with the waste characterization information provided by the generator or indicate that the waste generating process may have changed, then the waste is recharacterized.

The following statement was added to the last paragraph of Section C-2c(3) of the Part B Permit Application.

"If process sampling results are inconsistent with the waste characterization information provided by the generator or indicate that the waste generating process may have changed, then the waste is recharacterized."

# C-2f. Additional Requirements for Ignitable, Reactive, or Incompatible Wastes: IDAPA 58.01.05.008 [40 CFR §§ 264.13(b)(6) and 264.171

18. It appears that a hexone/nitric acid reaction can occur if an adequate concentration of hexone is present and necessary temperature requirements are met. The flashpoint of hexone in water at the elevation of the INEEL is 133°F (56°C) at a concentration of 2000 mg/L. Since the operating temperature of the PEW evaporators and LET&D fractionators are high enough to sustain a hexone/nitric acid reaction, under the operating condition, the concentration of total organic carbon (TOC) allowed in the feed of the ILWMS is limited to 1100 mg/L (assuming all TOC is hexone). These descriptions are included in the NOD response (response #51) but not in the Part B Permit Application, Revision 1. Because the tolerance limit set for the TOC appears to be a requirement for reactive waste, include the response to NOD #51 to the revised Section C.

#### **RESPONSE:**

The following description was added to the end of Section C-2f of the Part B Permit Application:

"The safety analysis documentation for the ILWMS indicates that, under the proper conditions, two potentially explosive reactions could occur. These reactions are tributyl phosphate (TBP) with nitric acid and hexone with nitric acid. Due to the temperature requirements necessary for these reactions, the only units described in this Part B permit application that could potentially sustain these reactions are the PEW evaporators and the LET&D fractionators.

"Conditions necessary for a TBP/nitric acid reaction include appropriate TBP concentration and elevated temperature (studies have shown that this reaction does not become extremely exothermic until the solution reaches 186° C).

"The quantity of TBP in the ILWMS is extremely small. Since the end of fuel reprocessing activities at the INTEC in the early 1990's, no TBP has been added to the system. In addition, all liquids in the INTEC TFF have already been evaporated at least once, further reducing the volume of TBP.

"Both the PEWE and LET&D facilities operate at much lower temperatures than are necessary to sustain a TBP/nitric acid reaction. Standard operating temperatures for these facilities are 108° C for the PEW evaporators and 118° C for the LET&D fractionators. Deviations from these operating temperatures result in waste feed cutoffs and/or shutdown of the system well before a temperature of 186° C can be reached.

"In order for a hexone/nitric acid reaction to occur, similar conditions must exist. A reaction can only be sustained if an adequate concentration of hexone is present and necessary temperature requirements are met. The flashpoint of hexone in water at the elevation of the INEEL is 133° F (56° C) at a concentration of 2000 mg/L.

"Like TBP, hexone is present in INTEC liquid wastes in only minimal concentrations. However, since the operating temperatures of the PEW evaporators and LET&D fractionators are high enough to sustain a hexone/nitric acid reaction, under the

appropriate conditions, the concentration of TOC allowed in the feed to the ILWMS is limited to 1100 mg/L. To ensure conservatism, all TOC is assumed to be hexone. This tolerance limit is identified in Section D-8b(5) of this permit application for both the PEWE and LET&D facilities.

"Furthermore, the LET&D facility is operated as an open system. The LET&D fractionators are maintained at a pressure of –20 in. water column. Both the TBP/nitric acid and the hexone/nitric acid scenarios require a closed system to sustain a reaction. The conditions in the LET&D facility preclude either reaction from occurring. If a vacuum cannot be maintained, the treatment process is automatically shut down.

"Therefore, the risk of explosive TBP/nitric acid reactions is eliminated due to low reactant concentrations, inadequate temperature, and open vessel conditions in the LET&D fractionators. Similarly, hexone/nitric acid reactions cannot occur due to low reactant concentrations, which are further regulated by administrative controls, and open vessel conditions on the LET&D fractionators."

19. The last sentence of the response to NOD #53 should be included in the revised waste analysis plan.

#### **RESPONSE:**

The following description was added to the first paragraph of Section C-2f of the Part B Permit Application:

"As identified in Table C-3 of Section C-2c(3), process samples are taken from the CPP-601 Deep Tanks prior to each transfer to the PEWE system and tested for flashpoint to ensure the feed stream is not ignitable."

# C-4. Subpart AA, Subpart BB, and Subpart CC Applicability: IDAPA 58.01.05.008 [40 CFR §§ 264.1030, 264.1050, and 264.1080]

20. DEQ's comments appear to have not been adequately addressed and included in the Permit Application, Revision 1. See the General Comment section, second bullet.

#### **RESPONSE:**

See the response to item No. 2 of this NOD.

#### D. PROCESS INFORMATION

21. The response to NOD #67 indicates that PEWE off-gas samples, based on a study conducted on a bench-scale model of the PEWE, taken downstream of the PEWE condensers did not contain free liquids, thus the off-gas is non-condensable. The mist eliminator and superheater downstream of the PEWE condenser appear to be redundant equipment based on the bench-scale study. The revised Part B Permit Application must describe the need and operational parameters for this equipment.

#### **RESPONSE:**

The mist eliminator and superheater, components of the Vessel Offgas (VOG) System, are included to protect and extend the life expectancy of high-efficiency particulate air (HEPA) filters included in the offgas system. Under normal operations these components might be considered redundant; however, in the unlikely event of system upset they ensure adequate protection of human health and the environment by preventing degradation of the HEPA filters.

The first paragraph of Section D-2d of the Part B Permit Application under the heading, "PEWE Pressure Controls" was revised to read:

"Waste treatment and storage vessels at INTEC are connected to a gaseous waste treatment system called the VOG system. All ILWMS storage and treatment systems discharge gases such as instrument air purges (used in level, density, and pressure instrumentation), air spargers (agitators), and gases displaced from a vessel when it fills with liquid.

"Gases from the PEWE and other INTEC processes, such as the Tank Farm and CPP-659 vessels, vent to the CPP-604 VOG system. The CPP-604 VOG system consists of a mist eliminator, superheater, and HEPA filter banks. The mist eliminator and superheater are included to protect and extend the life expectancy of the HEPA filters.

"Several facility process and vessel offgas systems, including the CPP-604 VOG system, combine in the Process APS located in CPP-649. The Process APS is a back-up system that treats the combined process and vessel offgas streams from CPP-601, CPP-604, Tank Farm, and the NWCF. The Process APS treatment consists of a mist eliminator, superheater, and HEPA filters. Next, the process and vessel offgases are routed to the INTEC Main Stack (CPP-708) where they mix with building ventilation air and are exhausted to the atmosphere. The vessel and process offgas systems are maintained under a vacuum to control contamination. The system equipment and piping are fabricated from acid resistant stainless steel for corrosion resistance. Additionally, the Process Condensate Collection Tanks can be vented to the process condensate collection cells, which vent to the CPP-604 building ventilation system. The VOG and APS systems are described further in Section D-8b of this application."

22. To qualify for the emergency structure exemption as set forth in IDAPA 58.01.05.008 [40 CFR § 264.1(g)(8)(i)], the revised Section C must clarify the source(s) of the wastes collected in the PWL sumps.

#### **RESPONSE:**

Sump SU-WL-140 is located in the South Cell of the Rare Gas Plant (RGP). The RGP is no longer active. Therefore, there are no sources of waste that would be collected in this sump.

Sump SU-WL-143 is located in the RGP Pump Pit. Since the RGP is no longer active, there are no sources of waste that would be collected in this sump.

Sump SU-WL-148 is located at the INTEC main stack. In the event of equipment failure, condensate from the main stack could collect in this sump.

Sumps SU-WL-145 and SU-WL-146 are part of the secondary containment and leak detection system in the PEWE Condensate Collection Cell. As such, these sumps do not require the emergency structure exemption set forth in IDAPA 58.01.05.008 [40 CFR § 264.1(g)(8)(i)].

Sump SU-WL-147 is part of the secondary containment and leak detection system in the PEWE EVAP-WL-161 Cell. As such, this sump does not require the emergency structure exemption set forth in IDAPA 58.01.05.008 [40 CFR § 264.1(g)(8)(i)].

The following description was added to Section C-1b of the Part B Permit Application under the heading, "Process Waste Liquid (PWL) System (VES-WL-135, VES-WL-136, VES-WL-137, VES-WL-138, VES-WL-139, VES-WL-142, VES-WL-144, and VES-WL-150)":

"Sumps SU-WL-140, -143, -145, -146, -147 and -148 do not contain tanks. These sumps are not used routinely. The exclusive purpose of these sumps is to contain liquids during immediate responses to discharges of hazardous wastes.

"Sump SU-WL-140 is located in the South Cell of the Rare Gas Plant (RGP). The RGP is no longer active. Therefore, there are no sources of waste that would be collected in this sump.

"Sump SU-WL-143 is located in the RGP Pump Pit. Since the RGP is no longer active, there are no sources of waste that would be collected in this sump.

"Sump SU-WL-148 is located at the INTEC main stack. In the event of equipment failure, condensate from the main stack could collect in this sump.

"Sumps SU-WL-145 and SU-WL-146 are part of the secondary containment and leak detection system in the PEWE Condensate Collection Cell.

"Sump SU-WL-147 is part of the secondary containment and leak detection system in the PEWE EVAP-WL-161 Cell."

The second and third paragraphs of Section D-1 of the Part B Permit Application under the heading, "VES-WL-135, VES-WL-136, VES-WL-137, VES-WL-138, VES-WL-139, VES-WL-142, VES-WL-144, and VES-WL-150, Process Waste Liquid (PWL) Tanks and Sumps" were revised to read:

"The PWL tanks and sumps are located in CPP-604, CPP-649, and associated valve boxes. The purpose of the system is to collect offgas condensate and liquid from floor drains and transfer the waste to the PEWE Evaporator Feed Collection Tank, VES-WL-133. The system is comprised of tanks VES-WL-135, -136, -137, -138, -139, -142, -144, -150, and various cell sumps. VES-WL-150 collects liquids from the floor drains and the other tanks collect offgas condensate. A sump or vault secondarily contains each of the tanks.

"Sumps SU-WL-140, -143, -145, -146, -147 and -148 do not contain PWL tanks. Sumps SU-WL-140 and SU-WL-143 are located in the Rare Gas Plant in CPP-604. Since the Rare Gas Plant is no longer active there are no sources of waste that would be collected in either sump. Sump SU-WL-148 is located at the INTEC main stack. In the event of equipment failure, condensate from the main stack could collect in this sump. These sumps are emergency equipment and do not routinely collect waste; therefore, the sumps

are exempt from requiring secondary containment. Sumps SU-WL-145, SU-WL-146, and SU-WL-147 are part of the secondary containment and leak detection system for the PEWE Condensate Collection Cell and PEWE EVAP-WL-161 Cell. As such, these sumps do not require the emergency structure exemption set forth in IDAPA 58.01.05.008 [40 CFR § 264.1(g)(8)(i)]."

23. Include the response to NOD #72 in the revised Section C to justify the transfer of PEWE bottoms to the ETS.

#### **RESPONSE:**

The following description was added at the end of the second paragraph in Section D-1 of the Part B Permit Application under the heading, "PEWE System Operation":

"All of these tanks were designed and constructed to contain the types of solutions stored. The P.E. certifications for these units attest that the tank systems are adequately designed and are compatible with the waste(s) to be stored or treated in accordance with IDAPA 58.01.05.008 [40 CFR § 264.192(a)].

"As described above, there may be instances where complete concentration of the waste feed does not occur. When this happens, the remaining feed may be blended with other wastes and reintroduced to the ILWMS. Depending on the characteristics of the new feed solution (e.g., high chlorides, fluorides, or radionuclide concentration), it may be appropriate to route the mixture back to the ETS for processing, rather than the PEWE, to ensure optimum treatment and protection of equipment.

"With the addition of the C-40 valve box, the PEWE bottoms (from both VES-WL-101 and VES-WL-111) can be transferred to the ETS, TFF, and the CPP-604 TFT. From the CPP-604 TFT, waste can be transferred to the TFF, the ETS, or the PEWE. The transfer lines are encased in stainless steel and equipped with leak detection. Drawings showing transfer routes are included in the Section D Plant Drawing package for the Part B Permit Application, Appendix D-1."

Include the response to NOD #74 in the revised Section C to justify the transfer of PEWE process condensate to the LET&D facility or back to the evaporator feed tank.

#### **RESPONSE:**

The following description was added after the second paragraph of Section D-1 of the Part B Permit Application under the heading, "PEWE System Operation":

"Occasionally, PEWE process condensate does not meet the feed limits or operational constraints (e.g., fluorides, TOC, radionuclide concentration) established for the LET&D facility, as identified in Section D-8b(5) of the Part B Permit Application. In these instances, the condensate is routed back to the evaporator feed tank and blended with other solutions for further processing."

#### D-2. Tank Systems

# D-2d. Description of Feed Systems, Safety Cutoffs, Bypass Systems, and Pressure Control: IDAPA 58.01.05.012 [40 CFR § 270.16(c)]

#### **PEWE System**

25. Include the response to NOD #86 in the revised Section D.

#### **RESPONSE:**

The following description was added after the first paragraph of Section D-2d of the Part B Permit Application under the heading, "PEWE Safety Cutoffs":

"The DCS monitors and controls processes in the ILWMS. These processes include the LET&D, Service Waste, PEWE, Process Offgas (POG), Atmospheric Protection System (APS), PWL, VOG, and Main Stack Monitor processes or systems. The DCS is a microprocessor-based control system that uses a combination of free-standing operator consoles networked to electronic I/O interfaces to field devices.

"To ensure a high degree of integrity, redundancy is used where possible. These include redundant controllers, power supplies, communications modules, consoles, and data highway cabling. This redundancy, along with utilization of equipment only from a vendor with documented previous experience of providing successful complex process control systems, and adherence to the vendor's recommended preventive maintenance practices provide the necessary assurance of reliability for meeting the requirements of EPA regulations, Technical Specifications/Standards, and plant mission."

26. Response to NOD #93 does not address DEQ's stated concern. Revise Section D to include a detailed justification for the direct transfer of waste through the evaporators to the PEWE Bottom tanks without operating the evaporators.

#### **RESPONSE:**

Section D-2d of the Part B Permit Application under the heading, "PEWE Bypass Systems" was revised to read:

"Waste can be transferred through the evaporators to VES-WL-101 or VES-WL-111 without operating the evaporators. Such transfers may occur when:

- The evaporators are not operable due to scheduled maintenance activities or are in need of repairs
- The system requires testing following repairs or maintenance (this minimizes waste by not introducing new materials to the system)
- The PEWE Feed Tanks can be emptied to allow additional storage capacity during periods of system maintenance and/or testing."

27. Include the response to NOD #94 to the revised Section D. At a minimum, reference Section D-8b, which describes the CPP-604 building ventilation system.

#### **RESPONSE:**

The first paragraph of Section D-2d of the Part B Permit Application under the heading, "PEWE Pressure Controls" was revised to read:

"Waste treatment and storage vessels at INTEC are connected to a gaseous waste treatment system called the VOG system. All ILWMS storage and treatment systems discharge gases such as instrument air purges (used in level, density, and pressure instrumentation), air spargers (agitators), and gases displaced from a vessel when it fills with liquid.

"Gases from the PEWE and other INTEC processes, such as the Tank Farm and CPP-659 vessels, vent to the CPP-604 VOG system. The CPP-604 VOG system consists of a mist eliminator, superheater, and HEPA filter banks. The mist eliminator and superheater are included to protect and extend the life expectancy of the HEPA filters.

"Several facility process and vessel offgas systems, including the CPP-604 VOG system, combine in the Process APS located in CPP-649. The Process APS is a back-up system that treats the combined process and vessel offgas streams from CPP-601, CPP-604, Tank Farm, and the NWCF. The Process APS treatment consists of a mist eliminator, superheater, and HEPA filters. Next, the process and vessel offgases are routed to the INTEC Main Stack (CPP-708) where they mix with building ventilation air and are exhausted to the atmosphere. The vessel and process offgas systems are maintained under a vacuum to control contamination. The system equipment and piping are fabricated from acid resistant stainless steel for corrosion resistance. Additionally, the Process Condensate Collection Tanks can be vented to the process condensate collection cells, which vent to the CPP-604 building ventilation system. The VOG and APS systems are described further in Section D-8b of this application."

# D-2f(1)(b). Requirements for Secondary Containment and Leak Detection: IDAPA 58.01.05.008 and .012 [40 CFR §§ 264.193 and 270.16(g)]

28. Include the response to NOD #112 to the revised Section D providing details to demonstrate how spilled or leaked waste and accumulated precipitation will be removed from all sumps within the timeframe in accordance with IDAPA 58.01.05.008 [40 CFR § 264.193(b)(3)].

#### **RESPONSE:**

The following description was added after the fourth paragraph of Section D-2f(1)(b) of the Part B Permit Application:

"Upon detection of spilled or leaked materials, the following actions are taken:

 Within 24 hours, remove as much of the waste as is necessary to prevent further releases of hazardous waste to the environment and to allow inspection and repair of the treatment system, in accordance with IDAPA 58.01.05.008 [40 CFR § 264.601]

- Prevent migration of and remove visible contamination from soil or surface water, in accordance with IDAPA 58.01.05.008 [40 CFR § 264.601]
- If the collected material is an HWMA/RCRA-regulated material, manage it in accordance with all applicable requirements of IDAPA 58.01.05.005 through 58.01.05.008 [40 CFR Parts 261 through 264]."
- 29. Include the response to NOD #116 to the revised Section D.

#### **RESPONSE:**

The first paragraph of Section D-2f(1)(b) of the Part B Permit Application under the heading, "CPP-601 Deep Tanks Vaults" was revised to read:

"The WG/WH tanks are located on the lowest level of CPP-601. Two tanks are located in each of the two reinforced concrete vaults. The cells each measure 38 ft 6 in. by 15 ft by 21 ft 6 in., with a stainless-steel-lined floor that extends 3-ft up the walls. Both vaults are provided with sumps and leak detection. Upon high level alarm, the sumps are jetted back to either VES-WG-100/-101 or VES-WH-100/-101 tanks."

30. The revised Part B Permit Application must provide measures for compliance with the applicable secondary containment and leak detection requirements for sections of piping embedded in concrete. To address these requirements, DOE may provide a definitive schedule for completion of any necessary upgrades associated with these embedded lines.

#### **RESPONSE:**

The following concrete penetrations at the INTEC have been identified as requiring upgrades to provide compatible secondary containment per DEQ's guidance:

| Penetration Number         | Location                                                                  | Function                                        |
|----------------------------|---------------------------------------------------------------------------|-------------------------------------------------|
| 3" PWM-1018Y               | VES-WM-101/102 Vault                                                      | Jet transfer line from WM-101 to WM-100         |
| 3" PWM-10024Y              | VES-WM-101/102 Vault                                                      | Jet transfer line from WM-100 to WM-102         |
| 3" PWM-20015Y              | VES-WM-101/102 Vault                                                      | Overfill line between WM-100/WM-101             |
| 1½" PWL-2091C <sup>a</sup> | Wall between 161 Evaporator<br>Cell and the Condensate<br>Collection Cell | Transfer line from VES-WL-109 to the VES-WL-161 |
| 1½" PWL-2091C <sup>a</sup> | Wall between 161 Evaporator<br>Cell and the Condensate<br>Collection Cell | Transfer line from VES-WL-109 to the VES-WL-161 |
| 4" PWL-1133C               | Wall between 161 Evaporator<br>Cell and VES-WL-101 Vault                  | Evaporators discharge line to VES-WL-101 Tank   |

| Penetration Number                                  | Location                                                                     | Function                                                                    |
|-----------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 2"PWL-2068C                                         | Condensate Collection Cell to<br>Operating Corridor CPP-604                  | Discharge line from the collection tanks to the LET&D Process               |
| 1" PSAR- 107694 <sup>b</sup>                        | Wall between the Service<br>Corridor and E Cell.                             | Drain line from VES-E-108 to PEW                                            |
| 1 ½ " PE-AR-151820 <sup>b</sup>                     | Wall between the Service<br>Corridor and C Cell. Drawing #<br>094762/ 133610 | Drain line from VES-C-103 to PEW                                            |
| <sup>3</sup> / <sub>4</sub> " TC-2091Y <sup>b</sup> | Floor from the PM Deck of<br>CPP-601 to the VES-C-103<br>Drawing # 133610    | Drain line from the HOT Sink on the PM Deck to the collection tank VES-C103 |

a These penetrations do not require core drilling to install a secondary containment sleeve. Adequate area exists around the transfer line to properly sleeve the penetration.

The second and third paragraphs and Table D-5 of Section D-2f(1)(b) under the heading, "VES-WM-101/VES-WM-102 Vault" were deleted and replaced with the following:

"Concrete-embedded transfer lines have been identified at the ILWMS. In order to ensure compliance with the requirements of 40 CFR § 264.193(f), these lines will be upgraded or rerouted in accordance with the following schedule:

- Conceptual design complete by 9/30/04
- Title design complete by 9/30/05
- Work package development complete by 3/31/06
- Identified lines upgraded/rerouted and Professional Engineer certifications submitted to the DEQ on or before 9/30/06."

#### F. PROCEDURES TO PREVENT HAZARDS

# F-2a. General Inspection Requirements: IDAPA 58.01.05.008 and .012 [40 CFR §§ 264.15(a) and (b), 264.33, 264.195, and 270.14(b)(5)]

31. Include the response to NOD #132 to the revised Part B Permit Application, or replace Footnote (1) in Appendix F1-24 with a brief summary of the response to NOD #132.

#### **RESPONSE:**

The following description was added to Section D-2f(1)(b) of the Part B Permit Application under the heading, "EVAP-WL-161 Cell":

b These penetrations will be rerouted to compliant lines as part of a Voluntary Consent Order Action Plan. The work plan is complete awaiting approval of an updated Safety Analysis Report.

"There are known defects (cracks) in the CPP-604 EVAP-WL-161 Evaporator cell concrete walls. INTEC structural engineering personnel have evaluated the condition of the WL-161 Evaporator cell and have determined the cell to be structurally sound. RCRA regulations [40 CFR § 264.15(c)] require repair of structures to ensure the problem does not lead to an environmental or human health hazard. The existing condition of the WL-161 cell does not pose a hazard to the environment or to human health. The portion of the cell that provides secondary containment and leak detection is the lower three-foot stainless steel cell liner, which has no defects. The defects in the cell are only in portions of the concrete walls located above the cell liner. Any leaks from the process vessels or ancillary piping will be completely contained within the stainless steel liner and will not subject the concrete wall to any sustained exposure to hazardous waste. The cell is maintained under negative pressure. Any offgas from a leak or spill would be collected in the CPP-604 VOG system. Inspections of the cell during periods of maintenance or repair are made to ensure that deterioration of the concrete does not increase."

#### F-3a(1). Equipment Requirements: IDAPA 58.01.05.008 and .012 [40 CFR §§ 264.32 and 270.14(b)]

32. Include the response to NOD #133 to the revised Section F.

#### **RESPONSE:**

Appendices F-2 and F-5 in the Part B Permit Application identify the inspection schedules for the PEW evaporators and the LET&D fractionators, respectively.

Form INTEC-4005, "RCRA PEW Tank Overfill And Daily Leak Inspection," is included in Section F, Appendix 1 of the application. This form shows the types of inspections completed for the evaporators.

Form INTEC-4055, "RCRA LET&D Daily Facility Inspections," is included in Section F, Appendix 1 of the application. This form shows the types of inspections completed for the fractionators.

Section F-2a(1) of the Part B Permit Application was revised to read:

"The inspection schedules for the units that comprise the ILWMS, including the scope of the inspections performed and the types of problems noted, are summarized in Appendices F-2 through F-6."

#### F-4. Preventive Procedures, Structures, and Equipment

33. Include the response to NOD #136 to the revised Section F.

#### **RESPONSE:**

The first paragraph of Section F-4a of the Part B Permit Application under the heading, "Unloading Operations" was revised to read:

"Transfers of hazardous waste to and from CPP-604 are conducted through piping systems. Wastes generated at other INEEL or off-Site facilities may be introduced to the ILWMS via the CPP-1619 Truck Unloading Bay through tanker trucks or containers.

Unloading operations at this facility are controlled by standard operating procedures. During unloading operations, a portable HEPA air mover is required to filter particulate and radioactive emissions. An intake for the air mover is located near the unloading hose connections in the CPP-1619 unloading bay. A stainless-steel drip pan is used to collect possible leaks during unloading. Personnel will inspect for evidence of improper connections before beginning the transfer or acceptance of waste at CPP-1619. Waste staging areas will be inspected for leaks or spills when waste is being received."

#### F-4d. Equipment and Power Failure: IDAPA 58.01.05.012 [40 CFR § 270.14(b)(8)(iv)]

34. Include the response to NOD #139 to the revised Section F.

#### **RESPONSE:**

Section F-4d of the Part B Permit Application was revised to read:

"Some components of the ILWMS are supplied with redundant equipment. If equipment should fail on these systems, it would have minimal effect on the operating unit, since the redundant equipment would be started and the operation stabilized. The failed equipment would then be investigated to determine the cause of the failure, and repairs would be initiated. If a system that did not have redundant equipment were to fail, the operating unit would be secured.

"Upon total loss of electrical power, ILWMS equipment that manages hazardous and mixed wastes is designed to shut down in a manner that protects employees, equipment, human health, and the environment.

"Cranes and hoists are considered non-critical equipment and are not supplied with emergency standby power. This type of equipment is designed to fail in place. Movement will be suspended until power is restored.

"The DCS is designed with battery backup to maintain operability and to ensure safe shutdown.

### **CPP-604 PEWE System and TFT**

"The Evaporator Feed Collection Tank (VES-WL-133), the Process Condensate Surge Tank (VES-WL-131) and the Process Condensate Collection Tanks (VES-WL-106, VES-WL-107, and VES-WL-163) are all equipped with two redundant transfer pumps.

"The PEW evaporators (EVAP-WL-129 and EVAP-WL-161) and associated heat exchangers are identical and may be operated independently or in parallel.

"PEW evaporator bottoms can be stored/treated in either VES-WL-101 or VES-WL-111.

#### **CPP-601 Deep Tanks**

"There are a total of four Deep Tanks (VES-WG-100, VES-WG-101, VES-WH-100, and VES-WH-101) that are essentially redundant systems. Each tank is equipped with sparge flow instruments, level instrumentation, one transfer jet, and one transfer pump.

"Sufficient redundancy exists such that a receiving tank is available for collection. Loss of a sparge flow or level instrument may require an operator to switch collection to another tank, but would not require total cessation of operations.

"If a system that does not have redundant equipment was to fail, the operating process would be shut down and not operated again until the failure was repaired.

#### **CPP-1618 LET&D Facility**

"The LET&D fractionators (FRAC-WLL-170 and FRAC-WLK-171) and associated heat exchangers are identical.

"The Acid Fractionator Bottoms Tank (VES-WLL-195) is equipped with two redundant transfer pumps."

35. Include the response to NOD #141 to the revised Section F.

#### **RESPONSE:**

See the response to item No. 34 of this NOD.

#### F-4f. Releases to the Atmosphere: IDAPA 58.01.05.012 [40 CFR § 270.14(b)(8)(iv)]

36. Since the CPP-641 Westside Waste Holdup tanks have been emptied to the maximum extent allowed, the current WWH tank vault configuration, although they are not connected to the VOG system, is acceptable. When/if the WWH tank system is upgraded, vault offgas system improvements must be taken into consideration.

#### **RESPONSE:**

The INEEL concurs. When/if the WWH tank system is upgraded, those upgrades would include replacement of the tile-encased transfer lines with piping that has secondary containment compatible with corrosives, lining of the vaults with stainless steel, an upgrade of the instrumentation, a sampler upgrade, and vessel/vault offgas system improvements.

#### I. CLOSURE AND POST-CLOSURE REQUIREMENTS

37. Include the response to NOD #151 and #152 to the revised Section I.

#### **RESPONSE:**

The following description was added after first paragraph of Section I 1.1.2(a) of the Part B Permit Application:

"The closure plan will be modified, in accordance with IDAPA 58.01.05.008 [40 CFR § 264.112(c)], to include the appropriate verification sampling techniques to be used to meet the closure performance standards prior to implementation of the closure plan."

The same description was added to Section I 1.1.3(a)(4) of the Part B Permit Application.

#### **Other Changes**

- 1. The second paragraph of Section C-1g of the Part B Permit Application was revised to state that PEWE bottoms may be stored in compliant storage units, other than the Tank Farm Facility (TFF), until an ultimate treatment and disposal alternative has been selected, permitted, and constructed. In an effort to empty and close TFF tanks, wastes may be transferred from the TFF to other RCRA-compliant storage units prior to permitting and construction of the ultimate treatment alternative for evaporator bottoms.
- 2. The bulleted item, immiscible organic liquids, was removed from the list of prohibited items in Section C-2a(1) of the Part B Permit Application. Small quantities of immiscible organics may be managed by the ILWMS as long as the system process tolerance limits are met.
- 3. Two parameters, specific gravity and total inorganic carbon, were removed from Table C-3 of the Part B Permit Application as parameters that are evaluated for process samples taken from the CPP-601 Deep Tanks. These parameters were inadvertently included in the table, which was added in response to the first NOD for this application. Although these parameters are evaluated for characterization samples, they are not analyzed for process samples.
- 4. Examples of inspection forms provided in Appendix F-1 of the Part B Permit Application were updated to reflect the most current revision of each form.



210

ative: april

## **Material Safety Data Sheet**

Material Name: ALKALINE RUST REMOVER T-4181

ID: 238022

## \* \* Section 1 - Chemical Product and Company Identification \*

#### Product Trade Name ALKALINE RUST REMOVER T-4181

Manufacturer Information

Henkel Surface Technologies
Henkel Corporation
32100 Stantaneon Highway

(248) 583-9300

32100 Stephenson Highway Madison Heights, MI 48071

(800) 424-9300

# \* \* \* Section 2 - Composition / Information on Ingredients \* \* \*

| CAS#      | Component        |         |
|-----------|------------------|---------|
| 1310-73-2 | Sodium hydroxide | Percent |
| 102-71-6  |                  | > 60    |
|           | Triethanolamine  | 10-20   |
| 527-07-1  | Sodium gluconate | 1-10    |
| 111-42-2  | Diethanolamine   | 1-10    |

## \* Section 3 - Hazards Identification \* \* \*

#### **Emergency Overview:**

DANGER!

CAUSES EYE AND SKIN BURNS. MAY CAUSE BLINDNESS.

CAUSES DIGESTIVE TRACT BURNS.

REPEATED OR PROLONGED EXPOSURE MAY CAUSE LIVER AND KIDNEY DAMAGE BASED ON ANIMAL DATA

EVEN DILUTE SOLUTIONS MAY CAUSE BURNS.

#### Potential Health Effects:

Inhalation and skin contact are expected to be the primary routes of occupational exposure to this material. Based on its composition, it is anticipated to be corrosive to the eyes, skin and respiratory tract. Inhalation of mist or vapor may cause coughing, sore throat, shortness of breath, lung injury or chemical pneumonia. Studies with animals repeatedly exposed to components of this material have produced liver and kidney damage. Medical conditions which may be aggravated by exposure to this material include lung, liver or kidney disease or limited respiratory capacity.

### \* \* Section 4 - First Aid Measures \* \* \*

#### Eye Contact:

#### **\$kin Contact:**

Immediately flush with plenty of water for at least 30 minutes while removing contaminated clothing and shoes. Get medical attention immediately. Wash clothing before reuse. Destroy contaminated shoes.

#### Ingestion:

Do NOT induce vomiting. Give water to drink. Get medical attention immediately. NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON.

#### Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

# \* \* \* Section 5 - Fire Fighting Measures \* \* \*

| Page 1 of 6 | Issue Date: 03/20/02 | Revision: 1.0001 |  |
|-------------|----------------------|------------------|--|
|             |                      |                  |  |

Material Name: ALKALINE RUST REMOVER T-4181

ID: 238022

Flash Point: NA

Method Used:

Flammability Classification:

Upper Flammable NA

Lower Flammable NA Limit (LFL):

Limit (UFL):

Fire & Explosion Hazards:

Avoid breathing fumes from fire exposed material.

Extinguishing Media:

Use water spray or water fog

Fire-Fighting Instructions:

Use water spray to cool containers exposed to fire. Fire fighters and others who may be exposed to products of combustion should wear full fire fighting turn out gear (full Bunker Gear) and self-contained breathing apparatus (pressure demand NIOSH approved or equivalent). Fire fighting equipment should be thoroughly decontaminated after use.

## \* \* \* Section 6 - Accidental Release Measures \* \* \*

#### Spill or Leak

Stop the leak, if possible. Ventilate the space involved. Contain, sweep up, place in container for disposal. Shut off or remove all ignition sources. Prevent waterway contamination. Construct a dike to prevent spreading. Collect run-off and transfer to drums or tanks for later disposal.

Clean up procedures: Transfer to containers in preparation for later disposal. Avoid generation of vapors. Place in non-sparking containers for recovery or disposal. Remove from spill location. Decontaminate area.

## \* \* \* Section 7 - Handling and Storage \* \* \*

#### Handling Procedures:

Do not breathe dust. Do not get in eyes, on skin or clothing. Wash thoroughly after handling. Keep container tightly closed. Empty container may contain hazardous residues. Do not enter confined spaces unless adequately ventilated. To avoid rapid temperature rise, violent spattering, or explosive eruptions: always add caustic to water when mixing. Never add water to a caustic when mixing.

#### Storage Procedures:

Store in a cool, dry place. Avoid excessive heat. Store out of direct sunlight in a cool, well-ventilated place.

# \*\*\* Section 8 - Exposure Controls / Personal Protection \*\*\*

#### Component Exposure Limits

Sodium hydroxide (1310-73-2)

ACGIH: C 2 mg/m3 OSHA: 2 mg/m3 TWA NIOSH: C 2 mg/m3

Triethanolamine (102-71-6)

ACGIH: 5 mg/m3 TWA

Diethanolamine (111-42-2)

ACGIH: 2 mg/m3 TWA

skin - potential for cutaneous absorption

NIOSH: 3 ppm TWA; 15 mg/m3 TWA

#### Engineering Controls:

Investigate engineering techniques to reduce exposures below airborne exposure limits. Provide ventilation if necessary to control exposure levels below airborne exposure limits (see below). If practical, use local mechanical exhaust ventilation at sources of air contamination such as open process equipment. Consult ACGIH ventilation manual or NFPA Standard 91 for design of exhaust systems.

| Page 2 of 6 | Issue Date: 03/20/02 |                  |
|-------------|----------------------|------------------|
| aye z ui u  | ISSUE HATE: 03/20/07 | Revision: 1 0001 |
|             |                      |                  |

16411, 1. A. 1868

Material Name: ALKALINE RUST REMOVER T-4181

ID: 238022

#### PERSONAL PROTECTIVE EQUIPMENT

As prescribed in the OSHA Standard for Personal Protective Equipment (29 CFR 1910.132), employers must perform a Hazard Assessment of all workplaces to determine the need for, and selection of, proper protective equipment for each task performed.

#### Eyes/Face Protective Equipment:

Where there is potential for eye contact, wear a face shield, chemical goggles, and have eye flushing equipment immediately available.

#### Skin Protection:

Wear appropriate chemical resistant protective clothing and protective gloves to prevent contact. Consult glove manufacturer to determine appropriate type glove material for given application. Rinse immediately if skin is contaminated. Wash contaminated clothing and clean protective equipment before reuse. Provide a safety shower at any location where skin contact can occur. Wash skin thoroughly after handling.

#### Respiratory Protection:

Avoid breathing dust. When airborne exposure limits are exceeded (see below), use NIOSH approved respiratory protection equipment appropriate to the material and/or its components. Consult respirator manufacturer to determine appropriate type equipment for given application. Observe respirator use limitations specified by NIOSH or the manufacturer. For emergency and other conditions where exposure limit may be significantly exceeded, use an approved full face positive-pressure, self-contained breathing apparatus or positive-pressure airline with auxiliary self-contained air supply. Respiratory protection programs must comply with 29 CFR § 1910.134.

## \*\*\* Section 9 - Physical & Chemical Properties \*\*\*

Physical State: Solid

Odor:

Vapor Density: NA Melting Point: NE

pH: > 12.0 VOC: 1.5% (Calculated) Appearance:

Off white, granular mixture

Vapor Pressure: NA Boiling Point: NA

Boiling Point: NA Specific Gravity: NA

Viscosity: Solubility Water: Soluble

## \*\*\* Section 10 - Chemical Stability & Reactivity Information \*\*

#### Chemical Stability:

This material is chemically stable under normal and anticipated storage and handling conditions.

#### Incompatibility:

Avoid contact with strong acids. Contains organic amine compounds. Nitrite based materials should not be added due to possible nitrosoamine formation.

#### **Decomposition Products:**

Oxides of carbon, nitrogen compounds.

#### Hazardous Polymerization:

Hazardous polymerization is not known to occur.

## \* \* \* Section 11 - Toxicological Information \* \* \*

#### Acute Toxicity:

#### A: General Product Information

No information available for the product.

#### B: Component Analysis - LD50/LC50

Triethanolamine (102-71-6)
Oral LD50 Rat: 4920 uL/kg
Oral LD50 Mouse: 5846 mg/kg
Dermal LD50 Rabbit: >20 mL/kg

Diethanolamine (111-42-2)

Page 3 of 6

Issue Date: 03/20/02 Revision: 1.0001

· Make one recognized

Material Name: ALKALINE RUST REMOVER T-4181

ID: 238022

Oral LD50 Rat: 620 uL/kg Oral LD50 Mouse: 3300 mg/kg Dermal LD50 Rabbit: 7640 uL/kg

#### Component Carcinogenicity

Diethanolamine (111-42-2)

IARC: Monograph 77, 2000 (Group 3 (not classifiable))

#### **Chronic Toxicity**

No information available for the product.

#### **Epidemiology:**

No information available for the product.

#### **Neurotoxicity:**

No information available for the product.

#### Mutagenicity:

No information available for the product.

#### Teratogenicity:

No information available for the product.

## Section 12 - Ecological Information

#### **Ecotoxicity:**

## A: General Product information

No information available for the product.

## **B: Component Analysis - Ecotoxicity - Aquatic Toxicity**

Triethanolamine (102-71-6)

**Test & Species** 

Conditions

LC50 (24 hr)

5000 mg/L.

goldfish

Diethanolamine (111-42-2)

**Test & Species** 

Conditions

LC50 (96 hr) fathead minnow LC50 (24 hr) goldfish

LC50 (24 hr) goldfish

>100 mg/L. 800 mg/L. 5000 mg/L.

Static. pH 9.6. pH 7.0. 15 °C.

EC50 (5 min) Photobacterium phosphoreum

73 mg/L Microtox

#### Environmental Fate:

No data is available concerning the environmental fate, biodegradation or bioconcentration for this product.

## \* \* \* Section 13 - Disposal Considerations

## **US EPA Waste Numbers & Descriptions:**

#### A: General Product Information

Recover, reclaim or recycle when practical. Dispose of in accordance with federal, state and local regulations. Note: Chemical additions to, processing of, or otherwise altering this material may make this waste management information incomplete, inaccurate, or otherwise inappropriate. Furthermore, state and local waste disposal requirements may be more restrictive or otherwise different from federal laws and regulations.

#### **B: Component Waste Numbers**

No EPA Waste Numbers are applicable for this product's components.

Page 4 of 6

Issue Date: 03/20/02 Revision: 1.0001

----

## **Material Safety Data Sheet**

Material Name: ALKALINE RUST REMOVER T-4181

ID: 238022

## Section 14 - Transportation Information \* \* \*

**US DOT Information** 

Shipping Name: Please refer to the container label for transportation information.

\* \* \* Section 15 - Regulatory Information \* \* \*

### **US Federal Regulations**

### A: General Product Information

This product is considered hazardous under 29 CFR 1910.1200 (Hazard Communication).

#### **B: Component Analysis**

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4).

Sodium hydroxide (1310-73-2)

CERCLA: final RQ = 1000 pounds (454 kg)

#### Diethanolamine (111-42-2)

SARA 313: form R reporting required for 1.0% de minimis concentration CERCLA: final RQ = 100 pounds (45.4 kg)

SARA 311/312: Acute: Y Chronic: Y Fire: N Pressure: N Reactive: N

#### State Regulations

### A: General Product Information

No additional information available.

#### B: Component Analysis - State

The following components appear on one or more of the following state hazardous substances lists:

| Сотролелт        | CAS#      | CA  | I FL | MA  | MN  | TNJ | PA  |
|------------------|-----------|-----|------|-----|-----|-----|-----|
| Sodium hydroxide | 1310-73-2 | Yes | Yes  | Yes | Yes | Yes | Yes |
| Triethanolamine  | 102-71-6  | No  | Yes  | Yes | Yes | No  | Yes |
| Diethanolamine   | 111-42-2  | Yes | Yes  | Yes | Yes | Yes | Yes |

## Other Regulations

## A: General Product Information

All components are on the U.S. EPA TSCA Inventory List.

Page 5 of 6

Issue Date: 03/20/02 Revision: 1.0001

Material Name: ALKALINE RUST REMOVER T-4181

ID: 238022

## B: Component Analysis - InventoryComponent Analysis - Inventory

| Component        | CAS#      | TSCA | DSL | EINECS |
|------------------|-----------|------|-----|--------|
| Sodium hydroxide | 1310-73-2 | Yes  | Yes | Yes    |
| Triethanolamine  | 102-71-6  | Yes  | Yes | Yes    |
| Diethanolamine   | 111-42-2  | Yes  | Yes | Yes    |
| Sodium gluconate | 527-07-1  | Yes  | Yes | Yes    |

#### C: Component Analysis - WHMIS IDL

The following components are identified under the Canadian Hazardous Products Act Ingredient Disclosure List:

| Component        | CAS#      | S Products Act Ingredient Disclos  Minimum Concentration |
|------------------|-----------|----------------------------------------------------------|
| Sodium hydroxide | 1310-73-2 | 1%; English Item 1442; French<br>Item 998                |
| Triethanolamine  | 102-71-6  | 1%; English Item 1621; French<br>Item 1663               |
| Diethanolamine   | 111-42-2  | 1%; English Item 569; French                             |

## \* \* \* Section 16 - Other Information \* \* \*

#### Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act; ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NFPA = National Fire Protection Association; HMIS = Hazardous Material Identification System; CERCLA = Comprehensive Environmental Response, Compensation and Liability Act; SARA = Superfund Amendments and Reauthorization Act

The information presented herein is believed to be factual as it has been derived from the works and opinions of persons believed to be qualified experts; however, nothing contained in this information is to be taken as a warranty or representation for which Henkel Surface Technologies bears legal responsibility. The user should review any recommendations in the specific context of the intended use to determine whether they are appropriate.

Contact: Regulatory Affairs and Product Acceptance

Contact Phone: (248) 593-9300

| Page 6 of 6 |                      |                  |
|-------------|----------------------|------------------|
| rageoulo    | Issue Date: 03/20/02 | Revision: 1.0001 |
|             |                      |                  |



## MATERIAL SAFETY DATA SHEET

Westco Chemicale, Inc. 11312 Hartland Street North Hollywood, California 91605 (213) 577-0077 (818) 980-1152

EMERGENCY CONTACT:

CALL CHEMTREC : DAY OR NIGHT

(800)424-9300

SUBSTANCE IDENTIFICATION

144-62-7 OXALIC ACID

HMIS

TRADE NAMES/SYNONYMS-

ETHANEDIOIC ACID

HEALTH----1
FLAMMABILITY-1
REACTIVITY---0

CHEMICAL FAMILY----

ORGANIC ACID

PERSONAL PROTECTION-F

MOLECULAR FORMULA----

HOOCCOOH 2H2O

MOLECULAR WT---126.07

COMPONENTS AND CONTAMINANTS

OXALIC ACID - 99.6% INERT SALTS - 0.4%

NK

PHYSICAL DATA

DESCRIPTION-

WHITE CRYSTALLINE POWDER, ODORLESS

NA NA NA

MELTING PT---101 DEG C BOILING PT----186 DEG C

SOLUBLE - 11.7%

DECOMPOSES % VOLATILE-----NA

SPECIFIC GRAVITY--1.653

HOW TO DETECT THIS SUBSTANCE : CHEMICAL ANALYSIS

FIRE AND EXPLOSION DATA

FLASH POINT-

FIRE EXTINGUISHING MTRLS-

NA

WATER, DRY CHEMICALS, FOAM, CO2

FLAMMABLE LIMITS---NK

SPECIAL FIRE FIGHTING

PROCEDURES -

SELF CONTAINED BREATHING APPARATUS. WEAR FACE SHIELD OR SAFETY GOGGLER

UNUSUAL FIRE AND

EXPLOSION HAZARDS--

NONE, DECOMPOSITION PRODUCTS INCLUDE CARBON

MONOXIDE & FORMIC ACID WHICH ARE TOXIC & FLAMMABLE

## TRANSPORTATION DATA

DOT CLASSIFICATION ----NONE DOT LABEL NONE UNNA NUMBER-----NONE SPECIAL INSTRUCTIONS ----NONE

TOXICITY

DANGER-CORROSIVE

LD/50 - 71 mg/kg 1mg/M3 ACGIH - PEL DO NOT EAT OR SMOKE IN WORK AREA

HEALTH EFFECTS AND FIRST AID

INHALATION

ACUTE EXPOSURE-

CHRONIC EXPOSURE ....

FIRST AID

TOXIC-INHALATION OF DUST IS POISONOUS

REMOVE TO FRESH AIR. ADMINISTER OXYGEN IF NECESSARY

SKIN CONTACT

ACUTE EXPOSURE-

STRONG IRRITANT TO SKIN & MUCOUS MEMBRANES. MAY

**CAUSE BURNS** 

CHRONIC EXPOSURE-

FIRST AID----

WASH WITH SOAP & WATER

EYE CONTACT

**ACUTE EXPOSURE-**

CHRONIC EXPOSURE-

FIRST AID-

MAY CAUSE CORNEAL DAMAGE

NK

NK

FLUSH WITH WATER FOR 15 MINUTES. OBTAIN ASSIS-

TANCE FROM OPHI HAMOLOGIST

NGESTION

ACUTE EXPOSURE....

CHRONIC EXPOSURE----

FIRST AID-

POISONOUS IF SWALLOWED. MAY CAUSE GASTROENTERITIS

NK

DO NOT INDUCE VOMITING. GIVE MILK. CALL A DOCTOR

ANTIDOTE ----

MILK OF MAGNESIA OR ANTACIDS

SUSPECTED CANCER AGENT

NO

RECOMMENDATIONS TO A DOCTOR

TREAT SYMPTOMATICALLY. NEUTRALIZE WITH SODIUM

BICARBONATE

#### REACTIVITY DATA

STABILITY .... INCOMPATIBILITIES-DECOMPOSITION PRODUCTS-

STRONG OXIDIZERS

STABLE

HAZARDOUS POLYMERIZATION-CONDITIONS TO AVOID-

FORMIC ACID, CARBON DIOXIDE

WILL NOT OCCUR

HEAT, MOISTURE (HYGROSCOPIC), DUSTING

# SPILL AND LEAK PROCEDURES

OCCUPATIONAL SPILL

SWEEP UP AND CONTAINERIZE, DISSOLVE IN LARGE VOLUME OF WATER AND NEUTRALIZE WITH SODA ASH

WASTE DISPOSAL METHODS-

INCINERATION OR FLUSH INTO SEWER WITH LARGE VOLUME

OF WATER AFTER NEUTRALIZATION

NOTE : DISPOSE OF ALL WASTES IN ACCORDANCE WITH FEDERAL, STATE AND LOCAL

# SPECIAL HANDLING INFORMATION

VENTILATION ...

LOCAL EXHAUST

RESPIRATORY PROTECTION— CLOTHING.

DUST MASKNIOSH RESPIRATOR RUBBER BOOTS, RUBBER APRON

GLOVES----

ALBEER

EYE PROTECTION ----

SAFETY GOGGLES OR FULL FACE MASK

# ADDITIONAL INFORMATION

THIS MSDS WAS OBTAINED FROM RELIABLE SOURCES. HOWEVER, IT IS PROVIDED WITH OUT REPRESENTATION OR WARRANTY EXPRESSED OR MPLIED REGARDING ACCURACY OR CORRECTNESS. CONDITIONS, METHODS OF HANDLING, STORAGE, USE AND DISPOSAL OF THE PRODUCT ARE BEYOND OUR CONTROL OR BEYOND OUR KNOWLEDGE. FOR THIS AND OTHER REASONS, WE ASSUME NO RESPONSIBILITY AND EXPRESSLY DISCLAIM LIABILITY FOR INJURY, LOSS, DAMAGE OR EXPENSES ARISING FROM THE USE OF THIS PRODUCT.

AUTHORIZED BY WESTCO CHEMICALS, INCORPORATED

CREATION DATE-REVISION DATE

5/25/90 3/6/98

NA=NOT APPLICABLE ND=NOT DETERMINED NK=NOT KNOWN

## 005-100

| Material Safety Data Sheet May be used exceedy sale OSHA's Heased Communication Standard, 20 CFR 1910.1200, Standard must be consulted for specific/regularyments. |                  | U.S. Department<br>Occupational Safety or<br>(Non-Mendatory Form<br>Form Approved<br>OMB No. 1218-0072 | nd Health Administration                                        | <b></b>                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|--|
| Rediscussis                                                                                                                                                        |                  | Many March special are in<br>Interceptor in Gratia                                                     | t paymented. If any how is not t<br>in. The space ment he maked | estado, er 10<br>No industr Per |  |
| Section I                                                                                                                                                          | •                |                                                                                                        |                                                                 |                                 |  |
| Atomic Products Corp.                                                                                                                                              |                  | (516) 924-900                                                                                          | R                                                               |                                 |  |
| Address Abantor, Street Chy State, and 20 Cody<br>49 Nation Orive                                                                                                  |                  | (516) 924-900                                                                                          |                                                                 | <del></del>                     |  |
| Shirley, NJ 11967                                                                                                                                                  |                  | Ome 7722788                                                                                            |                                                                 |                                 |  |
|                                                                                                                                                                    |                  | Signato di Presser festi                                                                               | 7                                                               |                                 |  |
| Section II Hazardove IngredientsAder                                                                                                                               | tity information |                                                                                                        | Yestro                                                          | ····                            |  |
| Hammithus Components (Specific Chemical Martin); (                                                                                                                 |                  | ORNA PIEL ACQU                                                                                         | Care Units                                                      | % (species                      |  |
| Citric Acid                                                                                                                                                        | Annual Consider  | CAS 77-92-9                                                                                            |                                                                 | 2.9                             |  |
|                                                                                                                                                                    |                  |                                                                                                        |                                                                 |                                 |  |
| Octyl Phenol Condensed                                                                                                                                             |                  | CAS 9036-19-5                                                                                          |                                                                 | 6.0                             |  |
| with 8 - 10 moles Ethylene Oxi                                                                                                                                     | de Triton XI     | 100                                                                                                    |                                                                 |                                 |  |
|                                                                                                                                                                    |                  |                                                                                                        | <del></del>                                                     |                                 |  |
| Tetrasodium Ethylenediamine                                                                                                                                        |                  | CAS 64-02-8                                                                                            |                                                                 | 5.7                             |  |
| Triacetate                                                                                                                                                         |                  | <del></del>                                                                                            | <del></del>                                                     |                                 |  |
| Benzyldimethyl (2-(2-(P- (1,1,                                                                                                                                     | 1.1 tetra-n      | ethylhutyll                                                                                            |                                                                 | 0.008                           |  |
| Phenoxy) Ethoxy) Ethyl) Ammonia                                                                                                                                    |                  | ,,,,,,,                                                                                                |                                                                 |                                 |  |
| Hyamine 1622                                                                                                                                                       | -                | CAS 121-56-0                                                                                           |                                                                 |                                 |  |
| Mineral Water                                                                                                                                                      | ~~-              | 1.4. (213)450.                                                                                         | <del></del>                                                     | 85.39                           |  |
| ection III Physical/Chemical Characte                                                                                                                              | ristics          |                                                                                                        |                                                                 |                                 |  |
| siling Point                                                                                                                                                       | 100°C            | Specific Gravity (H <sub>Z</sub> O - 1)                                                                |                                                                 | 1.052                           |  |
| por Pressure (mm Hg.)                                                                                                                                              | -                | Meting Point                                                                                           |                                                                 |                                 |  |
| spor Dungity (AIR = 1)                                                                                                                                             | NA NA            | Freez<br>Evaporation Rate                                                                              | ing Point                                                       | 0.3°C                           |  |
|                                                                                                                                                                    | NA               | ( water - 1)                                                                                           |                                                                 | 1.2                             |  |
| Infinite (complete                                                                                                                                                 | ly miscibl       |                                                                                                        |                                                                 |                                 |  |
| Blufsh transparent liquid - sl                                                                                                                                     |                  |                                                                                                        |                                                                 |                                 |  |
| ection IV — Fire and Explosion Hazard                                                                                                                              |                  |                                                                                                        |                                                                 | <del></del>                     |  |
| Mn Pert (Methos Used)                                                                                                                                              |                  | Flammable Limits                                                                                       | LEL                                                             | UEL                             |  |
| Greater than 214°F                                                                                                                                                 |                  | NA                                                                                                     |                                                                 |                                 |  |
| Ory powder, foam, carbon diox                                                                                                                                      | de               |                                                                                                        |                                                                 |                                 |  |
| ecial Five Fighting Procedures Fire fighters should wear self                                                                                                      | f-contained      | breathing apparatu                                                                                     | ıs.                                                             |                                 |  |
|                                                                                                                                                                    |                  |                                                                                                        |                                                                 |                                 |  |
| Decomposition products may be                                                                                                                                      | ****             |                                                                                                        |                                                                 |                                 |  |
| necomposition products may be                                                                                                                                      | LUXIC.           |                                                                                                        |                                                                 |                                 |  |

| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | United                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 | Conditions to Avoid                                                                                                                   |           |                     |             |                    |          |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|-------------|--------------------|----------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1_                                                              |                                                                                                                                       |           | <del></del>         |             |                    |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                               | Metal nitra                                                                                                                           | tes       |                     |             |                    |          |            |
| competibility (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mareriels to Avail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d) Ma                                                           | tallic surfaces                                                                                                                       | for pro   | longed              | time De     | riods (P           | H 5)     |            |
| sardeus Deco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mposition or Bypro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | drick.                                                          |                                                                                                                                       |           |                     | V           |                    |          |            |
| eservieus<br>elymerication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | May Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T                                                               | Constions to Avoid                                                                                                                    |           |                     |             |                    |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Will Net Coour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X                                                               | None                                                                                                                                  |           |                     |             |                    |          |            |
| ection VI —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heelth Hazan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d Date                                                          |                                                                                                                                       |           |                     |             |                    |          |            |
| outage) at Empy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aladan?                                                         | No                                                                                                                                    | Skin1     | res                 |             | Manda              | Yes      |            |
| ode Hannils (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gen and Chronic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                                                                                                                                       |           |                     |             |                    |          | resetion   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 | ct with skin may                                                                                                                      |           | ITELLA!             | ion. Do     | SIDIE AL           | IREGIC   | rection.   |
| ral toxic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ity is low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - LD50                                                          | Rate = >800 m                                                                                                                         | r/kg      |                     |             |                    |          |            |
| veines vielly:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P)                                                              |                                                                                                                                       | WAC More  | maphs?              | <del></del> | OSHA R             | egisted? |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                                                               | lone                                                                                                                                  |           |                     | Kone        |                    |          | None       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an al Emanue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |                                                                                                                                       |           |                     | ····        |                    |          |            |
| epeatel co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | intact with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | skin                                                            | may cause dryin                                                                                                                       | ig of ski | n and               | moderate    | irritat            | ian.     |            |
| ome allero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ic propert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es e                                                            | xperienced.                                                                                                                           |           |                     |             |                    |          |            |
| idical Conditions<br>inerally Aggreval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed by Exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pre-                                                            | existing eye, s                                                                                                                       | kin and   | respir              | atory di    | sarders            | may be   |            |
| aggravated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | by exposur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e to                                                            | product.                                                                                                                              |           |                     |             |                    |          |            |
| property and Fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ad Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                 |           |                     |             |                    |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 TPBS                                                          | h air fuec: Fl                                                                                                                        | uch with  | water               | for at      | least 15           | minute   | es.        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 | h air, Eyes: Fl                                                                                                                       |           |                     |             |                    |          |            |
| Skin: Wash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thoroughly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | with                                                            | soap and water                                                                                                                        |           |                     |             |                    |          |            |
| Skin: Wash<br>ection VN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | thoroughly<br>Precautions for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | with<br>or Safe                                                 | Soap and water<br>Handling and Use                                                                                                    | , Ingest  | ion: D              | rink ple    | nty of w           |          |            |
| Skin: Wash<br>action VN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | thoroughly<br>Precautions for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | with<br>or Safe                                                 | soap and water<br>Handling and Use                                                                                                    | , Ingest  | ion: D              | rink ple    | nty of w           |          |            |
| Skin: Wash<br>ection VN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | thoroughly<br>Precautions for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | with<br>or Safe                                                 | Soap and water<br>Handling and Use                                                                                                    | , Ingest  | ion: D              | rink ple    | nty of w           |          |            |
| Skin: Wash<br>action VN —<br>ger to de Taken<br>Soak up ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thoroughly<br>Precentions for Cost Meteory I<br>terfal with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | with<br>or Safe<br>s Rebas<br>abso                              | Soap and water<br>Handling and Use<br>or or Solled<br>rbant materials                                                                 | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash<br>ection VN —<br>eps to be Taken<br>Soak up ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thoroughly<br>Precentions for Cost Meteory I<br>terfal with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | with<br>or Safe<br>s Rebas<br>abso                              | Soap and water<br>Handling and Use                                                                                                    | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash ection VII — spe to be Taken Soak up ma Place In a regulatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | thoroughly<br>Precentions for the constitution of | with or Safe Rebase abso                                        | Soap and water Handling and Use of or Solved rbant materials                                                                          | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash sction VII — special action Soak up ma Place In a regulatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | thoroughly Precautions for Care Material with processory processor    | with or Safe Rates abso                                         | Soap and water Handling and Use so or Solved rbant materials sal facility in                                                          | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash ection VII — spe to be Taken Soak up ma Place In a regulatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | thoroughly Precautions for Care Material with processory processor    | with or Safe Rates abso                                         | Soap and water Handling and Use of or Solved rbant materials                                                                          | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash sction VII — special Be Taken Soak up ma  Place In a  regulatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thoroughly Precautions for Case Malered terial with mod opriopriate ms. Types in Mandang to Sed conta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | with or Safe Rates abso                                         | Soap and water Handling and Use so or Solved rbant materials sal facility in                                                          | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash ection VII per to be Taken Soak up ma Place In a regulatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | thoroughly Precautions for Care Material with processory processor    | with or Safe Rates abso                                         | Soap and water Handling and Use so or Solved rbant materials sal facility in                                                          | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash section VII — special and Fahan Soak up ma Place The an Place The an Place The an Pregulation Store in c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | thoroughly Precentions for the second    | with<br>or Safe<br>B Reben<br>abso<br>dispo                     | Soap and water Handling and Use so or Solved rbant materials sal facility in                                                          | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash section VII — specified to Taken Soak up ma  Place The a  regulation section VIII —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | thoroughly Precentions in In Case Material In the Incomposition of the I    | with<br>or Safe<br>B Reben<br>abso<br>dispo                     | Soap and water Handling and Use so or Solved rbant materials sal facility in                                                          | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash scilon VIII— spring to Be Taken Soak up ma  requiatio requiatio remines no Be to Store in c  spring y Process ear N10SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | thoroughly Precautions for the control Meas on (Speed Type) approved re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | with<br>or Safe<br>Penson<br>abso<br>dispo                      | Soap and water Handling and Use so or Solved rbant materials sal facility in                                                          | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash section VII — specified a Taken Soak up ma Place The regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | thoroughly Precentions in In Case Material In The Incomposition In Case Material In The Incomposition In Case Material In Incomposition In In Incomposition In Incomposition In Incomposition In Incomposition In Incomposition In     | dispo<br>dispo<br>and Starting                                  | Soap and water Mandling and Use of or Solved rbant materials sal facility in away from heat                                           | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash section VII — specified a Taken Soak up ma Place The a regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thoroughly Precautions for the case Manager of the control Meas on (Speech Pub) appropriate ocal Enhance ocal Enhance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dispo  and Store in abso  dispo  and Store in ers               | Soap and water Handling and Use so or Solled rbant materials sal facility in away from heat tor if required                           | and pla   | ion: D              | rink ple    | enty of wo         | eter, ca | all physic |
| Skin: Wash ection VII — special action VIII  | thoroughly Preceditions in Cose Material in Cose Material in the cost of the c    | dispo<br>dispo<br>and Storiners                                 | Soap and water Handling and Use so or Solved rbant materials  sal facility in  away from heat  tor if required n areas confined areas | and pla   | ton: D ce in nce wi | tight co    | enty of wontainer. | eter, ca | all physic |
| Skin: Wash section VIII—  special action VIII—  regulation  special action VIIII—  special action VIIIII—  special action VIIII—  special | thoroughly Precautions for the control Meason (Speed Control Meason (Speed Proved recal Enhance (General Impervious oning or Equipment of Equipment or Equipment     | dispo  and Store in abso  dispo  and Store in ers  spira  n ope | Soap and water Mandling and Use so or Solved rbant materials sal facility in away from heat tor if required n areas confined areas    | and pla   | fon: D ce in nce wi | rink ple    | enty of wontainer. | eter, ca | all physic |
| Skin: Wash sction VII — spe to be Taken Soak up ma see Obscore Me acc In a regulatio regulatio reminisms to Be Store in c sprawoy Protective ar N10SH history Gloves see Protective Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | thoroughly Precautions for the control Measure of the control Measur    | dispo  and Store in abso  dispo  and Store in ers  spira  n ope | Soap and water Handling and Use so or Solved rbant materials  sal facility in  away from heat  tor if required n areas confined areas | and pla   | fon: D ce in nce wi | tight co    | enty of wontainer. | eter, ca | all physi  |





February 26, 2002 CCN 30195

Mr. J. T. Case, Director INTEC Waste Program U.S. Department of Energy Idaho Operations Office 850 Energy Drive, MS 1154 Idaho Falls, ID 83401-1563

CONTRACT NO. DE-AC07-99ID13727 - TRANSMITTAL OF NWCF EVAPORATOR TANK SYSTEM 2001 OFFGAS EMISSIONS INVENTORY, INEEL/EXT-02-00198

Dear Mr. Case:

A copy of the external report NWCF Evaporator Tank System 2001 Offgas Emissions Inventory is enclosed. This report provides semi-volatile and volatile organic, metals, particulate, and acid gas emissions data and rates for the New Waste Calciner Facility Evaporator Tank System (NWCF ETS) as measured during operations from May through June 2001. A detailed assessment of the data quality has also been provided.

The emissions inventory for the NWCF ETS was completed to: 1) demonstrate the applicability of standard EPA offgas sampling methods and 2) characterize the constituents of primary concern for this offgas stream. Only minor variations to the EPA methods were required to compensate for radiological exposure and safety concerns and the below-grade sampling port location.

Emissions rates for the measured constituents were compared to rates measured for the NWCF Calciner and scaled to NWCF Calciner Screening Level Risk Assessment parameters to provide comparisons to the EPA hazard quotient and cancer risk guidance. The emissions rates and human health risk values for the NWCF ETS were lower than those for the NWCF Calciner.

The enclosed report fulfills a performance measure in Program Execution Guidance EM-D-33 FY-2002 and internal milestone A7131021 in control account C.1.06.01.07.13 Waste Sampling and Characterization.

Questions regarding the content of this report should be addressed to L. J. Young at 526-3132 or R. D. Boardman at 526-3732.

Sincerely,

J. H. Valentine, Manager of Projects

High Level Waste Program

rmg

Enclosure

A. Clark, MS 5108 cc:

C. D. Cutler\*, MS 3810

R. J. Hoyles\*, DOE-ID, MS 1221

R. J. Kimmel, DOE-ID, MS 1154

K. A. Lockie, DOE-ID, MS 1154

S. G. Stiger\*, MS 3898

w/o Enclosure

Mr. J. T. Case February 26, 2002 CCN 30195 Page 3

bcc: R. D. Boardman, MS 5218

R. R. Bone, MS 5117

K. C. Coughlan, MS 3211

D. V. Croson, MS 5218 NC

S. L. Dickinson, MS 5111

K. M. Lamb, MS 5218

J. P. Law, MS 5111

L. A. Matejka, MS 5306

J. A. Nenni, MS 5218

J. D. Pyle, MS 5117

J. M. White, MS 5111

P. K. Yeary,\* MS 3211

L. J. Young, MS 5218

Correspondence Control,\* MS 3106

J. H. Valentine File (JHV-016-02)

\*w/o Enclosure

Uniform File Code: <u>6153.101.09</u> Disposition Authority: <u>A16-1.3</u>

Retention Schedule: Cut off at the end of the fiscal year. Destroy 5 years after cut off.

NOTE: Original disposition authority, retention schedule, and Uniform Filing Code applied by the sender may not be appropriate for all recipients. Make adjustments as needed.

# **NWCF Evaporator Tank System 2001 Offgas Emissions Inventory**

R. D. Boardman K. M. Lamb L. A. Matejka J. A. Nenni

February 2002

Idaho National Engineering and Environmental Laboratory
High Level Waste Program
Bechtel BWXT Idaho, LLC
Idaho Falls, ID 83415

Prepared for the
U.S. Department of Energy
Assistant Secretary for Environmental Management
Under DOE Idaho Operations Office
Contract DE-AC07-99ID13727

| · |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

# **ABSTRACT**

An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid (HCl)/Cl<sub>2</sub> were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed, overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv (< 40 μg/dscm), while the sum of HCl and Cl<sub>2</sub> emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of 1e-5.

iv

## **SUMMARY**

This report presents the 2001 effluent gas emissions inventory data for the NWCF Evaporator Tank System (ETS) operated at the INTEC. Liquid wastes generated from decontamination activities are stored in the INTEC High Level Waste Tank Farm Facility (TFF). The Tank Farm wastes are currently being concentrated using the NWCF ETS (formally known as High Level Liquid Waste Evaporator, or HLLWE). The NWCF ETS currently operates under Resource Conservation and Recovery Act (RCRA) interim status. A RCRA Part B permit application for this unit is being prepared and will be submitted in FY-2003. In order to support the permitting activities, the feed and output streams were characterized during evaporator operations in May and June, 2001. During this time, the NWCF ETS was being used to reduce the volume of a blend of two parts by volume of solution from WM-184 and one part by volume of solution from WM-181. Both of these tanks contained sodium-bearing waste (SBW).

The NWCF ETS is a single-stage, thermal siphon, batch evaporator. Dilute Tank Farm liquid wastes are semi-continuously fed to the evaporator to maintain a constant level in the evaporator. The system consists of a feed tank (VES-NCC-152), a flash column (VES-NCC-150), a reboiler (HE-NCC-350), and a condenser (VES-NCC-151). Blended tank farm wastes are added to the flash column via the feed tank. When the level in the flash column reaches its normal operating level, steam is introduced into the shell side of the evaporator reboiler. Once the desired specific gravity is reached, the concentrated solution is cooled and returned to the Tank Farm. Each batch generally requires 10-16 hours to process, followed by 10-16 hours to refill the feed tanks and to attend to waste transfers back to the Tank Farm.

The NWCF ETS overhead vapor is condensed and sent to the INTEC Process Equipment Waste Evaporator (PEWE) to be re-evaporated. Non condensable and purge gasses are vented from the feed tank and the condenser to the NWCF equipment vent system. The combined offgas passes through the NWCF high-efficiency particulate air (HEPA) filters and then through the Atmospheric Protection System (APS) before being discharged from the main INTEC stack with other vessel offgas and building ventilation air. The offgas tie-in sample location previously used to sample the NWCF Calciner offgas stream was determined to be the best location for sampling the NWCF ETS emissions.

#### Scope and Approach

The Tank Farm wastes are highly acidic (mainly nitric acid) and contain several RCRA metals, including mercury, and trace amounts of volatile and semi-volatile hazardous organic compounds which were introduced into the Tank Farm Facility by previous disposal of laboratory analytical wastes, NWCF Calciner scrub solution recycle, and organic solvent cleaning. Those components with low boiling points are released to the NWCF ETS offgas system during waste transfers, mixing, and evaporation. Trace amounts of heavy, nonvolatile hydrocarbons may also exist in the waste feed solutions; however, emissions of the nonvolatile hydrocarbons and also the nonvolatile metals may occur due to aerosol entrainment from the evaporator. The majority of the entrained droplets are believed to be collected in the offgas condensers, mist eliminators, and HEPA filters.

The scope of the NWCF ETS process effluent gas emissions inventory included:

- Measurement of the NWCF offgas duct velocity, temperature, and flowrate during operation of the NWCF ETS
- Manual offgas sampling and analysis for particulate matter (PM), HCl, Cl<sub>2</sub>, selected metals, volatile organic compounds (VOCs), and semi-volatile organic compounds (SVOCs)
- Measurement of oxygen concentrations

Standard EPA sample collection and analysis methods were used to collect the offgas samples. Sampling was conducted following standard EPA methodology for emissions compliance testing, with attention being given to the following:

- Development and adherence to an approved project quality assurance/quality control plan
- Implementation of chain-of-custody (COC)/requests-for-analysis (RFA) and master sample collection lists that utilize and implement an in-field sample tracking and sample identification number verification
- Development of target analyte lists (TAL) and precision, accuracy, representativeness, completeness, and comparability (PARCC) data quality objectives
- Collection of samples using checklists to record train set up, sample collection data, and sample recovery steps
- Collection and analysis of reagent blanks, trip blanks, and field blanks to achieve prescribed data quality objectives
- Sample collection monitoring by a Project Quality Assurance Officer (PQAO)
- Application of EPA Solid Waste (SW)-846 and 40 Code of Federal Regulations (CFR) 60 Appendix A reference methods for sample analysis.
- Multiple reviews and verifications of field data, analytical data, process data, and resultant calculations of emissions rates

Samples of the feed were analyzed prior to initiation of processing the blend in the NWCF ETS to ensure that the chemistry of the feed solution was compatible with the process equipment. Samples of the condensed overheads and the concentrated bottoms from the first several batches processed were analyzed to ensure that the chemistry of those streams was compatible with down-stream process equipment. The results of these analyses have been included in this report to provide a resource for process permitting discussions and planning.

At the beginning of the offgas sample collection period, the vertical gas velocity profile and swirl angle in the duct were measured to determine an appropriate fixed-point location to collect the offgas samples. Sample contamination survey trains and routine

radiological surveys and screenings were completed throughout the sample collection period to ensure that the samples shipped to the contract analytical laboratory met the labs radioactive materials license criteria. At the end of the sample collection period, the sample probe was removed from the duct and rinsed with acetone and nitric acid. The acetone and nitric acid probe rinses were analyzed for PM and metals.

A set of two runs was completed for each EPA sample train configuration at the beginning and another at the end of evaporator batches. This provided a total of four runs for each method to compare emissions trends at the beginning and end of the evaporator batches. Oxygen concentrations were monitored during each sample train run. The oxygen concentrations in the duct were consistently found to be similar to ambient air conditions. Therefore, it was not necessary to constantly operate the oxygen monitor.

Moisture levels in the offgas were determined from gravimetric and/or volumetric changes in the sample train resins and impingers, respectively. The offgas moisture level was typically less than the dew point of the sample gas passing through the sample collection train condensers. At the most, only 1-2 mL net condensate was collected in any of the condensate knockout impingers.

## Data Quality Assessment

All of the planned emissions inventory samples data and associated quality assurance/quality control (QA/QC) samples were collected in accordance with the test plan (PLN-879) and Quality Assurance Project Plan (PLN-880) which were developed and approved for this project. An extensive discussion is provided in the report body regarding conformance of the sample collection activities with the procedures and EPA Method requirements, performance of the QA/QC samples, sampling surrogates, and internal standards.

Although an independent review of the data by the INEEL Sample Management Office (SMO) was not completed, the analytical data reports and data reduction calculations were reviewed by the contract laboratory Quality Officer, the Project Technical Leads, and the BBWI Project Quality Assurance Officer. All of the analytical data and offgas emissions results are judged to be useful for their intended purpose of completing an emissions inventory for the NWCF ETS system. The results are applicable to, and bounded by, the 2:1 volumetric blend of Tank WM-184 and Tank WM-181 feed composition, and NWCF ETS process operating parameters and conditions corresponding to the offgas sampling period.

#### Emissions Results

The concentration levels of the 20 highest VOC compounds emitted from the evaporator are plotted in Figure S-1. In general, volatile organic emissions are slightly higher at the start of an evaporator batch. The two highest volatile organics emitted from

the NWCF ETS were dodecane and acetone, which on a volumetric basis are only 50 ppbv and 30 ppbv, respectively. Acetone was also detected in the feed to the NWCF Calciner. Dodecane was not a target analyte for the liquid feed and therefore was not measured.

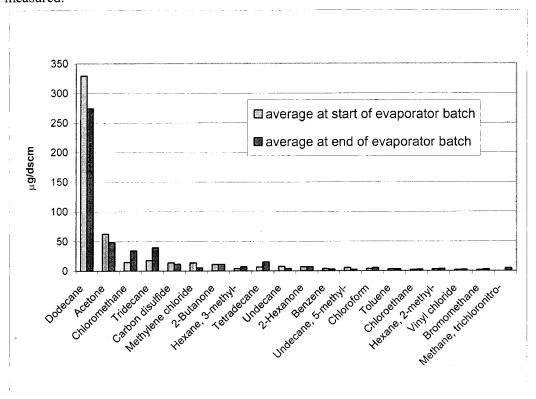



Figure S-1. Comparison of volatile organic emissions at the beginning and end of evaporator batches.

The top 20 SVOCs measured in the offgas stream are plotted in Figure S-2. SVOC emissions also appear to be slightly higher at the start of the evaporator batch. Benzoic acid (a target analyte) and benzaldehyde (a tentatively identified compound) were the two most prevalent semi-volatile organics emitted during operation of the NWCF ETS. The maximum emissions concentrations for benzoic acid and benzaldehyde were 310 ppbv and 80 ppbv, respectively.

Nearly all of the compounds are derivatives of benzene or other cyclic compounds and are possibly the products of incomplete combustion of the kerosene used to heat the Calciner. With the exception of benzoic acid, all of the SVOC species emitted from the evaporator were also detected during the NWCF Calciner offgas emissions inventory (Boardman 2001). It is therefore postulated that these compounds entered the Tank Farm System when Calciner scrub was recycled to the tank farm. They could also be formed by oxidation of benzene and toluene in the acidic waste solutions.

On a volumetric basis, the sum of all volatile and semi-volatile organics is less than 1 ppm. The hourly total emissions rate for all volatile and semi-volatile organic emissions was less than 0.02 lbs/hr.

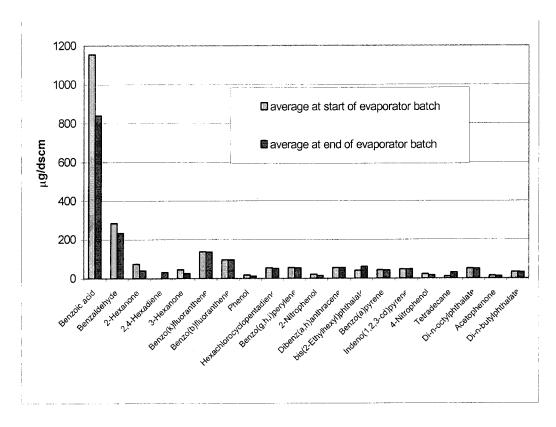



Figure S-2. Comparison of semi-volatile organic emissions at the beginning and end of evaporator batches.

The average metals emissions rates at the beginning and end of evaporator batches are plotted in Figure S-3. As anticipated, metals emissions, including mercury, were typically higher at the end of an evaporator batch when the evaporator solution reached its maximum density. The emissions of all metals species appear to correlate with the solution density.

Total particulate and chloride emissions rate averages at the start and end of two evaporator batches were very low. The sum of chloride emission contributions from HCl and Cl<sub>2</sub> was less than 1 ppmv. Particulate emissions were slightly higher at the beginning of the batch which followed the trend of the semi-volatile organic species emissions.

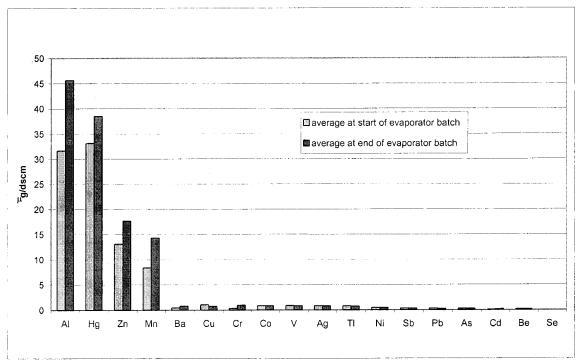



Figure S-3. Comparison of metals emissions at the beginning and end of evaporator batches (not including final probe rinse species apportionment).

#### **Emissions Risk**

The emission rate measurements were used to calculate the risk to human health. Pollutants from the NWCF ETS are released from the same point (*i.e.*, the INTEC main stack) and under the same conditions as NWCF Calciner emissions. Therefore, to a close approximation, the NWCF ETS hazards and risks can be scaled using the risk terms previously determined for the NWCF Calciner operations (Boardman 2001).

It was observed that the emissions rates, and hence component-specific risk contributions, were generally much lower from the NWCF ETS than from the NWCF Calciner. Most of the materials "found" were present at levels below the analytical laboratory reporting limits. The summed hazardous quotient (HQ) for all emissions from the NWCF ETS was 6.2e-6 as compared to the EPA target criteria of 0.25. The cancer risk was 1.3e-10 compared to an EPA target of 1e-5. The semi-volatiles were the largest contributor to the HQ and the Risk. The most significant species was a phthalate (bis(2 ethylhexyl)phthalate) which is a common contaminate from plastics present in laboratory and sampling areas.

In conclusion the measured emissions from the NWCF ETS are extremely low for all categories of pollutants. The estimated cancer risk and health hazard quotient are each several orders less than the limit normally allowed by EPA.

## **ACKNOWLEDGEMENTS**

This report is the result of a concerted effort on the part of several Company support organizations. The authors wish to acknowledge C. N. Woodall, Sr. Technical Specialist, for set up of the sample collection equipment and support during sample collection and shipping, and for chemical and waste management. R.M. Gifford is recognized for administrative support, training coordination, records management, and preparation of this report. The project manager for both the offgas and liquid sampling activities was L. J. Young, who supported technical planning, equipment and sample collection area setup, work authorization prerequisites, and ultimately, the sample collection activities.

| ABSTRAC  | CT                                      | iii  |
|----------|-----------------------------------------|------|
| SUMMAR   | Y                                       | v    |
| ACKNOW   | LEDGEMENTS                              | xi   |
| ACRONY   | MS                                      | xvii |
| 1. INTRO | DDUCTION                                | 1    |
| 2. NWCF  | ETS SYSTEM AND OFFGAS SAMPLING LOCATION | 3    |
| 3. SCOPE | E AND APPROACH                          | 11   |
| 4. RADIO | OLOGICAL SCREENING RESULTS              | 18   |
| 5. OFFG  | AS SAMPLE ANALYTICAL RESULTS            | 21   |
| 5.1 Vo   | olatile Organic Compounds               | 22   |
| 5.1.1    | VOC Target Analyte List                 | 22   |
| 5.1.2    | VOC Analytical Results                  | 24   |
| 5.1.3    | VOC Data Quality Assessment             | 25   |
| 5.2 Ser  | mi-volatile Organic Compounds           | 34   |
| 5.2.1    | SVOC Target Analyte List                | 35   |
| 5.2.2    | SVOC Analytical Results                 | 37   |
| 5.2.3    | SVOC Data Quality Assessment            | 37   |
| 5.3 Me   | etals                                   | 43   |
| 5.3.1    | Metals Target Analyte List              | 44   |
| 5.3.2    | Metals Analytical Results               | 44   |
| 5.3.3    | Metals Data Quality Assessment          | 45   |
| 5.4 Pai  | rticulate Matter and Acid Gases         | 47   |
| 5.4.1    | Acid Gas Target analytes                | 47   |
| 5.4.2    | Analysis of PM and Acid Gases           | 47   |
| 5 4 3    | PM and Acid Gas Data Quality Assessment | 48   |

| 5. | PROCE     | SS STREAM CHARACTERIZATION RESULTS           | 50 |
|----|-----------|----------------------------------------------|----|
| 7. | PROCE     | SS OPERATING CONDITIONS                      | 58 |
| 8. | DQO AS    | SSESSMENT AND PROJECT SURVEILLANCE           | 59 |
|    | 8.1 Doc   | umented Field Changes                        | 59 |
|    | 8.1.1     | VOC Sample Collection                        | 59 |
|    | 8.1.2     | SVOC Sample Collection                       | 60 |
|    | 8.1.3     | SCS Trains and Screening                     | 60 |
|    | 8.1.4     | Metals and Anions Sample Collection          | 60 |
|    | 8.1.5     | Miscellaneous Decisions                      | 60 |
|    | 8.2 Data  | a Quality Indicators                         | 61 |
|    | 8.3 Sam   | pling Documentation Reviews                  | 62 |
|    | 8.4 Rec   | ords Management                              | 62 |
|    | 8.5 Rev   | iew of Spreadsheet Calculations              | 63 |
|    | 8.6 Ana   | lytical Results                              | 64 |
|    | 8.6.1     | Data Reporting and Flagging                  | 64 |
|    | 8.6.2     | Blank Corrections                            | 65 |
|    | 8.6.3     | Data Reporting                               | 65 |
|    | 8.6.4     | Analytical QC                                | 65 |
|    | 8.7 Req   | uest for Analysis and Chain-of-Custody Forms | 67 |
|    | 8.8 Field | d Assessments by PQAO                        | 68 |
| 9. | OFFGA     | S EMISSIONS AND HEALTH RISK                  | 70 |
|    | 9.1 Emi   | ssions Rates and Trends                      | 70 |
|    | 9.1.1     | Organic Compounds                            | 71 |
|    | 9.1.2     | Inorganic Compounds                          | 73 |
|    | 9.2 Emi   | ssions Health Risk                           | 76 |

| 10. (                                                                                    | CONCLUSIONS                                                                                          | 81                                                                           |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 11. F                                                                                    | REFERENCES                                                                                           | 82                                                                           |
| Appe                                                                                     | endix A. Analytical Data Summaries                                                                   |                                                                              |
| Appe                                                                                     | endix B. Offgas Sampling Data                                                                        |                                                                              |
| Appe                                                                                     | endix C. Process Stream Sampling Data                                                                |                                                                              |
| Appe                                                                                     | endix D. DCS Data                                                                                    |                                                                              |
|                                                                                          | FIGURES                                                                                              |                                                                              |
| S-1.<br>S-2.<br>S-3.<br>1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.<br>9.<br>10.<br>11. |                                                                                                      | ix<br>final<br>x<br>5<br>6<br>7<br>70<br>71<br>72<br>73<br>final<br>75<br>75 |
| 1.                                                                                       | Typical NWCF ETS operating conditions                                                                | 4                                                                            |
| 2.                                                                                       | Summary of NWCF ETS offgas sample collection and analysis methods                                    | 12                                                                           |
| 3.                                                                                       | Summary of samples collected in support of the INEEL NWCF ETS Effluent Gas                           | 15                                                                           |
| 4.<br>5.                                                                                 | Sample contamination survey train radio-assay results  Volatile organic compound target analyte list | 23                                                                           |
| <i>6</i> .                                                                               | Comparison of SMVOC blank sample results                                                             | 27                                                                           |
| 7.                                                                                       | Volatile Organic Compound (VOC) internal standard recoveries                                         | 30                                                                           |
| 8.                                                                                       | Volatile Organic Compound (VOC) surrogate compound recoveries                                        |                                                                              |
| 9.                                                                                       | S V C/C target analyte list                                                                          | 23                                                                           |

| SVOC train sample internal standard compound recoveries                                 | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Inorganic analyses of feed streams processed during NWCF ETS off-gas emissions sampling | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                         | SVOC train sample internal standard compound recoveries.  SVOC surrogate compound recoveries.  Metals target analyte list.  Inorganic analyses of feed streams processed during NWCF ETS off-gas emissions sampling.  Inorganic analyses of bottoms streams during NWCF ETS off-gas emissions sampling.  Inorganic analyses of condensate streams during NWCF ETS off-gas emissions sampling.  VOC analyses of NWCF ETS streams during NWCF ETS off-gas emissions sampling.  SVOC analyses of NWCF ETS streams during NWCF ETS off-gas emissions sampling.  Risk scaling of Method 0010 analytes.  Risk scaling for Method 0050 analytes.  Risk scaling for Method 0060 analytes. |

## **ACRONYMS**

ACS American Chemical Society

ALD Analytical Laboratory Department

APS atmospheric protection system

CAS Chemical Abstract Service

CEMS continuous emissions monitoring system

CFL central file location

CFR Code of Federal Regulations

COC chain of custody

CVAAS cold vapor atomic absorption spectroscopy

DF decontamination factor

D/F dioxins and furans

DCS Distributive control system

D.I. deionized

DOT Department of Transportation

DQOs data quality objectives

DWSD Drinking Water Standards Division

EDD electronic data deliverables

EMSL Environmental Monitoring Systems Laboratory

EPA U. S. Environmental Protection Agency

GC/MS gas chromatography/mass spectrometry

HCl hydrochloric acid

HEPA high-efficiency particulate air (filter)

HQ hazardous quotient

HRGC/HRMS high resolution gas chromatography/high resolution mass spectrometry

INEEL Idaho National Engineering and Environmental Laboratory

INTEC Idaho Nuclear Technology and Engineering Center

IS internal standard

L&V limitations and validation

LCS laboratory control samples

LCSD laboratory control samples duplicate

LET&D Liquid Effluent Treatment and Disposal

MCP Management Control Procedure (Company Document Indicator)

MDL method detection limit

MS/MDS matrix spike/matrix spike duplicate

NWCF New Waste Calcining Facility

PAH polycyclic aromatic hydrocarbons

PARCC precision, accuracy, representativeness, completeness, and comparability

PCBs polychlorinated biphenyls

PDS post digestion spikes

PEWE Process Equipment Waste Evaporator

PLN Plan (Company Document Designator)

PM particulate matter

PQAO Project Quality Assurance Officer

PTL Project Technical Lead(s)

QA/QC quality assurance/quality control

QAPjP quality assurance project plan

RAL Remote Analytical Laboratory

RCRA Resource Conservation and Recovery Act

RDL reliable detection limit

RFA/COC request-for-analysis/chain-of-custody

RL reporting limit (analytical laboratory established)

RPD relative percent difference

RPF relative potency factor

SAIC Science Applications International Corporation

SDG sample delivery group

SMO Sample Management Office

SMVOC sampling method for volatile organic compounds

SOW statement of work

STL Severn-Trent Laboratory- (Knoxville, Tennessee)

SVOC semi-volatile organic compound

SW Solid Waste

TAL target analyte list

TFF Tank Farm Facility

TICs tentatively identified compounds

TOC total organic carbon

TOS task order specific (statement of work)

TPR Technical Requirements Procedure (Company Document Designator)

VOC volatile organic compound

XX

# NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

## 1. INTRODUCTION

Liquid wastes generated by fuel reprocessing and decontamination activities are stored in the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. The Tank Farm wastes are currently being concentrated using the INTEC New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS) (formally know as High Level Liquid Waste Evaporator HLLWE). The NWCF ETS currently operates under Resource Conservation and Recovery Act (RCRA) interim status. A RCRA Part B permit application for this unit is being prepared and is planned to be submitted in FY-2003. In order to support the permitting activities, the feed and output streams were characterized during evaporator operations in May and June, 2001. Characterization of the NWCF ETS process gaseous emissions were completed in conjunction with liquid feed and concentrated effluent analyses.

A detailed test plan (Test Plan for the HLLWE Effluent Gas Emissions Inventory, PLN-879) and quality assurance project plan (QAPjP- INTEC Quality Assurance Project Plan for the HLLWE Offgas Emissions Inventory Project, PLN-880) were developed for this project. The test plan discusses project organization, training requirements, safety implementation plans, sample collection objectives, and potential NWCF ETS offgas emissions. The QAPjP specifies the quality assurance and quality control (QA/QC) requirements, applicable quality standards, and both Idaho National Engineering and Environmental Laboratory (INEEL) and project-specific procedures for collecting, packaging, preserving, shipping, and analyzing the NWCF ETS offgas samples. The sample collection and analysis methods and procedures adhere to U.S. Environmental Protection Agency (EPA) protocol and technical requirements.

Science Applications International Corporation, Idaho Falls, Idaho (herein referred to as SAIC) was subcontracted to collect and recover the samples using the EPA prescribed procedures and equipment. SAIC also assisted BBWI in calculation of the air emissions rates using the data collected in the field and the sample analytical results. SAIC is recognized for its training and experience as a sample collection team. They previously supported the NWCF Calciner offgas emissions inventory project. Sample collection was performed using checklists and field data sheets.

Severn-Trent Laboratories, Knoxville, Tennessee (herein referred to as STL) performed the offgas sample preparations and analyses. The samples sent to STL were accompanied by a Request-for-Analysis Form (RFA), which documents the project-specific analytical specifications and quality control instructions to the laboratory. As part of the RFA documentation, a Chain-of-Custody (COC) and tractability record was maintained for all sample transfers to the laboratory. An analytical report for the final analytical data (STL 2001) was provided by STL. The analytical report includes a description of the analytical procedures that were used to acquire the data generated in support of this project.

Liquid feed streams and effluents associated with the NWCF ETS were collected in conjunction with the offgas sampling and were analyzed to complete mass balance and emissions inventory calculations. The samples were collected and analyzed under the Balance of Plant Sampling and Analysis Plan (inputs to Process Equipment Waste Evaporator (PEWE) and Liquid Effluent Treatment and Disposal (LET&D)). The liquid stream samples were collected and analyzed remotely to reduce operator and analyst exposure to radiation. Liquid sample collection was performed by the NWCF ETS operators

using double-needle sample collection system. The samples were sent the INTEC Remote Analytical Laboratory (RAL) for analyses.

The purpose of this report is to document and discuss the NWCF ETS offgas emissions inventory results and liquid feed stream analytical results. A technical description of the facility is followed by a description of the sample collection matrix and results. The risk associated with the offgas emissions has also been calculated and is presented herein.

## 2. NWCF ETS SYSTEM AND OFFGAS SAMPLING LOCATION

The NWCF ETS is a single-stage, thermal siphon, batch evaporator. Dilute Tank Farm liquid wastes are semi-continuously fed to the evaporator to maintain a constant level in the evaporator. A schematic of the NWCF ETS process is shown in Figure 1. The system consists of a feed tank (VES-NCC-152), a flash column (VES-NCC-150), a reboiler (HE-NCC-350), and a condenser (VES-NCC-151). Blended tank farm wastes are added to the flash column via the feed tank. When the level in the flash column reaches its normal operating level, steam is introduced into the shell side of the evaporator reboiler. As the evaporator solution temperature increases, its density decreases and the solution starts to rise. Steam bubbles form and further decrease the solution density. This draws the liquid from the bottom of the flash column into the tubes of the reboiler and creates a thermosiphon. The steam from the reboiler rises through a demister mesh and proceeds to the condenser. Typical NWCF ETS process operating conditions during sampling collection and analysis is shown in Table 1.

Once the desired specific gravity is reached, the concentrated solution is cooled and returned to the Tank Farm. The NWCF ETS overhead vapor is condensed in a total condenser and sent to the INTEC Process Equipment Waste Evaporator (PEWE) to be re-evaporated. Non condensable and purge gasses are vented from the feed tank and the condenser to the NWCF equipment vent system as shown in Figure 2. The equipment vent gasses join with the main process off-gas steam from the NWCF prior to the system high-efficiency particulate air (HEPA) filters.

Each batch generally requires 10-16 hours to process, followed by 10-16 hours to refill the feed tanks and to attend to waste transfers back to the Tanks Farm. Operating conditions that were monitored during emissions inventory testing are shown in discussed in Section 7. Normal operating conditions were maintained to provide the most stable and representative conditions throughout the sample collection period. All operating conditions are routinely recorded by the NWCF and Atmospheric Protection System (APS) control systems. These records are maintained by INTEC High Level Waste operations.

The offgas tie-in sample location used previously to sample the NWCF Calciner offgas stream was determined to be the best location for sample collection and offgas measurements for the scope and objectives of this project. The existing offgas tie-in location is downstream of the NWCF compressors and upstream of the APS. At this location, the offgas pipe is underground. The estimated offgas conditions at this location are listed in Table 1. Figure 3 shows the 12-inch ID pipe placement 9 ft underground, contained inside a larger 20 inch pipe encasement, which is inside a concrete encasement. The encasements provide the necessary physical protection and radiation shielding as the offgas flows to the APS.

Figure 4 shows a side view of the offgas tie-in location. This location is over 10 ft (10 pipe diameters) or more upstream and downstream of flow interference, so the flow should be reasonably straight (except for any disruption caused by the 12-inch tee). A 12-inch ID tee topped with a flange provides access through a manhole to the offgas pipe. Several penetrations (shown in top view in Figure 5) through the flange enable sample probe access and sample extraction.

The two-inch diameter port (line 2" POG-AR-156513) was used exclusively for the NWCF ETS offgas sample collection. This port is located at the centerline of the offgas duct cross section, allowing a vertical traverse of the duct to be made. A custom heated Method 5 probe (1.75 inch outside diameter) for was fabricated for sampling at this location. The sample probe was equipped with a compression fitting to provide a seal on the outer sheath of the sample probe. Pressurized air is used to continuously purge the annulus between the port inner wall and the probe sheath.

Table 1. Typical NWCF ETS operating conditions.

| Table 1. Typical NWCF ETS operating of        |                              | X7.1 ()                                   |  |  |  |  |
|-----------------------------------------------|------------------------------|-------------------------------------------|--|--|--|--|
| Parameter                                     | DCS Identification Number    | Value (a)                                 |  |  |  |  |
| HEPA filters                                  |                              |                                           |  |  |  |  |
| Evaporator temperature                        | T150-1 through T150-10       | 95-110°C                                  |  |  |  |  |
| Steam to evaporator                           | F350-1C                      | 1500-2000 lbs/hr                          |  |  |  |  |
| Evaporator level                              | L150-1C                      | 100-140 inches                            |  |  |  |  |
| Evaporator density                            |                              | 1.0-1.35 g/mL                             |  |  |  |  |
| Superheater (HE-NCC-335) outlet               | T335-2C                      | 150-205 °F                                |  |  |  |  |
| offgas temperature (HEPA filter bank          |                              |                                           |  |  |  |  |
| inlet temperature)                            |                              |                                           |  |  |  |  |
| HEPA filter inlet pressure                    | P130-2C                      | 30 to 100 in. H <sub>2</sub> O            |  |  |  |  |
| HEPA filter stage 1 differential pressure     | PD130-1-1C, -2-1C, -3-1C,    | $0.5-10$ in. $H_2O$ (when online)         |  |  |  |  |
| -                                             | -4-1C                        | 0-0.5 in. H <sub>2</sub> O (when offline) |  |  |  |  |
| Total differential pressure across HEPA       | PD130-1C                     | 2-18 in. H <sub>2</sub> O                 |  |  |  |  |
| filter stages 1-3                             |                              |                                           |  |  |  |  |
| HEPA filter stage 3 outlet temperature        | T130-1-1C, -2-1C, -3-1C,     | 80-150 °F                                 |  |  |  |  |
|                                               | -4-1C                        |                                           |  |  |  |  |
| NWCF process offgas flowrate (HEPA            | F130-1C                      | 50 - 1,000  scfm                          |  |  |  |  |
| filter outlet offgas flowrate)                |                              |                                           |  |  |  |  |
|                                               | uipment Vent Conditions      |                                           |  |  |  |  |
| Offgas flow                                   | F136-1C                      | 500-1200 scfm                             |  |  |  |  |
| Offgas temperature                            | T336-1C                      | 60°- 80° F                                |  |  |  |  |
| Offgas to APS pressure                        | P122-1                       | 6-12 in. H <sub>2</sub> O vacuum          |  |  |  |  |
| Atmospheric Protection System (APS) an        | d Other Equipment Downstream | of the Offgas Tie-in Sample               |  |  |  |  |
| Location                                      | • •                          |                                           |  |  |  |  |
| APS inlet offgas temperature (process         | T-OGF-104                    | 180-200°F                                 |  |  |  |  |
| offgas condenser outlet gas temperature       |                              |                                           |  |  |  |  |
| APS inlet flowrate (process offgas flow)      | F-OGF-2                      | 1000-2000 scfm                            |  |  |  |  |
| APS inlet offgas pressure                     | P-OGF-22                     | Negative 5-15 in. H <sub>2</sub> O (c)    |  |  |  |  |
| Main stack offgas flowrate                    | F-OGF-4/5                    | 80,000-100,000 scfm                       |  |  |  |  |
| Main stack offgas temperature                 | T-OGF-4-1, -5-1              | 70-100 °F                                 |  |  |  |  |
| a) If the value for an operating parameter dr | •                            | nge, or outside +/- 10% of the            |  |  |  |  |

a) If the value for an operating parameter drifts outside of he indicated value range, or outside +/- 10% of the range is shown, then the test team leader must determine if sample collection should discontinue until NWCF operation is modified to correct the value.

b) Standard temperature and pressure is 60°F, 1 atmosphere.

c) This pressure is controlled using dampers on offgas blowers BLO-OGS-213 and -214, and can be adjusted to control the static pressure at the Offgas Tie-in location

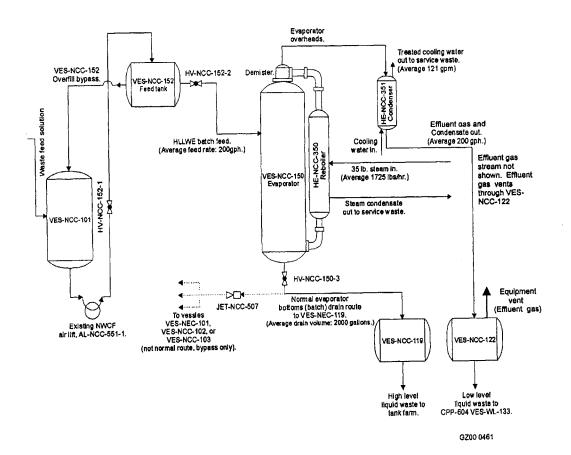



Figure 1. NWCF ETS system.

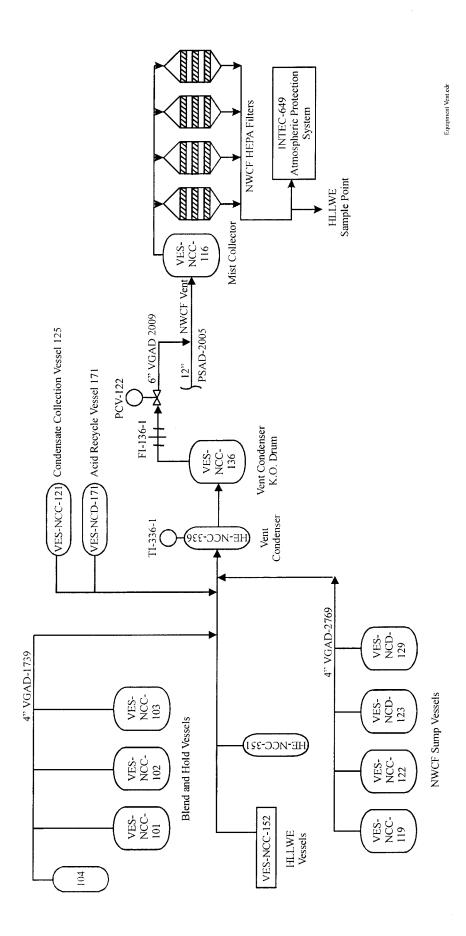



Figure 2. NWCF equipment vent.

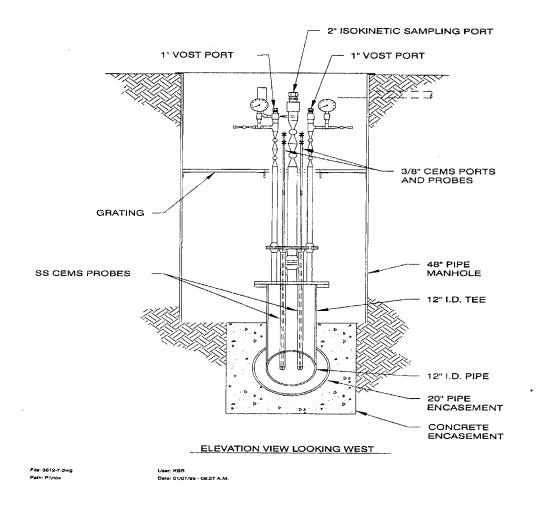
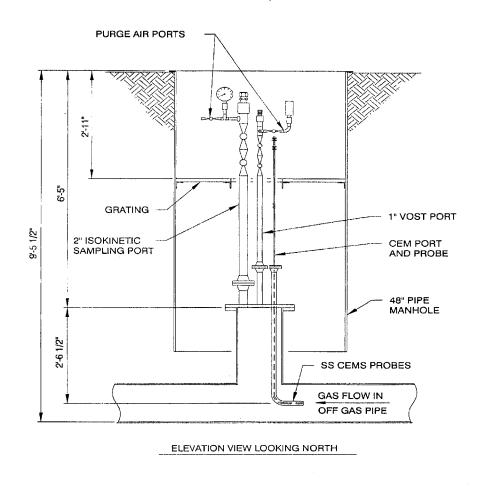
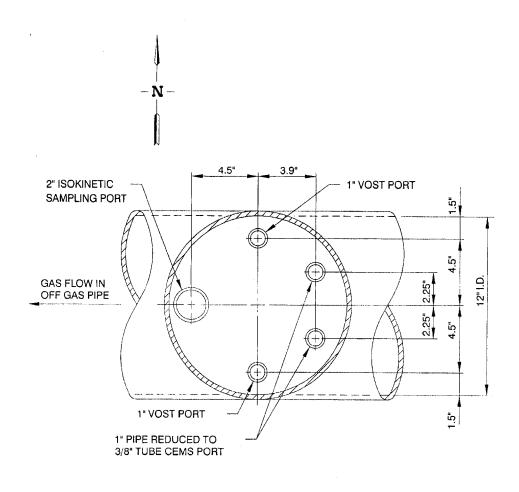




Figure 3. Offgas pipe axial view of the offgas tie-in sample location.




File: 3512-6.dwg User: KBR
Path: P.\nox Date: 01/07/69 - 05:27 A.M.

Figure 4. Side view of offgas tie-in sample location.

This sample collection location does not meet all specified EPA requirements for offgas sample collection (40 Code of Federal Regulations (CFR) 60 Appendix A, Methods 1 and 2) since it is not possible to traverse the duct at two orthogonal positions. There may also be some mutual disturbance of the offgas flow pattern caused by the 3/8-inch tubes that are slightly upstream of the 2-inch access port as shown in a top view of the sample tie in (Figure 5). Fortunately, interference between sample ports is minimized as there is a clear path to oncoming gas flow as shown in the cross sectional view.

Another possible limitation to the sampling location is the presence of radionuclide contamination in the NWCF offgas duct. The procedure for inserting the 12 ft probe into the duct required donning of anti-contamination clothing and active monitoring by a Radiological Control Technician and Industrial Hygienist. The fragile probe tip can be easily damaged, and possibly could fall into the NWCF offgas duct- an event that is undesirable because it would introduction foreign material into the duct upstream of the Atmospheric Protect System. In addition, any potential presence of loose contamination in the duct could result in the spread of radiological contamination and possible exposure to the sample collection attendants. Hence, it was determined that the probe would be placed in the duct at a fixed point and not disturbed until the NWCF ETS offgas measurements were concluded. The probe was only articulated at the beginning of the sample collection tests in order to measure the vertical velocity profile in the duct.



### TOP VIEW OF SAMPLING TEE AT NWCF OFF-GAS TIE IN LOCATION

File: 3612-5.dwg User: KBR
Path: Ptlnox Date: 01/07/59 - 09:26 A.M.

Figure 5. Top view of offgas tie-in sample location.

## 3. SCOPE AND APPROACH

The purpose of this activity is to characterize the NWCF ETS process effluent gas emissions. The Tank Farm wastes are highly acidic (mainly nitric acid) inorganic salt solutions and contain several RCRA metals, including mercury, and trace amounts of volatile and semi-volatile hazardous organic compounds. Those components with low boiling points are released to the NWCF ETS offgas system during waste transfers, mixing, and evaporation. Trace amounts of heavy, nonvolatile hydrocarbons may also exist in the waste feed solutions; however, emissions of the nonvolatile hydrocarbons and also the nonvolatile metals is theorized to mainly occur by aerosol entrainment from the evaporator. The majority of the entrained droplets are believed to be collected in the offgas condensers, mist eliminators, and HEPA filters.

The scope of the NWCF ETS process effluent gas emissions inventory includes:

- Measurement of the NWCF offgas duct velocity, temperature, and flowrate during operation of the NWCF ETS
- Manual offgas sampling and analysis for particulate matter (PM), hydrochloric acid (HCl), Cl<sub>2</sub>, selected metals including Hg, volatile organic compounds (VOCs), and semi-volatile organic compounds (SVOCs)
- Measurement of radiological contaminate concentrations in sampling media using sample collection trains that are representative of the EPA sample collection trains
- Measurement of oxygen concentrations
- Measurement of probe rinseate for apportionment of metals and PM adsorbed on the probe to the respective train totals

Standard EPA sample collection and analysis methods were used to characterize the measure target analytes for each of the categories listed in Table 2. Measurements of moisture content and offgas temperature, velocity, and flowrate are included in each of the isokinetic sample train measurements. Sampling was conducted following EPA methodology with attention being given to the following:

- Development and adherence to a project quality assurance/quality control plan
- Implementation of sample chain-of-custody/requests-for-analysis, master sample lists, and sample labeling and tracking which assured in-field verifications of correctness of sample identifiers
- Development of target analyte lists (TAL) and precision, accuracy, representativeness, completeness, and comparability (PARCC) data quality indicators and objectives
- Collection of samples using checklists to record train set up, sample collection data, and sample recovery steps
- Collection and analysis of reagent blanks, trip blanks, and field blanks to assess prescribed data quality objectives
- Sample collection and documentation by a Project Quality Assurance Officer (PQAO)

- Application of EPA Solid Waste (SW)-846 and 40CFR 60 Appendix A reference methods for sample analysis
- Multiple reviews and verifications of field data, analytical data, process data, and resulting calculations of emissions rates

Table 2. Summary of NWCF ETS offgas sample collection and analysis methods.

| Sample train procedure or Method           | Measurement                            | Train description                                                                                               | Analytical procedures                                                                                      |
|--------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 2                                          | Gas velocity,<br>temp., swirl<br>angle | S-type pitot, incline manometer, thermocouple                                                                   |                                                                                                            |
| 0010                                       | SVOCs                                  | Isokinetic single-point, glass-lined probe, heated filter, XAD-2® sorbent, impingers                            | 3542/8270C GC/MS (SVOCs)<br>STL SOP KNOX-ID-0012                                                           |
| 0060                                       | Multiple metals including Hg           | Isokinetic single-point, glass-lined probe, heated filter, impingers that contain sorbent solutions             | 6010A (ICAP) for multiple<br>metals, 7470 (CVAAS) for<br>mercury                                           |
| 0050 modified for PM                       | HCl, Cl <sub>2</sub> , PM              |                                                                                                                 | 9056 / 9057 (IC for HCl, Cl <sub>2</sub> , and F); and Method 5 (gravimetric for PM), STL SOP KNOX-MS-0011 |
| 0031<br>SMVOC                              | VOCs                                   | Single point, non-isokinetic, three sorbent tubes in series – (Tenax®/Tenax® /Anasorb® 747) and condensate trap | 5041A/8260 GC/MS                                                                                           |
| 3A or other (as requested by project lead) | $O_2$                                  | Single point, nonisokinetic, heated sample line                                                                 | Paramagnetism                                                                                              |

The level of organics in the acidic Tank Farm waste solutions is very low and the NWCT ETS is operated at a much lower temperature than the NWCF Calciner. Therefore, because temperature and chemical precursors are not there in the system, it was determined that separate analysis of PCBs, and D/Fs was not necessary. It was determined that the results of the SVOCs for the target PAH compounds would be sufficient for risk assessment calculations. The offgas results presented in this report demonstrate that SVOC emissions are indeed negligible, as are precursors to PAHs and also higher

molecular weight compounds, including PAHs, PCBs, and D/Fs. Hence, the scope of the NWCF ETS offgas emissions inventory was limited to those methods shown in Table 2.

During the recent NWCF Calciner offgas emissions inventory (Boardman 2001), sample collection runs were conducted for analysis of 24 of the highly toxic semi-volatile polynuclear aromatic hydrocarbons (PAH), polychlorinated biphenyl compounds (PCB) and dioxins and furans (D/Fs), as well as SVOCs. This required separate runs with EPA Method 0010 and EPA Method 0023A trains. The samples are extracted and concentrated for subsequent analysis by high resolution gas chromatography/high resolution mass spectroscopy (HRGC/HRMS). Isotope dilution is used for each target analyte; thus, it was possible to achieve method detection limit concentrations for those analytes that were typically one-three orders of magnitude less than MDLS for the current reported project, where standard EPA Method 8270C gas chromatography/mass spectrometry (GC/MS) was specified. Lower detection limits for these compounds were desired to assist in the analysis of the Calciner performance, and also to provide the best possible data for Calciner emissions health risk assessment.

At the beginning of the sample collection period, the vertical gas velocity profile and swirl angle in the duct was measured to determine an appropriate fixed-point location to collect the offgas samples. Fixed-point sampling was necessary to avoid potential spread of contamination and possible damage to the glass probe tip. Two separate traverses were made to enhance accuracy of the velocity measurements. The minimum number of traverse points per Method 1 on the single (vertical) traverse for particulate and nonparticulate traverses (4) plus the pipe centerline were included in the traverses. The swirl angle at each traverse point and the average swirl angle per EPA Method 1, Section 2.4 were also determined. Subsequently, the probe was fixed at the point of maximum flow which corresponds EPA prescribed sample position at four inches from the pipe wall.

A set of two samples trains (referred to herein as "runs") were collected for each category of pollutants at the beginning and also at the end of evaporator runs. This provided a total of four runs for each method and brackets the emissions over the entire batch. One blank train (field blank) was also collected during the period that the four trains for each method were being run. Trip blanks and reagent blanks also were collected, as required by the QAPjP.

Oxygen concentrations were periodically recorded from the digital readout of the oxygen monitor located in the sampling tent during the manual sample collection operations. Because the off-gas sampled was essentially air supplied to ventilate NWCF vessels it was supposed and confirmed that the oxygen concentrations in the duct were similar to ambient air conditions. Therefore, it was determined that there was no need to constantly operate the oxygen monitor.

Moisture levels in the offgas were determined from the gravimetric and volumetric changes in the sample train resins and impingers, respectively. The moisture level was typically less than the dew point of the sample gas passing through the sample collection train condensers. At the most, only 1-2 mL of condensate was collected in any of the condensate knockout impingers. This is consistant with the use of a total condenser on the process and the addition of dry instrument air.

Finally, sample contamination survey trains were collected at the beginning of the tests in accordance with an INTEC management control procedure (MCP-1173, Package and Ship NWCF Offgas Emissions Samples Offsite for Analysis, Revision 2). Radioanlytical results from these trains were used to bracket the expected radioactivity range in the offgas samples to ensure that sample shipments to STL were in accordance with their radioactive materials license. Additional screening was performed routinely throughout the sample collection period. Every sample, as a minimum, was screened for gamma/beta emissions using a micro-R radiation detector, which is approximately 10 times more sensitive than the hand-held friskers used in the field by the Radiological Control Technicians. All of the

Method 5 filters were also submitted to the INTEC Radiochemical Laboratory for an extended duration (typically 12 hours) gamma count.

At the end of the sample collection period, the sample probe was removed from the duct and rinsed with acetone and nitric acid. These samples were surveyed for radiological contamination before being shipped to the analytical laboratory for measurement of PM and metals that were adsorbed on the probe. The results of these samples were used to address the technical acceptability of leaving the probe at a fixed position. It was assumed that the level of particulate in the duct would be negligible as a result of the sample location being downsteam of the NWCF HEPA filter banks. This was shown to be an appropriate assumption for the NWCF Calciner offgas emissions inventory project (Boardman 2001) and for the NWCF ETS as discussed later in this report. When a measurement of any target analyte in the probe rinsate was greater than the method detection limits, the result was apportioned to the metals and PM trains results.

Table 3 summarizes the sample collection trains, blank trains (field blanks), trip and reagent blanks, probe rinses, and radiological survey trains. Also listed is the sample collection date, time, and volume of offgas that was pulled through the train.

Table 3. Summary of samples collected in support of the INEEL NWCF ETS Effluent Gas.

| Train ID or<br>QC Sample No.          | STL Sample No.'s Associated with this train | Target Analytes                                 | Date<br>Collected | Run Start<br>Time | Run End<br>Time | NWCF ETS<br>Batch Num. | Reboiler<br>Steam On<br>Time | Reboiler<br>Steam Off<br>Time |
|---------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------|-------------------|-----------------|------------------------|------------------------------|-------------------------------|
| SCS-EVAP-1                            | 3269, 3270, 3271, 3272                      | Tritium, alpha/beta/gamma<br>emitters           | 05/30/01          | 1030              | 1610            | 309                    | 1026                         | 1937                          |
| SCS-EVAP-2                            | 3273, 3274, 3276, 3278                      | Tritium, alpha/beta/gamma emitters              | 05/31/01          | 0830              | 1240            | 310                    | 0830                         | 1747                          |
| 0060-STRT-1                           | 3279, 3280, 3281, 3282, 3283,<br>3284       | Metals, including Hg                            | 06/05/01          | 0930              | 1230            | 316                    | 0951                         | 1933                          |
| 0060-STRT-2                           | 3291, 3292, 3293, 3294, 3295,<br>3296,      | Metals, including Hg                            | 06/06/01          | 0751              | 1133            | 317                    | 813                          | 1715                          |
| 0060 <sup>a</sup> Reagent<br>Blanks   | 3297, 3298, 3299, 3300, 3301,<br>3348       | Metals, including Hg                            | 06/06/01          | NA                | NA              | NA                     | NA                           | NA                            |
| 0060-BT-1 <sup>b</sup> Blank<br>Train | 3302, 3303, 3304, 3305, 3306,<br>3307       | Metals, including Hg                            | 06/06/01          | NA                | NA              | NA                     | NA                           | NA                            |
| 0060-END-1                            | 3326, 2227, 3328, 3329, 3330,<br>3331       | Metals, including Hg                            | 06/05/01          | 1600              | 1930            | 316                    | 0951                         | 1933                          |
| 0060-END-2                            | 3332, 3333, 3334, 3335, 3336,<br>3337       | Metals, including Hg                            | 06/06/01          | 1500              | 1802            | 317                    | 0813                         | 1715                          |
| Nitric Probe Rinse                    | 334                                         | Metals, including Hg                            | 06/06/01          | NA                | NA              | NA                     | NA                           | NA                            |
| 0050-STRT-1                           | 3308, 3309, 3310, 3311                      | PM, HCl, Cl <sub>2</sub> , HF, nitrate, nitrite | 06/07/01          | 0800              | 1100            | 318                    | 0800                         | 1800                          |

Table 3. Summary of samples collected in support of the INEEL NWCF ETS Effluent Gas.

| Train ID or<br>QC Sample No.        | STL Sample No.'s Associated with this train | Target Analytes                                 | Date<br>Collected | Run Start<br>Time | Run End<br>Time | NWCF ETS<br>Batch Num. | Reboiler<br>Steam On<br>Time | Reboiler<br>Steam Off<br>Time |
|-------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------|-------------------|-----------------|------------------------|------------------------------|-------------------------------|
| 0050-STRT-2                         | 3312, 3313, 3314, 3315                      | PM, HCl, Cl <sub>2</sub> , HF, nitrate, nitrite | 06/11/01          | 0750              | 1130            | 322                    | 0821                         | 1828                          |
| 0050 <sup>a</sup> Reagent<br>Blanks | 3316, 3317, 3318, 3319, 3349                | PM, HCl, Cl <sub>2</sub> , HF, nitrate, nitrite | 06/07/01          | NA                | NA              | NA                     | NA                           | NA                            |
| 0050-BT-1 <sup>b</sup>              | 3322, 3323, 3324, 3325                      | PM, HCl, Cl <sub>2</sub> , HF, nitrate, nitrite | 06/11/01          | NA                | NA              | NA                     | NA                           | NA                            |
| 0050-END-1                          | 3338, 3339, 3340, 3341                      | PM, HCl, Cl <sub>2</sub> , HF, nitrate, nitrite | 06/07/01          | 1405              | 1720            | 318                    | 0800                         | 1800                          |
| 0050-END-2                          | 3342, 3343, 3344, 3345                      | PM, HCl, Cl <sub>2</sub> , HF, nitrate, nitrite | 06/11/01          | 1430              | 1730            | 322                    | 0821                         | 1828                          |
| Acetone probe rinse                 | 3346                                        | PM                                              | 06/11/01          | NA                | NA              | NA                     | NA                           | NA                            |
| 0010-STRT-1                         | 3353, 3354, 3355, 3356, 3357,<br>3358       | Semi-volatile organic compounds                 | 06/18/01          | 0830              | 1130            | 329                    | 0857                         | 1819                          |
| 0010-STRT-2                         | 3372, 3373, 3374, 3375, 3376,<br>3377       | Semi-volatile organic compounds                 | 06/19/01          | 0830              | 1100            | 330                    | 0824                         | 1748                          |
| 0010 <sup>a</sup> Reagent<br>Blank  | 3378, 3343, 3444, 3445                      | Semi-volatile organic compounds                 | 06/18/01          | NA                | NA              | NA                     | NA                           | NA                            |
| 0010-BT-1 <sup>b</sup>              | 3397, 3398, 3399, 3400, 3401,<br>3402       | Semi-volatile organic compounds                 | 06/18/01          | NA                | NA              | NA                     | NA                           | NA                            |

Table 3. Summary of samples collected in support of the INEEL NWCF ETS Effluent Gas.

| Train ID or<br>QC Sample No.                 | STL Sample No.'s Associated with this train                                        | Target Analytes                 | Date<br>Collected | Run Start<br>Time | Run End<br>Time | NWCF ETS<br>Batch Num. | Reboiler<br>Steam On<br>Time | Reboiler<br>Steam Off<br>Time |
|----------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|-------------------|-------------------|-----------------|------------------------|------------------------------|-------------------------------|
| 0010-END-1                                   | 3403, 3404, 3405, 3406, 3407,<br>3408                                              | Semi-volatile organic compounds | 06/18/01          | 1500              | 1800            | 329                    | 0857                         | 1819                          |
| 0010-END-2                                   | 3422, 3423, 3424, 3425, 3426,<br>3427                                              | Semi-volatile organic compounds | 6/19/01           | 1400              | 1715            | 330                    | 0824                         | 1748                          |
| 0031-STRT-1                                  | 3359, 3360, 3361, 3362, 3363, 3364, 3365, 3366, 3367, 3368, 3369, 3370, 3371       | Volatile organic compounds      | 06/20/01          | 0810              | 1048            | 331                    | 0831                         | 1748                          |
| 0031-STRT-2                                  | 3379, 3380, 3381, 3382, 3383, 3384, 3385, 3386, 3387, 3388, 3389, 3390, 3391       | Volatile organic compounds      | 06/21/01          | 0815              | 1152            | 332                    | 0838                         | 1749                          |
| 0031 Field and Trip<br>Blanks <sup>a,b</sup> | 3392, 3393, 3394, 3395, 3396,<br>3441, 3442,                                       | Volatile organic compounds      | 06/20/01          | NA                | NA              | NA                     | NA                           | NA                            |
| 0031-END-1                                   | 3409, 3410, 3411, 3412, 3413,<br>3414, 3415, 3416, 3417, 3418,<br>3419, 3420, 3421 | Volatile organic compounds      | 06/20/01          | 1400              | 1715            | 331                    | 0831                         | 1748                          |
| 0031-END-2                                   | 3428, 3429, 3430, 3431, 3432, 3433, 3434, 3435, 3436, 3437, 3438, 3439, 3440       | Volatile organic compounds      | 06/21/01          | 1350              | 1710            | 332                    | 0838                         | 1749                          |

a) Reagent blanks and trip blanks were obtained as identified in the master sample collection list.

b) Field QC samples are not exposed to the actual process offgas and thus are not correlated to ETS batches or run times. Probe rinses are not collected during active flow in the sampling slipstream, therefore, these are also not correlated to ETS batches or run times

## 4. RADIOLOGICAL SCREENING RESULTS

Two radiological contamination survey trains were collected at the beginning of the NWCF ETS offgas emissions inventory to establish the level of radiological contamination that could be uptaken by the EPA sample collection trains. The first train, identified as SCS-EVAP-1, was a hybrid of the Method 0060 for metals and Method 0050 for anions. The configuration of this train included a particle filter, followed by a condenser and condensate collection impinger, and then a pair of nitric acid/hydrogen peroxide impingers from the Method 0060 and a pair of sodium hydroxide impingers from the Method 0050 train. The acid and hydroxide impingers were used to capture the particulate and volatile radionuclides that are not disengaged by the filter and condensate trap. A gas volume of 3 dscm (dry, standard cubic meters) of gas was collected to match the volume of gas that was collected by the Method 0060 and 0050 sampling runs. Less than 2 mL of condensate was collected by this train- an insufficient amount for accurate analysis. Therefore, the condensate was added to the nitric/peroxide impinger solution.

The second radiological contamination train, identified as SCS-EVAP-2, was simply a standard Method 0010 train for semi-volatile organic collection, consisting of a particle filter, condenser, XAD-2® resin tube, a condensate trap and two organic-free water impingers. This train was mainly used to establish the level of contamination that could be potentially captured by the XAD-2® resin tube. The sample line, train glassware and filter housing were rinsed with acetone and methylene chloride. These rinses were composited into single sample for radiochemical analysis. The volume of gas collected was 3 dscm. The amount of condensate collected by the train was also very low (approximately 2 mL) for this train, indicating the offgas was essentially dry. The small amount of condensate was added to the organic-free impingers. Following the 12-hr gamma scan of the XAD-2® resin, the upper section of the resin bed, which first contract the sample gas and condensate, was extracted and prepped for gross alpha/gross beta counting.

Method 0031 for VOCs collection requires only 20 dsL (dry, standard liters) total, and only 5 dsL for each set of tubes. Therefore, the contamination levels established by the reference survey trains, at a total volume of 3000 dsL, clearly bounded the potential contamination picked up on the Tenax® resin tubes used in the Sampling Method for Volatile Organic Compounds (SMVOC) runs.

Analysis of the contamination survey train samples was completed by the INTEC Radiochemical Laboratory. Appropriate standards were prepared and used to provide quantitative results for the various sample collection media. Each sample was first analyzed by a non-intrusive gamma scan to measure gamma-emitting nuclides such as Ba<sup>137</sup> (which is the short lived daughter product of Cs<sup>137</sup>). Since Cs<sup>137</sup> is the most abundant non-volatile radionuclide in the waste, it is a convenient marker for the non-volatile radionuclides that could be present in the offgas samples, including Sr<sup>90</sup> and actinide isotopes. Therefore, an accurate gamma scan provides a basis for identifying the potential presence of Ba<sup>137</sup>, and hence Cs<sup>137</sup>, Sr<sup>90</sup>, and other fission products and actinides that may be present in the samples. A 12-hr gamma scan was performed to provide the most accurate analysis possible.

Following the gamma scan, the samples were prepared for gross alpha/gross beta counting. This required that the solid sample media be digested and then dried to obtain a valid measure of the particle emissions. The activity of tritium was determined by beta scintillation of an aliquot of the up-front liquid impinger contents to which the small amount of condensate was added. These fraction also absorb the largest percentage of the non-condensable water vapor.

Table 4 summarizes the radio-assay results for SCS-EVAP-1 and SCS-EVAP-1. Only an ultra low level of gross beta and gross alpha emissions was detected in the samples. The sample contamination

levels are conservatively less than the analytical laboratory sample screening acceptance criteria for Category I samples.

Table 4. Sample contamination survey train radio-assay results.

| Train ID   | Sample<br>ID | Sample Media                        | Gamma                  | Gross<br>Beta | Gross<br>Alpha | Tritium                                       |
|------------|--------------|-------------------------------------|------------------------|---------------|----------------|-----------------------------------------------|
|            | 3269         | Particle filter                     | No nuclides identified | 5.7E+00       | 9.8E-01        | NA                                            |
|            |              |                                     |                        | ± 1.4E+00     | ± 6.7E-01      | (dry sample)                                  |
|            |              | ·                                   |                        | pCi           | pCi            |                                               |
|            | 3270/3271    | Condensate and nitric/peroxide      | No nuclides identified | 4.0E-02       | Not detected   | 0.17                                          |
| SCS-EVAP-1 | composite    | impinger contents                   |                        | ± 2.1E-02     |                | μCi/sample                                    |
|            | ;            |                                     |                        | pCi/mL        |                |                                               |
|            | 3272         | Hydrogen peroxide impinger contents | No nuclides identified | 4.3E+00       | 3.4E-02        | NA<br>(negligible                             |
|            |              |                                     |                        | ± 2.1E-01     | ± 4.0E-02      | condensate in sample)                         |
|            |              |                                     |                        | pCi/mL        | pCi/mL         |                                               |
|            | 3273         | Particle filter                     | No nuclides identified | 1.85E+01      | 6.0E+00        | NA                                            |
|            |              |                                     |                        | ± 4.0E+00     | ± 2.6E+00      | (dry sample)                                  |
|            |              |                                     |                        | pCi           | pCi            | :                                             |
|            | 3276         | XAD-2 <sup>®</sup> resin tube       | No nuclides identified | 5.84E00       | Not detected   | NA<br>(negligible                             |
|            |              |                                     |                        | ± 7.2E-01     |                | condensate in sample)                         |
|            |              |                                     |                        | pCi/g         |                |                                               |
| SCS-EVAP-2 | 3278         | Condensate and organic-free water   | No nuclides identified | 1.6E-02       | Not detected   | 0.32                                          |
|            |              | impinger composite                  | Identified             | ± 1.9E-02     |                | μCi/sample                                    |
|            |              |                                     |                        | pCi/mL        |                |                                               |
|            | 3274         | Organic solvent rinse composite     | No nuclides identified | Not detected  | Not detected   | NA<br>(negligible<br>condensate<br>in sample) |

In order to ensure that the extremely low contamination levels in the offgas stream remained constant throughout the sample collection inventory, the particle filter for each Method 0060, Method 0050, and Method 0010 run, and one of the leading Tenax® tubes was submitted for a 12-hour gamma scan. This had little or no effect on sample preservation condition of the filters. Although the Tenax® was not maintained at the required temperature of 4°C, it is not likely that the VOC analysis results were

adversely affected since the tube was kept sealed during the gamma scan. The results of the on-going screening were consistent with the baseline results. No nuclides were identified by these extended gamma-scan analyses.

Each sample was also "smear-wiped" and counted to verify there was no detectable fugitive contamination on the surface of the sample containers. These additional screening efforts corroborated the results of the sample contamination survey trains and verified that each train did not collect any significant contamination throughout the 3-week sample collection period.

Finally, the volume of offgas sampled, as well as the amount of condensate collected by all of the sample runs, was checked and compared to the sample contamination survey trains. This ensured that the level of condensate, and hence the estimated amount of tritium in the respective samples, was consistent with the baseline results.

## 5. OFFGAS SAMPLE ANALYTICAL RESULTS

SAIC was responsible for setting-up, operating, and recovering the sample collection trains in the contamination containment hood. Once the samples were obtained, custody was transferred to the BBWI project principals for radiological screening and shipment to STL. The inorganic samples produced by each run were shipped to STL in Department of Transportation (DOT) approved fiber boxes with metal inner canisters. The organic samples were placed on ice and packaged in expanded, insulated coolers in order to maintain temperature preservation requirements. Chain-of-Custody and Requests-for-Analysis forms were used to track each sample. Shipments requiring preservative cooling were made using overnight delivery in order to ensure temperature preservation and analysis time limits were met. All of the samples meet the preservation and sample analysis time requirements without exception.

The results presented in this section are extracted from the Final Analytical Report provided by STL (STL 2001). Excerpts of the text and tables are included in this report to provide a single project summary document. Appendix A is a listing of the analytical lab certificates of analysis. These data were used to calculate the offgas emissions rates presented in Section 9.

STL tabulated train totals for each of the four EPA train runs that were made to characterize the NWCF ETS effluent gas emissions that are discharged through the NWCF offgas system. The results for each train component were summed to provide a run total for each target analyte. Although the laboratory data were reported down to the method detection limit (MDL), the project has implemented the reliable detection level (RDL) as the minimum value for risk calculations. The "RDL" is the detection level recommended by EPA. It is defined as 2.623 times the MDL (2.623 X MDL).

Significant figures for both the constituent fractions and the cumulative total were determined according to ASTM Standard E29-93a (1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications". Laboratory-assigned data qualifiers are displayed with each target analyte when required. The majority of these method-based flags are standardly defined flags among environmental laboratories. The data flags attached to the train totals represent the cumulative set of flags assigned to the result for each component that is included as part of the respective train totals. Data flags for individual component sample fractions were only carried through to the train totals when that particular train component result had an observable mathematical impact (based on significant figures as cited above) on the value of the "train totals" result for that compound.

When assigned, the "less than" (<) sign indicates that at least one sample fraction result included in the run total is either a "non-detect" value that has been evaluated down to the MDL of the measurement, or an estimated "hit" value that is below the RDL. In either case, the final analyte value for any fraction that has a laboratory result below the RDL is raised to the default RDL value, and the actual value for the respective analyte is judged to be less than conservative reported value. This same logic carries through to the summation of train fractions to arrive at train totals.

Additional project-specific train total flags are applied to the run total values that are not standard EPA data flags. These project-specific flags are specific to the NWCF ETS Offgas Emissions Inventory project and are defined as follows:

- An "N" flag indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
- A "P" flag indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.

• An "A" flag indicates that the compound was measured (detected) in all of the sampling train components, or fractions.

## 5.1 Volatile Organic Compounds

The standard U.S. EPA Method 0031 SMVOC sampling train configuration was used to collect samples of the NWCF ETS offgas for the assessment of volatile compounds. Each run used four sets of volatile organic adsorption resins tubes. Each set of tubes was comprised of two Tenax<sup>®</sup> tubes and one Anasorb 747<sup>®</sup> tube in series. The resin tubes were followed by a condensate trap that was used to capture the condensate captured by all four set of tube for a given run. The volume of offgas collected across each set of tubes was 5 L over a time period of approximately 30-40 minutes. Hence the total volume of gas for each run was approximately 20 L, collected over a time span of around 2.5 hours. The purpose of multiple tube sets was to integrate the sampling event over a period of time to better obtain representative data that characterizes the offgas emissions of the offgas stream sampled and is recommended by Method 0031. Each run produced 12 resin tubes and one condensate fraction that were stored on ice after they were removed from the train.

## 5.1.1 VOC Target Analyte List

The SMVOC samples were analyzed for the volatile organic compound target analytes given in Table 5. Analyses of SMVOC samples were completed using thermal desorption of the tubes onto a purge-and-trap device. SW-846 Method 5041B was implemented to carry out the thermal desorption. Method 8260B was implemented to analyze the desorbed analytes using GC/MS. The two SMVOC Tenax® tubes from a sample set were analyzed together, while the Anasorb 747® tube was separately analyzed.

A GC/MS library search was performed on each SMVOC sample (including the condensate samples) for non-target analytes, or tentatively identified compounds (TICs). The search was performed for the thirty (30) largest identifiable non-target compounds having a response that was at least 10% of the response of the nearest internal standard, which was spiked at 0.25  $\mu$ g. The library search was conducted against the National Bureau of Standards library of mass spectral data containing an estimated 75,000 compounds. The matching criteria includes a nominal 85% match of the mass spectral features, and analyst discretion of all identities reported.

Table 5. Volatile organic compound target analyte list.

| VOC Target Analyte          | CAS Registry Number |
|-----------------------------|---------------------|
| Acetone                     | 67-64-1             |
| Acrylonitrile               | 107-13-1            |
| Benzene                     | 71-43-2             |
| Bromobenzene                | 108-86-1            |
| Bromochloromethane          | 74-97-5             |
| Bromodichloromethane        | 75-27-4             |
| Bromoform                   | 75-25-2             |
| Bromomethane                | 74-83-9             |
| 2-Butanone                  | 78-93-3             |
| n-Butylbenzene              | 104-51-8            |
| sec-Butylbenzene            | 135-98-8            |
| tert-Butylbenzene           | 98-06-6             |
| Carbon disulfide            | 75-15-0             |
| Carbon tetrachloride        | 56-23-5             |
| Chlorobenzene               | 108-90-7            |
| Chlorodibromomethane        | 124-48-1            |
| Chloroethane                | 75-00-3             |
| Chloroform                  | . 67-66-3           |
| Chloromethane               | 74-87-3             |
| 2-Chlorotoluene             | 95-49-8             |
| 4-Chlorotoluene             | 106-43-4            |
| 1,2-Dibromo-3-chloropropane | 96-12-8             |
| 1,2-Dibromoethane           | 106-93-4            |
| Dibromomethane              | 74-95-3             |
| 1,2-Dichlorobenzene         | 95-50-1             |
| 1,3-Dichlorobenzene         | 541-73-1            |
| 1,4-Dichlorobenzene         | 106-46-7            |
| Dichlorodifluoromethane     | 75-71-8             |
| 1,1-Dichloroethane          | 75-34-3             |
| 1,2-Dichloroethane          | 107-06-2            |
| 1,1-Dichloroethene          | 75-35-4             |
| cis-1,2-Dichloroethene      | 156-59-2            |
| trans-1,2-Dichloroethene    | 156-60-5            |
| 1,2-Dichloropropane         | 78-87-5             |
| 1,3-Dichloropropane         | 142-28-9            |
| 2,2-Dichloropropane         | 594-20-7            |
| 1,1-Dichloropropene         | 563-58-6            |
| cis-1,3-Dichloropropene     | 10061-01-5          |
| trans-1,3-Dichloropropene   | 10061-02-6          |

Table 5. Volatile organic compound target analyte list.

| VOC Target Analyte        | CAS Registry Number |
|---------------------------|---------------------|
| Ethylbenzene              | 100-41-4            |
| Hexachlorobutadiene       | 87-68-3             |
| 2-Hexanone                | 591-78-6            |
| Isopropylbenzene          | 98-82-8             |
| p-Isopropyltoluene        | 99-87-6             |
| Methylene chloride        | 75-09-2             |
| 4-Methyl-2-pentanone      | 108-10-1            |
| Naphthalene               | 91-20-3             |
| n-Propylbenzene           | 103-65-1            |
| Styrene                   | 100-42-5            |
| 1,1,1,2-Tetrachloroethane | 630-20-6            |
| 1,1,2,2-Tetrachloroethane | 79-34-5             |
| Tetrachloroethene         | 127-18-4            |
| Toluene                   | 108-88-3            |
| 1,2,3-Trichlorobenzene    | 87-61-6             |
| 1,2,4-Trichlorobenzene    | 120-82-1            |
| 1,1,1-Trichloroethane     | 71-55-6             |
| 1,1,2-Trichloroethane     | 79-00-5             |
| Trichloroethene           | 79-01-6             |
| Trichlorofluoromethane    | 75-69-4             |
| 1,2,3-Trichloropropane    | 96-18-4             |
| 1,2,4-Trimethylbenzene    | 95-63-6             |
| 1,3,5-Trimethylbenzene    | 108-67-8            |
| Vinyl chloride            | 75-01-4             |
| m-Xylene & p-Xylene       | 136777-61-2         |
| o-Xylene                  | 95-47-6             |

### 5.1.2 VOC Analytical Results

Tabulated data summaries for the SMVOC data are given in Appendix A. These tables have been extracted from the STL Analytical Laboratory Final Report for this project. The run total (in total  $\mu$ g) for each analyte represents the sum of the amounts found in all of the SMVOC sets collected during each sampling run, including the amount of analyte found in the SMVOC condensate sample. The SMVOC condensate sample results were obtained by multiplying the observed concentration in mass/volume units ( $\mu$ g/L) by the final condensate volume (L) collected to obtain a result in units of mass ( $\mu$ g).

The Method 0031 SMVOC Tube Set Total (total  $\mu$ g/set) result consists of the sum of the analytical results for the two Tenax<sup>®</sup> resin tube contents (analyzed together) and the analytical result for the Anasorb 747<sup>®</sup> tube contents. The calculation is conducted as follows:

(Total  $\mu g$  on the Tenax  $^{\otimes}$  Tubes #1 and #2) + (Total  $\mu g$  on the Anasorb 747  $^{\otimes}$  Tube)

= Total  $\mu g$  on the Method 0031 SMVOC tube set

### 5.1.3 VOC Data Quality Assessment

The tubes were shipped to the analytical laboratory and analyzed within two week in accordance with EPA guidance and the QAPjP. The SMVOC samples were received at the laboratory in good condition. The samples were held on ice until the laboratory custodian checked the cooler temperatures and logged the samples at the laboratory.

All samples were processed through the analytical methods as planned, and analytical results were obtained for all of the expected analyses, with one exception. Low surrogate recoveries were obtained for sample A-3364 (The Anasorb 747® tube for Run 1, Set 2) and therefore the data for this sample are not usable. The results for all other samples meet the data quality objectives (DQOs) specified in the QAPjP and are therefore usable for the NWCF ETS offgas emissions inventory and risk assessment.

The toluene result for the Run 2, Set 2 Tenax®/Anasorb 747® tube appears to be an outlier. This particular result was over ten times higher than any other back-half result. Also, this result was over eight times higher than the corresponding front-half result. There were several other runs that exhibited higher toluene results for the back-half fraction than the front-half fraction. These results are not consistent with the results for other analytes, including benzene, which clearly did not break through the front-half SMVOC tubes. These inconsistent results imply that there was a source of fugitive contamination available to these tubes. Since the field and trip blanks did not generally exhibit toluene (only one front-half field blank and one back-half trip blank had "hits" for toluene), it appears that the sample tubes were exposed to environments containing some toluene that were not available to the field or trip blanks.

The methylene chloride results for Run 1, Set 1 and Set 2, were inconsistent with subsequent test runs. The methylene chloride result for Run 1, Set 1, was much higher than for any other analysis. The Run 1, Set 2 result was lower than the result for Run 1. The remaining results were lower in concentration, and appear to reside within three standard deviations of the mean value. Also, the acetone result for Run 1, Set 1, was the highest result for acetone that was found in any of the offgas samples. The cause of the high early results is assumed to be contamination of the sampling probe with acetone and methylene chloride. The SVOC train was used immediately prior to collection of the SMVOC samples. During this sampling event, the MM-5 probe (that was used for the SVOC train and had been rinsed with acetone and methylene chloride at the conclusion of SVOC sample collection) was used to collect the SMVOC samples. Since the same probe was rinsed with acetone and methylene chloride, it is likely that these solvents found in the offgas VOC samples originated in the equipment, not in the offgas.

The SMVOC runs results show a rapid decrease in methylene chloride in the second and third tube sets for the first run. This supports the supposition that the higher amounts of methylene chloride in the first run were an artifact of the field procedures. In spite of this supposition, the result was used when calculating the emissions health risk since the risk factor and emissions rate, although higher than actual emissions, does not impact the outcome of the cumulative emissions risk.

### 5.1.3.1 VOC Breakthrough Evaluation

The analysis scheme of the three-tube configuration of Method 0031 included individual analysis of each resin sample. The historical criterion for evaluating occurrences of SMVOC system breakthrough states that less than 30 percent by weight of an analyte should be detected on the back tube relative to the total amount observed on the front two tubes. That is, the Anasorb 747® resin tube should not contain more than 30 percent of the analyte total found on the front Tenax® resin samples. The criterion does not apply when less than 75 nanograms of an analyte are detected on the back trap. Additionally, the criterion does not apply when the analytes are the ultra-low boiling point analytes such as dichlorodifluoroethane, chloromethane, bromomethane, chloroethane, and vinyl chloride.

The SMVOC apparatus was operated under near optimum conditions during on-site sampling. The sample stream entered the first resin tube at a nominal 10°C as monitored by a thermocouple at the base of the condenser. A 20-liter sample was the maximum volume of gas pulled across the resin tubes, and the sampling rate was a standard SMVOC approach at approximately 0.50 liters per minute. Under these conditions the analytes were universally trapped on the Tenax® tubes except for the low boiling point analytes noted above. There are some anomalous results for acetone and toluene in which back-half fractions contained more than 30 percent of the front-half amount, and the total was more than 75 nanograms. These results appear to be derived from fugitive contamination sources, and do not represent breakthrough to the back half SMVOC tubes under these conditions. Acetone and toluene are solvents used during sampling for rinsing glassware and tubing. The reagent sources are assumed to be the source of the fugitive contamination.

### 5.1.3.2 VOC Blank Data Assessment

Several types of Method 0031 SMVOC blanks were evaluated during the offgas sampling analyses in order to assess the sampling and analytical environments for possible fugitive contamination sources. SMVOC field blanks were collected in order to assess the sampling train environments for possible fugitive contamination sources. Standard SMVOC trip blanks were also collected, as well as a deionized water trip blank. A comparison of the blank samples is shown in Table 6.

The SMVOC tube field blank results do not indicate field contamination by any target analytes except the three common laboratory contaminants, acetone, methylene chloride and toluene. The data for the SMVOC tube trip blanks also exhibit the presence of these three target analytes, in addition to bromomethane that was also observed on the Tenax® tubes, and dichlorodifluoromethane that was observed on the Anasorb 747® tube. The aqueous trip blank did not exhibit general contamination. The laboratory blanks associated with these samples also exhibit the presence of acetone and methylene chloride, but at levels too low to account for the observed levels of acetone in the trip blanks. Methylene chloride, acetone, and toluene are typically considered common laboratory contaminants during data validation. The laboratory method blank and field blank results do not, however, exhibit toluene.

Table 6. Comparison of SMVOC blank sample results.

| Table 6. Comparison o       | SMV     |                                         | ank san           | ipie re | SMV     | OC.   | SMV               | OC.   |          |       | T                |      | Ι               |       |
|-----------------------------|---------|-----------------------------------------|-------------------|---------|---------|-------|-------------------|-------|----------|-------|------------------|------|-----------------|-------|
|                             |         |                                         | SMV               | OC      |         |       |                   |       | SMV      | OC    | SMV              | OC   | SMV             | OC    |
|                             | Tenax   | ( Pair                                  |                   |         | Tenax   | Pair  | Anason<br>Field I |       |          | . m : |                  |      |                 |       |
|                             | Field I | Blank                                   | Anasor<br>Field I |         | Field I | Blank | Tield I           | Jiank | Tenax Pa |       | Anasor<br>Trip E |      | D.I. Wat<br>Bla |       |
|                             | 06/21   | 1/01ª                                   | 06/21             | /01ª    | 06/21   | /01ª  | 06/21             | ./01ª | 06/20    | )/01ª | 06/20            | /O1ª | 06/22           | 2/01ª |
|                             | A-3     | 392                                     | A-33              | 393     | A-33    | 394   | A-33              | 395   | A-34     | 141   | A-34             | 142  | A-33            | 396   |
| Analyte                     | (μ      | g)                                      | <b>(μ</b> ξ       | g)      | (μչ     | g)    | (μյ               | g)    | (με      | g)    | (μչ              | g)   | (μg/            | /L)   |
|                             |         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                   |         |         |       |                   |       |          |       |                  |      |                 |       |
| Acetone                     | 0.063   | J,B                                     | 0.063             | J,B     | 0.063   | J,B   | 0.071             | J,B   | 0.82     | В     | 0.27             | В    | 1.2             | U     |
| Acrylonitrile               | 0.29    | U                                       | 0.29              | U       | 0.29    | U     | 0.29              | U     | 0.29     | U     | 0.29             | U    | 12              | U     |
| Benzene                     | 0.017   | U                                       | 0.017             | U       | 0.017   | U     | 0.017             | U     | 0.017    | U     | 0.017            | U    | 0.63            | U     |
| Bromobenzene                | 0.010   | U                                       | 0.010             | U       | 0.010   | U     | 0.010             | U     | 0.010    | U     | 0.010            | U    | 0.84            | U     |
| Bromochloromethane          | 0.015   | U                                       | 0.015             | U       | 0.015   | U     | 0.015             | U     | 0.015    | U     | 0.015            | U    | 0.66            | U     |
| Bromodichloromethane        | 0.011   | U                                       | 0.011             | U       | 0.011   | U     | 0.011             | U     | 0.011    | U     | 0.011            | U    | 0.79            | U     |
| Bromoform                   | 0.019   | U                                       | 0.019             | U       | 0.019   | U     | 0.019             | U     | 0.019    | U     | 0.019            | U    | 0.60            | U     |
| Bromomethane                | 0.015   | U                                       | 0.015             | U       | 0.015   | U     | 0.015             | U     | 0.015    | J     | 0.015            | U    | 0.47            | U     |
| 2-Butanone                  | 0.10    | U                                       | 0.10              | U       | 0.10    | U     | 0.10              | U     | 0.10     | U     | 0.10             | U    | 2.2             | U     |
| n-Butylbenzene              | 0.016   | Ú                                       | 0.016             | U       | 0.016   | U     | 0.016             | U     | 0.016    | U     | 0.016            | U    | 0.60            | U     |
| sec-Butylbenzene            | 0.0084  | U                                       | 0.0084            | U       | 0.0084  | U     | 0.0084            | U     | 0.0084   | U     | 0.0084           | U    | 0.39            | U     |
| tert-Butylbenzene           | 0.016   | U                                       | 0.016             | U       | 0.016   | U     | 0.016             | U     | 0.016    | U     | 0.016            | U    | 0.34            | U     |
| Carbon disulfide            | 0.018   | U                                       | 0.018             | U       | 0.018   | U     | 0.018             | U     | 0.018    | U     | 0.018            | U    | 0.26            | U     |
| Carbon tetrachloride        | 0.018   | U                                       | 0.018             | U       | 0.018   | U     | 0.018             | U     | 0.018    | U     | 0.018            | U    | 0.47            | U     |
| Chlorobenzene               | 0.0084  | U                                       | 0.0084            | U       | 0.0084  | U     | 0.0084            | U     | 0.0084   | U     | 0.0084           | U    | 0.63            | U     |
| Chlorodibromomethane        | 0.015   | U                                       | 0.015             | U       | 0.015   | U     | 0.015             | U     | 0.015    | U     | 0.015            | U    | 0.68            | U     |
| Chloroethane                | 0.018   | U                                       | 0.018             | U       | 0.018   | U     | 0.018             | U     | 0.018    | U     | 0.018            | U    | 0.34            | U     |
| Chloroform                  | 0.018   | U                                       | 0.018             | U       | 0.018   | U     | 0.018             | U     | 0.018    | U     | 0.018            | U    | 0.73            | U     |
| Chloromethane               | 0.013   | U                                       | 0.013             | U       | 0.013   | U     | 0.013             | U     | 0.013    | U     | 0.022            | J    | 0.26            | U     |
| 2-Chlorotoluene             | 0.0047  | U                                       | 0.0047            | U       | 0.0047  | U     | 0.0047            | U     | 0.0047   | U     | 0.0047           | U    | 0.50            | U     |
| 4-Chlorotoluene             | 0.0047  | U                                       | 0.0047            | U       | 0.0047  | U     | 0.0047            | U     | 0.0047   | U     | 0.0047           | U    | 0.50            | U     |
| 1,2-Dibromo-3-chloropropane | 0.029   | U                                       | 0.029             | U       | 0.029   | U     | 0.029             | U     | 0.029    | U     | 0.029            | U    | 1.0             | U     |
| 1.2-Dibromoethane           | 0.020   | U                                       | 0.020             | U       | 0.020   | U     | 0.020             | U     | 0.020    | U     | 0.020            | U    | 1.0             | U     |
| Dibromomethane              | 0.017   | U                                       | 0.017             | U       | 0.017   | U     | 0.017             | U     | 0.017    | U     | 0.017            | U    | 0.71            | U     |
| 1,2-Dichlorobenzene         | 0.020   | U                                       | 0.020             | U       | 0.020   | U     | 0.020             | U     | 0.020    | U     | 0.020            | U    | 0.45            | U     |
| 1,3-Dichlorobenzene         | 0.010   | U                                       | 0.010             | U       | 0.010   | U     | 0.010             | U     | 0.010    | U     | 0.010            | U    | 0.52            | U     |
| 1,4-Dichlorobenzene         | 0.014   | U                                       | 0.014             | U       | 0.014   | U     | 0.014             | U     | 0.014    | U     | 0.014            | U    | 0.55            | U     |
| Dichlorodifluoromethane     | 0.013   | U                                       | 0.013             | U       | 0.013   | U     | 0.013             | U     | 0.013    | U     | 0.022            | J    | 0.26            | U     |
| 1.1-Dichloroethane          | 0.017   | U                                       | 0.017             | U       | 0.017   | U     | 0.017             | U     | 0.017    | U     | 0.017            | U    | 0.39            | U     |
| 1,2-Dichloroethane          | 0.017   | U                                       | 0.017             | U       | 0.017   | U     | 0.017             | U     | 0.017    | U     | 0.017            | U    | 0.47            | U     |
| 1,1-Dichloroethene          | 0.018   | U                                       | 0.018             | U       | 0.018   | U     | 0.018             | U     | 0.018    | U     | 0.018            | U    | 0.37            | U     |
| cis-1,2-Dichloroethene      | 0.016   | U                                       | 0.016             | U       | 0.016   | U     | 0.016             | U     | 0.016    | U     | 0.016            | U    | 0.50            | U     |
| trans-1,2-Dichloroethene    | 0.019   | U                                       | 0.019             | U       | 0.019   | U     | 0.019             | U     | 0.019    | U     | 0.019            | U    | 0.31            | U     |
| 1,2-Dichloropropane         | 0.013   | U                                       | 0.013             | U       | 0.013   | U     | 0.013             | U     | 0.013    | U     | 0.013            | U    | 0.55            | U     |
| 1,3-Dichloropropane         | 0.013   | U                                       | 0.013             | U       | 0.013   | U     | 0.013             | U     | 0.013    | U     | 0.013            | U    | 0.52            | U     |
| 1,5-Dictioroproparie        | 0.019   |                                         | 0.017             |         | 10.017  |       | 0.019             |       | L        |       | L                |      | 0.52            |       |

Table 6. Comparison of SMVOC blank sample results.

| Table 6. Comparison o                    |         |       | ink sam | iple re    |         |       |         |       |          |         |        |       |         |          |
|------------------------------------------|---------|-------|---------|------------|---------|-------|---------|-------|----------|---------|--------|-------|---------|----------|
|                                          | SMV     | OC    |         |            | SMV     | OC    | SMV     | OC    | C) (I)   | 00      | CN 437 | 00    | CMA     | 10C      |
|                                          | Tenax   | Pair  | SMV     | OC         | Tenax   | Pair  | Anasor  | b 747 | SMV      | OC.     | SMV    | OC.   | SMV     | /UC      |
|                                          | Tonax   |       | Anasor  | b 747      |         |       | Field E |       | Tenax Pa | ir Trip | Anasor | b 747 | D.I. Wa | ter Trip |
|                                          | Field E | Blank | Field E | Blank      | Field I | Blank |         |       | Blar     | ık      | Trip B | lank  | Bla     | nk       |
|                                          | 06/21   | /01ª  | 06/21   | /01ª       | 06/21   | /01ª  | 06/21   | /01ª  | 06/20    | /01ª    | 06/20  | /01ª  | 06/22   | 2/01ª    |
|                                          | A-33    | 92    | A-33    | 93         | A-33    | 394   | A-33    | 95    | A-34     | 41      | A-34   | 42    | A-33    | 396      |
| Analyte                                  | (μք     | g)    | (μք     | <u>(</u> ) | (με     | g)    | (μg     | g)    | (µg      | ;)      | (μք    | g)    | (μg     | /L)      |
|                                          |         |       |         |            |         |       |         |       |          |         |        |       |         |          |
| 2,2-Dichloropropane                      | 0.018   | U     | 0.018   | U          | 0.018   | U     | 0.018   | U     | 0.018    | U       | 0.018  | U     | 0.26    | U        |
| 1,1-Dichloropropene                      | 0.020   | U     | 0.020   | U          | 0.020   | U     | 0.020   | U     | 0.020    | U       | 0.020  | U     | 0.37    | U        |
| cis-1,3-Dichloropropene                  | 0.012   | U     | 0.012   | U          | 0.012   | U     | 0.012   | U     | 0.012    | U       | 0.012  | U     | 0.71    | U        |
| trans-1,3-Dichloropropene                | 0.015   | U     | 0.015   | U          | 0.015   | U     | 0.015   | U     | 0.015    | U       | 0.015  | U     | 0.66    | U        |
| Ethylbenzene                             | 0.0092  | U     | 0.0092  | U          | 0.0092  | U     | 0.0092  | U     | 0.0092   | U       | 0.0092 | Ŭ     | 0.50    | U        |
| Hexachlorobutadiene                      | 0.025   | U     | 0.025   | U          | 0.025   | U     | 0.025   | Ú     | 0.025    | U       | 0.025  | U     | 0.58    | U        |
| 2-Hexanone                               | 0.063   | U     | 0.063   | U          | 0.063   | U     | 0.063   | U     | 0.063    | U       | 0.063  | U     | 0.84    | U        |
| Isopropylbenzene                         | 0.0063  | U     | 0.0063  | U          | 0.0063  | U     | 0.0063  | U     | 0.0063   | U       | 0.0063 | U     | 0.42    | U        |
| p-Isopropyltoluene                       | 0.012   | U     | 0.012   | U          | 0.012   | U     | 0.012   | U     | 0.012    | U       | 0.012  | U     | 0.42    | U        |
| Methylene chloride                       | 0.025   | В     | 0.027   | В          | 0.025   | J,B   | 0.028   | В     | 0.15     |         | 0.15   |       | 1.3     | J,B      |
| 4-Methyl-2-pentanone                     | 0.071   | U     | 0.071   | U          | 0.071   | U     | 0.071   | U     | 0.071    | U       | 0.071  | U     | 0.71    | U        |
| Naphthalene                              | 0.025   | U     | 0.025   | U          | 0.025   | U     | 0.025   | U     | 0.025    | U       | 0.025  | U     | 0.26    | U        |
| n-Propylbenzene                          | 0.0055  | U     | 0.0055  | U          | 0.0055  | U     | 0.0055  | U     | 0.0055   | U       | 0.0055 | U     | 0.52    | U        |
| Styrene                                  | 0.0068  | U     | 0.0068  | U          | 0.0068  | U     | 0.0068  | U     | 0.0068   | U       | 0.0068 | U     | 0.52    | U        |
| 1,1,1,2-Tetrachloroethane                | 0.0097  | U     | 0.0097  | U          | 0.0097  | U     | 0.0097  | U     | 0.0097   | U       | 0.0097 | U     | 0.55    | U        |
| 1,1,2,2-Tetrachloroethane                | 0.025   | U     | 0.025   | U          | 0.025   | U     | 0.025   | U     | 0.025    | U       | 0.025  | U     | 0.58    | U        |
| Tetrachloroethene                        | 0.016   | U     | 0.016   | U          | 0.016   | U     | 0.016   | U     | 0.016    | U       | 0.016  | U     | 0.50    | U        |
| Toluene                                  | 0.0066  | U     | 0.12    |            | 0.0066  | U     | 0.0066  | U     | 0.0066   | U       | 0.066  |       | 0.66    | U        |
| 1,2,3-Trichlorobenzene                   | 0.025   | U     | 0.025   | U          | 0.025   | U     | 0.025   | U     | 0.025    | U       | 0.025  | U     | 0.26    | U        |
| 1,2,4-Trichlorobenzene                   | 0.025   | U     | 0.025   | U          | 0.025   | U     | 0.025   | U     | 0.025    | U       | 0.025  | U     | 0.58    | U        |
| 1,1,1-Trichloroethane                    | 0.022   | U     | 0.022   | U          | 0.022   | U     | 0.022   | U     | 0.022    | U       | 0.022  | U     | 0.42    | U        |
| 1,1,2-Trichloroethane                    | 0.018   | U     | 0.018   | U          | 0.018   | U     | 0.018   | U     | 0.018    | U       | 0.018  | U     | 0.52    | U        |
| Trichloroethene                          | 0.017   | U     | 0.017   | U          | 0.017   | U     | 0.017   | U     | 0.017    | U       | 0.017  | U     | 0.47    | U        |
| Trichlorofluoromethane                   | 0.018   | U     | 0.018   | U          | 0.018   | U     | 0.018   | U     | 0.018    | U       | 0.018  | U     | 0.26    | U        |
| 1,2,3-Trichloropropane                   | 0.025   | U     | 0.025   | U          | 0.025   | U     | 0.025   | U     | 0.025    | U       | 0.025  | U     | 0.84    | U        |
| 1,2,4-Trimethylbenzene                   | 0.0076  | U     | 0.0076  | U          | 0.0076  | U     | 0.0076  | U     | 0.0076   | U       | 0.0076 | U     | 1.0     | U        |
| 1,3,5-Trimethylbenzene                   | 0.0050  | U     | 0.0050  | U          | 0.0050  | U     | 0.0050  | U     | 0.0050   | U       | 0.0050 | U     | 0.45    | U        |
| Vinyl chloride                           | 0.0066  | U     | 0.0066  | U          | 0.0066  | U     | 0.0066  | U     | 0.0066   | U       | 0.0066 | U     | 1.6     | U        |
| m-Xylene & p-Xylene                      | 0.050   | U     | 0.050   | U          | 0.050   | U     | 0.050   | U     | 0.050    | U       | 0.050  | U     | 1.0     | U        |
| o-Xylene                                 | 0.0066  | U     | 0.0066  | U          | 0.0066  | U     | 0.0066  | U     | 0.0066   | U       | 0.0066 | U     | 0.60    | U        |
| a. This is the date of sample collection | on      |       |         |            |         |       |         |       |          |         |        |       |         |          |

Acetone, methylene chloride, and toluene are used as rinsing solvents during Modified Method 5 sampling. These common solvents were present in the sampling area during the test series. Also, these compounds were observed in the field blanks at somewhat higher levels. Acetone was observed at a relatively high level in the SMVOC Tenax Pair Field Blank. These results indicate that fugitive contamination sources may have existed during the sampling and transport of these samples Per the SMVOC method restrictions, results from the SMVOC sampling were not blank corrected.

A practical approach was devised to use the front-half sample results for Run 1, Set 2 despite the fact that the corresponding back-half results are unusable. In order to use these results in the train total for the run, an estimate was made of the results for the corresponding back-half fraction. This estimate was obtained by averaging the results for the back halves of the remaining three sets of tubes for this run. This value is equivalent to calculating the back-half concentrations based on three (3) sets of tubes, or a total of 60 L of offgas. This approach has the benefit of not discarding valid data, in keeping with the general principle that all data obtained should be disclosed to the monitoring agencies.

## 5.1.3.3 VOC Internal Standard Recovery Assessment

Three internal standard compounds are spiked prior to thermal desportion of the SMVOC adsorbent tube. The same three internal standards were spiked into the aliquots of VOST condensate samples that were analyzed. These standards are used as a basis for the calculations of the concentrations of the target analytes and surrogates. A summary of the volatiles internal standard performance for all of the samples collected during Runs 1, 2, 3, and 4 are listed in Table 7. Method SW-8260 requires internal standard recovery to be at least 50 percent but not more than 200 percent of internal standard (IS) areas for the daily standard. Internal standard performance for all samples and all matrices was well within required limits (-50 to +100 percent difference relative to the IS areas for the daily standard) for all samples.

| Table 7. Volatile Organic Compound (VOC) internal standard recoveries.  Percent Difference <sup>a</sup> |                     |                              |                                       |                                                      |                                                         |  |
|---------------------------------------------------------------------------------------------------------|---------------------|------------------------------|---------------------------------------|------------------------------------------------------|---------------------------------------------------------|--|
|                                                                                                         |                     |                              | Per                                   | cent Differ                                          |                                                         |  |
| Field Sample No.                                                                                        | Run No.             | Sample Description           | Internal Standard #1<br>Fluorobenzene | Internal Standard #2<br>Chlorobenzene-d <sub>s</sub> | Internal Standard #3 1,4-Dichlorobenzene-d <sub>4</sub> |  |
|                                                                                                         |                     |                              |                                       |                                                      |                                                         |  |
| A-3359/A-3360                                                                                           | 0031-STRT-1         | Tenax Tubes #1 & #2 (Set #1) | 1.7                                   | 1.8                                                  | -4.6                                                    |  |
| A-3362/A-3363                                                                                           | 0031-STRT-1         | Tenax Tubes #1 & #2 (Set #2) | 3.2                                   | -4.9                                                 | -14                                                     |  |
| A-3365/A-3366                                                                                           | 0031-STRT-1         | Tenax Tubes #1 & #2 (Set #3) | -2.2                                  | -10                                                  | -19                                                     |  |
| A-3368/A-3369                                                                                           | 0031-STRT-1         | Tenax Tubes #1 & #2 (Set #4) | -6.1                                  | -16                                                  | -23                                                     |  |
| A-3379/A-3380                                                                                           | 0031-STRT-2         | Tenax Tubes #1 & #2 (Set #1) | -6.4                                  | -12                                                  | -20                                                     |  |
| A-3382/A-3383                                                                                           | 0031-STRT-2         | Tenax Tubes #1 & #2 (Set #2) | -8.2                                  | -11                                                  | -19                                                     |  |
| A-3385/A-3386                                                                                           | 0031-STRT-2         | Tenax Tubes #1 & #2 (Set #3) | -14                                   | -23                                                  | -32                                                     |  |
| A-3388/A-3389                                                                                           | 0031-STRT-2         | Tenax Tubes #1 & #2 (Set #4) | -15                                   | -22                                                  | -32                                                     |  |
| A-3409/A-3410                                                                                           | 0031-END-1          | Tenax Tubes #1 & #2 (Set #1) | -18                                   | -23                                                  | -32                                                     |  |
| A-3412/A-3413                                                                                           | 0031-END-1          | Tenax Tubes #1 & #2 (Set #2) | -15                                   | -20                                                  | -30                                                     |  |
| A-3415/A-3416                                                                                           | 0031-END-1          | Tenax Tubes #1 & #2 (Set #3) | -6.7                                  | -8.1                                                 | -15                                                     |  |
| A-3418/A-3419                                                                                           | 0031-END-1          | Tenax Tubes #1 & #2 (Set #4) | -1.8                                  | -4.3                                                 | -9.1                                                    |  |
| A-3428/A-3429                                                                                           | 0031-END <b>-</b> 2 | Tenax Tubes #1 & #2 (Set #1) | -25                                   | -34                                                  | -37                                                     |  |
| A-3431/A-3432                                                                                           | 0031-END-2          | Tenax Tubes #1 & #2 (Set #2) | <b>-2</b> 3                           | -32                                                  | -39                                                     |  |
| A-3434/A-3435                                                                                           | 0031-END-2          | Tenax Tubes #1 & #2 (Set #3) | -26                                   | -37                                                  | -44                                                     |  |
| A-3437/A-3438                                                                                           | 0031-END-2          | Tenax Tubes #1 & #2 (Set #4) | -27                                   | -38                                                  | -43                                                     |  |
| A-3392                                                                                                  | 0031-STRT-2         | Tenax Tube Pair Field Blank  | -22                                   | -30                                                  | -38                                                     |  |
| A-3394                                                                                                  | 0031-STRT-2         | Tenax Tube Pair Trip Blank   | -18                                   | -30                                                  | -39                                                     |  |
| A-3441                                                                                                  | 0031-END-1          | Tenax Tube Pair Field Blank  | -17                                   | -15                                                  | -28                                                     |  |
| A-3361                                                                                                  | 0031-STRT-1         | Anasorb 747 Tube (Set #1)    | -16                                   | -14                                                  | -24                                                     |  |
| A-3364                                                                                                  | 0031-STRT-1         | Anasorb 747 Tube (Set #2)    | -28                                   | -28                                                  | -33                                                     |  |
| A-3367                                                                                                  | 0031-STRT-1         | Anasorb 747 Tube (Set #3)    | -28                                   | -31                                                  | -36                                                     |  |
| A-3370                                                                                                  | 0031-STRT-1         | Anasorb 747 Tube (Set #4)    | -27                                   | -28                                                  | -28                                                     |  |
| A-3381                                                                                                  | 0031-STRT-2         | Anasorb 747 Tube (Set #1)    | -36                                   | -42                                                  | -46                                                     |  |
| A-3384                                                                                                  | 0031-STRT-2         | Anasorb 747 Tube (Set #2)    | -25                                   | -28                                                  | -29                                                     |  |
| A-3387                                                                                                  | 0031-STRT-2         | Anasorb 747 Tube (Set #3)    | -24                                   | -26                                                  | -28                                                     |  |
| A-3390                                                                                                  | 0031-STRT-2         | Anasorb 747 Tube (Set #4)    | -17                                   | -22                                                  | -25                                                     |  |
| A-3411                                                                                                  | 0031-END-1          | Anasorb 747 Tube (Set #1)    | -13                                   | -11                                                  | -17                                                     |  |
| A-3414                                                                                                  | 0031-END-1          | Anasorb 747 Tube (Set #2)    | -14                                   | -13                                                  | -21                                                     |  |
| A-3417                                                                                                  | 0031-END-1          | Anasorb 747 Tube (Set #3)    | -16                                   | -12                                                  | -21                                                     |  |
| A-3420                                                                                                  | 0031-END-1          | Anasorb 747 Tube (Set #4)    | -19                                   | -12                                                  | -20                                                     |  |

Table 7. Volatile Organic Compound (VOC) internal standard recoveries.

| Table /. Volatile Of | rganic Compound      | (VOC) internal standard reco | veries.              |                                       |                              |                      |                        |
|----------------------|----------------------|------------------------------|----------------------|---------------------------------------|------------------------------|----------------------|------------------------|
|                      |                      |                              |                      | Perce                                 | nt Diffe                     | rence                | а                      |
| Field Sample No.     | Run No.              | Sample Description           | Internal Standard #1 | Fluorobenzene<br>Internal Standard #2 | Chlorobenzene-d <sub>5</sub> | Internal Standard #3 | 1,4-Dichlorobenzene-d4 |
| A-3430               | 0031-END-2           | Anasorb 747 Tube (Set #1)    | -16                  | ,                                     | -25                          | -                    | .33                    |
| A-3433               | 0031-END-2           | Anasorb 747 Tube (Set #2)    | -24                  |                                       | -29                          | -                    | 35                     |
| A-3436               | 0031-END-2           | Anasorb 747 Tube (Set #3)    | -20                  | )                                     | -30                          | -                    | ∙38                    |
| A-3439               | 0031-END-2           | Anasorb 747 Tube (Set #4)    | -24                  |                                       | -39                          | -                    | 33                     |
| A-3393               | 0031 <b>-</b> STRT-2 | Anasorb 747 Field Blank      | -20                  |                                       | -28                          | -                    | 36                     |
| A-3395               | 0031-STRT-2          | Anasorb 747 Trip Blank       | -21                  |                                       | -25                          | -                    | 31                     |
| A-3442               | 0031-END-1           | Anasorb 747 Field Blank      | -19                  |                                       | -22                          | _                    | 32                     |
| A-3371               | 0031-STRT-1          | VOST Condensate              | -9.3                 | 3                                     | -7.0                         | _                    | 13                     |
| A-3391               | 0031-STRT-2          | VOST Condensate              | -10                  |                                       | -8.8                         | _                    | 15                     |
| A-3421               | 0031-END-1           | VOST Condensate              | -7.2                 | 2                                     | -5.0                         |                      | 9.8                    |
| A-3440               | 0031-END-2           | VOST Condensate              | -8.1                 |                                       | -5.6                         | _                    | 11                     |
| A-3396               | 0031-STRT-2          | VOST D.I. Water Trip Blank   | -12                  |                                       | -9.3                         | -                    | 15                     |

a. Recoveries of internal standard compounds are not typically calculated for samples analyzed by Method 8260B and 8270C. Percent Difference is calculated using the following equation.

$$Percent \ Difference (\%D) = \frac{Observed \ Value - Expected \ Value}{Expected \ Value} x 100\%$$

Where: Observed Value = the area of the internal standard in the sample and

Expected Value = the area of the internal standards in the daily standard

## 5.1.3.4 VOC Surrogate Recovery Assessment

Four surrogate compounds were spiked onto all of the VOST samples before the thermal desorption process was initiated. The surrogate recoveries for the NWCF ETS offgas samples are presented in Table 8. Surrogate recoveries are within the targeted acceptance range (percent recovery between 50-150%), meeting the project DQOs except for sample A-3364. Low surrogate recoveries were obtained for sample A-3364 (The Anasorb 747® tube for Run 1, Set 2) and therefore the data for this sample are not usable. The results for Sample A-3364 indicate normal recoveries for the internal standard compounds, but very low recoveries for the surrogate compounds.

Table 8. Volatile Organic Compound (VOC) surrogate compound recoveries.

|                  |             |                              |                      | Percent                           | Recoverya              |                    |
|------------------|-------------|------------------------------|----------------------|-----------------------------------|------------------------|--------------------|
| Field Sample No. | Run No.     | Sample Description           | Dibromofluoromethane | 1,2-Dichtoroethane-d <sup>b</sup> | Toluene-d <sub>s</sub> | Bromofluorobenzene |
| A-3359/A-3360    | 0031-STRT-1 | Tenax Tubes #1 & #2 (Set #1) | 84                   | 81                                | 101                    | 83                 |
| A-3362/A-3363    | 0031-STRT-1 | Tenax Tubes #1 & #2 (Set #2) | 90                   | 85                                | 114                    | 99                 |
| A-3365/A-3366    | 0031-STRT-1 | Tenax Tubes #1 & #2 (Set #3) | 88                   | 84                                | 113                    | 98                 |
| A-3368/A-3369    | 0031-STRT-1 | Tenax Tubes #1 & #2 (Set #4) | 85                   | 80                                | 115                    | 92                 |
| A-3379/A-3380    | 0031-STRT-2 | Tenax Tubes #1 & #2 (Set #1) | 88                   | 83                                | 111                    | 95                 |
| A-3382/A-3383    | 0031-STRT-2 | Tenax Tubes #1 & #2 (Set #2) | 91                   | 86                                | 110                    | 97                 |
| A-3385/A-3386    | 0031-STRT-2 | Tenax Tubes #1 & #2 (Set #3) | 81                   | 75                                | 108                    | 85                 |
| A-3388/A-3389    | 0031-STRT-2 | Tenax Tubes #1 & #2 (Set #4) | 87                   | 80                                | 114                    | 90                 |
| A-3409/A-3410    | 0031-END-1  | Tenax Tubes #1 & #2 (Set #1) | 84                   | 79                                | 109                    | 85                 |
| A-3412/A-3413    | 0031-END-1  | Tenax Tubes #1 & #2 (Set #2) | 85                   | 80                                | 109                    | 91                 |
| A-3415/A-3416    | 0031-END-1  | Tenax Tubes #1 & #2 (Set #3) | 83                   | 78                                | 101                    | 82                 |
| A-3418/A-3419    | 0031-END-1  | Tenax Tubes #1 & #2 (Set #4) | 87                   | 86                                | 103                    | 80                 |
| A-3428/A-3429    | 0031-END-2  | Tenax Tubes #1 & #2 (Set #1) | 87                   | 79                                | 116                    | 87                 |
| A-3431/A-3432    | 0031-END-2  | Tenax Tubes #1 & #2 (Set #2) | 79                   | 74                                | 105                    | 86                 |
| A-3434/A-3435    | 0031-END-2  | Tenax Tubes #1 & #2 (Set #3) | 83                   | 77                                | 117                    | 90                 |
| A-3437/A-3438    | 0031-END-2  | Tenax Tubes #1 & #2 (Set #4) | 90                   | 82                                | 121                    | 92                 |
| A-3392           | 0031-STRT-2 | Tenax Tube Pair Field Blank  | 76                   | 70                                | 102                    | 86                 |
| A-3394           | 0031-STRT-2 | Tenax Tube Pair Trip Blank   | 58                   | 49 <sup>1</sup>                   | 60                     | 41 <sup>1</sup>    |
| A-3441           | 0031-END-1  | Tenax Tube Pair Field Blank  | 82                   | 77                                | 95                     | 86                 |
| A-3361           | 0031-STRT-1 | Anasorb 747 Tube (Set #1)    | 83                   | 79                                | 94                     | 77                 |
| A-3364           | 0031-STRT-1 | Anasorb 747 Tube (Set #2)    | 7.9 <sup>1</sup>     | 6.4 <sup>1</sup>                  | 2.91                   | 3.6 <sup>1</sup>   |
| A-3367           | 0031-STRT-1 | Anasorb 747 Tube (Set #3)    | 106                  | 100                               | 121                    | 92                 |
| A-3370           | 0031-STRT-1 | Anasorb 747 Tube (Set #4)    | 86                   | 83                                | 99                     | 82                 |
| A-3381           | 0031-STRT-2 | Anasorb 747 Tube (Set #1)    | 96                   | 88                                | 117                    | 86                 |
| A-3384           | 0031-STRT-2 | Anasorb 747 Tube (Set #2)    | 73                   | 71                                | 90                     | 74                 |

32

Table 8. Volatile Organic Compound (VOC) surrogate compound recoveries.

|                                         |                        | npound (VOC) surrogate comp                                  | Percent Recovery <sup>a</sup> |                                   |                        |                    |
|-----------------------------------------|------------------------|--------------------------------------------------------------|-------------------------------|-----------------------------------|------------------------|--------------------|
| Field Sample No.                        | Run No.                | Sample Description                                           | Dibromofluoromethane          | 1,2-Dichloroethane-d <sup>b</sup> | Toluene-d <sub>s</sub> | Bromofluorobenzene |
| A-3387                                  | 0031-STRT-2            | Anasorb 747 Tube (Set #3)                                    | 77                            | 73                                | 92                     | 74                 |
| A-3390                                  | 0031-STRT-2            | Anasorb 747 Tube (Set #4)                                    | 73                            | 68                                | 96                     | 79                 |
| A-3411                                  | 0031-END-1             | Anasorb 747 Tube (Set #1)                                    | 87                            | 84                                | 101                    | 84                 |
| A-3414                                  | 0031-END-1             | Anasorb 747 Tube (Set #2)                                    | 91                            | 86                                | 107                    | 86                 |
| A-3417                                  | 0031-END-1             | Anasorb 747 Tube (Set #3)                                    | 91                            | 88                                | 104                    | 88                 |
| A-3420                                  | 0031-END-1             | Anasorb 747 Tube (Set #4)                                    | 78                            | 75                                | 96                     | 81                 |
| A-3430                                  | 0031-END-2             | Anasorb 747 Tube (Set #1)                                    | 83                            | 76                                | 105                    | 88                 |
| A-3433                                  | 0031-END-2             | Anasorb 747 Tube (Set #2)                                    | 88                            | 79                                | 110                    | 82                 |
| A-3436                                  | 0031-END-2             | Anasorb 747 Tube (Set #3)                                    | 82                            | 75                                | 108                    | 85                 |
| A-3439                                  | 0031-END-2             | Anasorb 747 Tube (Set #4)                                    | 85                            | 79                                | 110                    | 87                 |
| A-3393                                  | 0031-STRT-2            | Anasorb 747 Field Blank                                      | 77                            | 68                                | 99                     | 73                 |
| A-3395                                  | 0031-STRT-2            | Anasorb 747 Trip Blank                                       | 82                            | 74                                | 92                     | 75                 |
| A-3442                                  | 0031-END-1             | Anasorb 747 Field Blank                                      | 83                            | 77                                | 98                     | 81                 |
| A-3371                                  | 0031-STRT-1            | VOST Condensate                                              | 102                           | 104                               | 106                    | 106                |
| A-3391                                  | 0031-STRT-2            | VOST Condensate                                              | 100                           | 103                               | 107                    | 106                |
| A-3421                                  | 0031-END-1             | VOST Condensate                                              | 101                           | 101                               | 106                    | 105                |
| A-3440                                  | 0031-END-2             | VOST Condensate                                              | 100                           | 103                               | 106                    | 105                |
| A-3396                                  | 0031-STRT-2            | VOST D.I. Water Trip Blank                                   | 102                           | 107                               | 107                    | 106                |
| Laboratory 1                            | <br>Target Recovery Ra | nge for Tenax <sup>®</sup> & Anasorb 747 <sup>®</sup> Tubes: | 50-150                        | 50-150                            | 50-150                 | 50-150             |
| *************************************** | Laboratory Targe       | et Recovery Range for Aqueous Samples:                       | 80-120                        | 80-120                            | 80-120                 | 72-135             |

a. Percent Recovery is calculated using the following equation:

Percent Re cov ery (%R) = 
$$\frac{Observed\ Value}{Expected\ Value} \times 100\%$$

Where: Observed Value = the measured mass of the surrogate standard in the sample and Expected Value = the mass of the surrogate standard spiked into the sample.

This percent recovery is outside of the laboratory target recovery range.

### 5.1.3.5 VOC Analytical Data Quality Assessment

The sampling and analytical objectives expected for this data set were to present an acceptable characterization of the project target volatile organic compounds from the NWCF ETS offgas. The data quality indicators collectively indicate that the sampling and analytical processes for the SMVOC samples were in control during the sampling runs. Data have been collected and reviewed that allow the relative precision and accuracy to be measured for the target analytes. The data quality indicators indicate that most of the data are of acceptable quality, and that sufficient data has been obtained to characterize the project target volatile organic compounds from the NWCF ETS offgas.

There were several indications that fugitive emissions may have been present during sampling. Acetone, methylene chloride and toluene were present in at least some of the field and trip blanks. Some inconsistency of the methylene chloride results has been discussed. Toluene exhibited results that simply do not make sense, particularly with respect to higher levels of toluene that were detected in some of the back half samples. Results for these particular three constituents are not considered to demonstrate that these constituents are truly in the ETS offgas at these concentrations. These are the major classical environmental laboratory sample preparation solvents that are often detected as contaminants in sample results.

The only serious quality control deficiency was the low surrogate recovery for the Tenax<sup>®</sup>/Anasorb 747<sup>®</sup> sample for Run 1 (Set 2). This deficiency is adequately handled by the substitution of average backhalf results from the other Run 1 tube sets.

## 5.2 Semi-volatile Organic Compounds

A standard U.S. EPA Method 0010 (Modified Method 5, or MM-5) sampling train configuration was used to collect samples of the NWCF ETS offgas for the assessment of semi-volatile organic compounds (SVOCs). A total nominal volume of 3.0 dscm of offgas was sampled in each run over 3-4 hours. The Method 0010 SVOC train configuration is comprised of six fractions:

- particulate filter
- solvent rinse of the front half of the filter holder, the sampling probe and the nozzle
- XAD-2<sup>®</sup> resin tube,
- solvent rinse of the back half of the filter holder, the coil condenser and connecting glassware,
- composite sample containing the stack gas condensate and impinger contents, and
- impinger and connecting glassware solvent rinses.

A trip/reagent blank was collected and a set of blank train (field blank) samples were analyzed to assess extraneous sources of contamination available to these samples.

# 5.2.1 SVOC Target Analyte List

Analyses of SVOC samples were completed per SW-846 Methods 3542 and 8270C by first extracting the samples with methylene chloride, then analyzing the extracts using GC/MS. The SVOC target analytes are listed in Table 9.

Table 9. SVOC target analyte list.

| Analyte                     | CAS Registry Number |
|-----------------------------|---------------------|
| Acenaphthene                | 83-32-9             |
| Acenaphthylene              | 208-96-8            |
| Acetophenone                | 98-86-2             |
| Aniline                     | 62-53-3             |
| Anthracene                  | 120-12-7            |
| Benzidine                   | 92-87-5             |
| Benzoic acid                | 65-85-0             |
| Benzo(a)anthracene          | 56-55-3             |
| Benzo(a)pyrene              | 50-32-8             |
| Benzo(b)fluoranthene        | 205-99-2            |
| Benzo(ghi)perylene          | 191-24-2            |
| Benzo(k)fluoranthene        | 207-08-9            |
| Benzyl alcohol              | 100-51-6            |
| bis(2-Chloroethoxy)methane  | 111-91-1            |
| bis(2-Chloroethyl)ether     | 111-44-4            |
| bis(2-Ethylhexyl)phthalate  | 117-81-7            |
| 4-Bromophenyl-phenylether   | 101-55-3            |
| Butylbenzylphthalate        | 85-68-7             |
| Carbazole                   | 86-74-8             |
| 4-Chloro-3-methylphenol     | 59-50-7             |
| 4-Chloroaniline             | 106-47-8            |
| 2-Chloronaphthalene         | 91-58-7             |
| 2-Chlorophenol              | 95-57-8             |
| 4-Chlorophenyl phenyl ether | 7005-72-36          |
| Chrysene                    | 218-01-9            |
| Di-n-butylphthalate         | 84-74-2             |
| Di-n-octylphthalate         | 117-84-0            |
| Dibenz(a,h)anthracene       | 53-70-3             |
| Dibenzofuran                | 132-64-9            |
| 1,2-Dichlorobenzene         | 95-50-1             |
| 1,3-Dichlorobenzene         | 541-73-1            |
| 1,4-Dichlorobenzene         | 106-46-7            |
| 3,3'-Dichlorobenzidine      | 91-94-1             |
| 2,4-Dichlorophenol          | 120-83-2            |
| Diethylphthalate            | 84-66-2             |
| Dimethyl phthalate          | 131-11-3            |
| 2,4-Dimethylphenol          | 105-67-9            |

Table 9. SVOC target analyte list.

| Analyte                         | CAS Registry Number |
|---------------------------------|---------------------|
| 4,6-Dinitro-2-methylphenol      | 534-52-1            |
| 2,4-Dinitrophenol               | 51-28-5             |
| 2,4-Dinitrotoluene              | 121-14-2            |
| 2,6-Dinitrotoluene              | 606-20-2            |
| I,2-Diphenylhydrazine           | 122-66-7            |
| Fluoranthene                    | 206-44-0            |
| Fluorene                        | 86-73-7             |
| Hexachlorocyclopentadiene       | 77-47-4             |
| Hexachlorobenzene               | 118-74-1            |
| Hexachlorobutadiene             | 87-68-3             |
| Hexachloroethane                | 67-72-1             |
| Indeno(1,2,3-cd)pyrene          | 193-39-5            |
| Isophorone                      | 78-59-1             |
| 2-Methylnaphthalene             | 91-57-6             |
| 2-Methylphenol                  | 95-48-7             |
| 3-Methylphenol & 4-Methylphenol | 65794-96-9          |
| N-Nitroso-di-n-propylamine      | 621-64-7            |
| N-Nitrosodimethylamine          | 62-75-9             |
| N-Nitrosodiphenylamine          | · 86-30-6           |
| Naphthalene                     | 91-20-3             |
| 2-Nitroaniline                  | 88-74-4             |
| 3-Nitroaniline                  | 99-09-2             |
| 4-Nitroaniline                  | 100-01-6            |
| Nitrobenzene                    | 98-95-1             |
| 2-Nitrophenol                   | 88-75-5             |
| 4-Nitrophenol                   | 100-02-7            |
| 2,2'-Oxybis(1-chloropropane)    | 108-60-1            |
| Pentachlorobenzene              | 608-93-5            |
| Pentachloronitrobenzene         | 82-68-8             |
| Pentachlorophenol               | 87-86-5             |
| Phenanthrene                    | 85-01-8             |
| Phenol                          | 108-95-2            |
| Pyrene                          | 129-00-0            |
| Pyridine                        | 110-86-1            |
| 1,2,4-Trichlorobenzene          | 120-82-1            |
| 2,4,5-Trichlorophenol           | 95-95-4             |
| 2,4,6-Trichlorophenol           | 88-06-2             |
| 1,2,4,5-Tetrachlorobenzene      | 95-94-3             |

The samples were also analyzed for non-target organic compounds as directed in the QAPjP. A GC/MS library search was performed on each SVOC sample (including the condensate samples) for TICs (tentatively identified compounds). The search was performed for the thirty largest non-target compounds that exhibited a response greater than 10% of the response of the nearest internal standard (the extract is spiked at 20  $\mu$ g/mL). The standard extract volume was 1.0 mL; hence, the TICs were reported down to a level of 2  $\mu$ g when the original extract was not diluted (dilution factor or DF = 1). The backhalf composite sample extracts for Runs 1 through 4 were analyzed at a five-fold dilution (DF = 5); therefore, TICs in these fractions were only reported down to 10  $\mu$ g.

The library search was conducted against the National Bureau of Standards library of mass spectral data containing an estimated 75,000 compounds. The matching criteria included a nominal 85% match of the mass spectral features, and analyst discretion of all identities reported. TICs that were derived from column bleed, surrogate addition, or aldol condensation were excluded from the report. Also, compounds that were reported as SMVOC target compounds were not reported as semi-volatile TICs because the SMVOC method provides more reliable data for these compounds.

### 5.2.2 SVOC Analytical Results

The particulate filter was combined with its associated solvent rinses to form a "front-half" composite sample. The XAD-2 resin tube was combined with its associated solvent rinses to form a "back-half" composite sample. The stack gas condensate, impinger contents and associated glassware rinses were also combined to form a composite sample. These three fractions are analyzed separately. Unique data quality control indicators are used for each fraction.

Tabulated data summaries that present the SVOC data are given in Appendix A. These tables have been extracted from the STL Analytical Laboratory Final Report for this project. For each Method 0010 offgas sampling run, the "SVOC Run Total" for each analyte (in mass units of  $\mu g$ ) represents the sum of the amounts found in all of the SVOC fractions collected during that run.

### 5.2.3 SVOC Data Quality Assessment

The sample fractions were sent to STL via overnight express mail to ensure that sample preservation and analysis schedules required by the QAPjP would be met. All of the samples were received by the laboratory in good condition. Sample extractions were performed within the requirements specified in the QAPjP.

On the basis of all the quality assurance indicators, all of the semi-volatile organic compound data obtained from the SVOC runs are usable and representative of the NWCF ETS offgas contents. The only deficiencies in accuracy and precision indicated by the laboratory control samples (LCS) and matrix spike samples appear to be unrelated to sample data quality.

Blank sample data indicate that sources of fugitive contamination available to the NWCF ETS offgas samples were minimized. Only phthalate esters were found in significant concentrations in the blanks. Although the back half composite containing the XAD-2<sup>®</sup> sample extracts were somewhat hostile to the internal standard compounds, the analysis of these extracts at two levels of dilution appears to provide a reliable assessment of the offgas contents.

Recoveries of the surrogates indicate that the preparation and analysis processes during the SVOC sample determinations were in control with respect to all of the analytes for the offgas sample analyses. The surrogate recoveries are within the prescribed acceptance ranges and do not indicate any bias to the data. Sample dilution was required to achieve acceptable recovery of three of the six internal standards,

and this had the affect of increasing detection limits for those analytes that are correlated to the recovery of these standards.

### 5.2.3.1 SVOC Blank Data Assessment

A standard SVOC trip/reagent blank (unused, sealed XAD-2® resin tube) and a blank train run samples was collected to assess potential fugitive contamination sources in the sampling environment. Review of the SVOC blank indicates that very little contamination due to fugitive emissions exists in the samples as a result of storage or transport of the sample collection media. The trip blank data exhibited low levels of acetophenone and 1,4-dichlorobenzene that are below the standard laboratory reporting limit (RL). Several tentatively identified compounds were identified in the trip blank data. Notably, benzaldehyde, methyl benzaete, and ethyl benzaldehyde were found, along with several miscellaneous hydrocarbons. These compounds were probably artifacts of the XAD-2® medium or the transport and storage of the samples, and were not found in the laboratory method blanks.

Review of the SVOC blank train results indicates that little contamination of the samples occurred as a result of sample handling or contact with the MM-5 sampling train components. Acetophenone and 1,4-dichlorbenzene were found at low levels that were similar to the trip blank, and may have originated in the sampling media, or were possibly introduced to the media during transport and storage of the samples. The target analytes found in the blank train samples also included di-n-butylphthalate, bis-2-ethylhexylphthalate, and di-n-octylphthalate. The phthalate esters are considered common laboratory contaminants, and are commonly found in certain plastics and plastic tubing. These compounds were not found in the laboratory method blanks, so their origin appears to be with the sampling process. The TICs found in the back-half composite sample of the blank train were similar in identity and concentration to those found in the trip/reagent blank. Benzaldehyde, methyl benzoate, ethyl benzaldehyde, and several miscellaneous hydrocarbons were observed at levels that were similar to the trip/reagent blank results. The origin of these contaminants may have been either the sampling media or the transport and storage of the samples. The front-half and impinger composite samples exhibited low concentrations of some additional TICs that are not found in the back-half composite samples.

### 5.2.3.2 SVOC Internal Standard Recovery Assessment

Internal standards are used as the basis for calculation of the concentrations of the target analytes and surrogates. Six IS compounds were spiked into all of the sample extracts prior to analysis. Method SW-8270 required limits, in terms of percent difference relative to the IS area for the lab's daily standard, are -50% to +100%. The internal standard responses for the front-half composite sample extracts, and the condensate and impinger contents composite sample extracts were acceptable and do not indicate any deficiency in data quality. Also, the quality assurance samples exhibit acceptable recoveries of the internal standards. The only cases of significantly reduced recovery of the internal standards are noted for the back-half fractions of the offgas samples which include the XAD-2® resin. A summary of the semi-volatile internal standard performance is given in Table 10.

Table 10. SVOC train sample internal standard compound recoveries.

| 14010 101 01 00  | l am sample           | internal standard compound recove                                                                   |                            | Percent Difference (%) <sup>a</sup>                       |                                                   |                                                     |                                                   | 6) <sup>a</sup>                                 |                          |
|------------------|-----------------------|-----------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------|
| Field Sample No. | NWCF ETS<br>Sample ID | Sample Description                                                                                  | Analytical Dilution Factor | Internal Standard 1<br>1,4-Dichlorobenzene-d <sub>4</sub> | Internal Standard 2<br>Naphthalene-d <sub>8</sub> | Internal Standard 3<br>Acenaphthene-d <sub>10</sub> | Internal Standard 4 Phenanthreene-d <sub>10</sub> | Internal Standard 5<br>Chrysene-d <sub>12</sub> | Perylene-d <sub>12</sub> |
| A-3353/A-3354    | 0010-STRT-1           | Particulate Filter/Front Half of the Filter<br>Holder and Probe Solvent Rinses                      | 1                          | 9.2                                                       | 7.5                                               | -5.6                                                | -16                                               | -27                                             | -22                      |
| A-3355/A-3356    | 0010-STRT-1           | XAD-2 Resin Tube/Back Half of the Filter Holder and Coil Condenser                                  | 5                          | -28                                                       | -29                                               | -61 <sup>b</sup>                                    | -38                                               | -57                                             | -100 <sup>b</sup>        |
|                  |                       | Solvent Rinses                                                                                      | 100                        | 7.0                                                       | 3.2                                               | -1.6                                                | .0.62                                             | 3.5                                             | -50                      |
| A-3357/A-3358    | 0010-STRT-1           | Condensate, Impinger Contents, and Glassware Solvent Rinses                                         | 1                          | 13                                                        | 12                                                | 0.16                                                | -4.4                                              | -20                                             | -16                      |
| A-3372/A-3373    | 0010-STRT-2           | Particulate Filter/Front Half of the Filter<br>Holder and Probe Solvent Rinses                      | 1                          | 12                                                        | 6.9                                               | -1.1                                                | -7.0                                              | -24                                             | -20                      |
| A-3374/A-3375    | 0010-STRT-2           | XAD-2 Resin Tube/Back Half of the                                                                   | 5                          | 2.4                                                       | -5.2                                              | -25                                                 | -14                                               | -27                                             | -100 <sup>b</sup>        |
|                  |                       | Filter Holder and Coil Condenser<br>Solvent Rinses                                                  | 100                        | 2.4                                                       | 1.9                                               | -1.2                                                | -3.2                                              | -1.0                                            | -24                      |
| A-3376/A-3377    | 0010-STRT-2           | Condensate, Impinger Contents, and Glassware Solvent Rinses                                         | l                          | -15                                                       | -18                                               | -16                                                 | -16                                               | -26                                             | -24                      |
| A-3397/A-3398    | 0010-STRT-2           | Blank Train Particulate Filter/Front<br>Half of the Filter Holder and Probe<br>Solvent Rinses       | 1                          | 5.3                                                       | 2.4                                               | -5.8                                                | -11                                               | -24                                             | -22                      |
| A-3399/A-3400    | 0010-STRT-2           | Blank Train XAD-2 Resin Tube/Back<br>Half of the Filter Holder and Coil<br>Condenser Solvent Rinses | 1                          | -0.69                                                     | -7.8                                              | -18                                                 | -21                                               | -34                                             | -27                      |
| A-3401/A-3402    | 0010-STRT-2           | Blank Train Condensate, Impinger<br>Contents, and Glassware Solvent Rinses                          | 1                          | 7.2                                                       | 9.3                                               | -1.9                                                | -9.8                                              | -22                                             | -18                      |
| A-3403/A-3404    | 0010-END-1            | Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses                         | 1                          | 7.6                                                       | 9.6                                               | 0.92                                                | -13                                               | -26                                             | -20                      |
| A-3405/A-3406    | 0010-END-1            | XAD-2 Resin Tube/Back Half of the                                                                   | 5                          | -6.6                                                      | -5.7                                              | -37                                                 | -14                                               | -30                                             | -100 <sup>b</sup>        |
|                  |                       | Filter Holder and Coil Condenser<br>Solvent Rinses                                                  | 100                        | 1.7                                                       | 1.8                                               | 1.4                                                 | -2.4                                              | 3.1                                             | -65 <sup>b</sup>         |
| A-3407/A-3408    | 0010-END-1            | Condensate, Impinger Contents, and Glassware Solvent Rinses                                         | 1                          | 0.38                                                      | 4.2                                               | -2.7                                                | -8.3                                              | -22                                             | -20                      |
| A-3422/A-3423    | 0010-END-2            | Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses                         | 1                          | 5.7                                                       | 4.1                                               | -2.2                                                | -13                                               | -28                                             | -29                      |
| A-3424/A-3425    | 0010-END-2            | XAD-2 Resin Tube/Back Half of the                                                                   |                            | 14                                                        | 9.9                                               | -28                                                 | 0.05                                              | -19                                             | -100 <sup>b</sup>        |
|                  |                       | Filter Holder and Coil Condenser<br>Solvent Rinses                                                  | 100                        | -2.9                                                      | -2.0                                              | -6.5                                                | -6.0                                              | -3.7                                            | -66 <sup>b</sup>         |
| A-3426/A-3427    | 0010-END-2            | Condensate, Impinger Contents, and<br>Glassware Solvent Rinses                                      | 1                          | 1.8                                                       | 4.2                                               | -3.1                                                | -8.7                                              | -20                                             | -16                      |
| A-3378           | 0010-STRT-2           | XAD-2 Resin Tube Trip/Reagent Blank                                                                 | 1                          | -14                                                       | -15                                               | -22                                                 | -20                                               | -29                                             | -27                      |
|                  | -                     | Internal Standard Laboratory Percent<br>Difference Acceptance Limits:                               |                            | -50 to<br>100                                             | -50 to<br>100                                     | -50 to<br>100                                       | -50 to<br>100                                     | -50 to<br>100                                   | -50 to<br>100            |

| Table 10. | SVOC tra | ain sample i | nternal standa | ard compound | l recoveries. |
|-----------|----------|--------------|----------------|--------------|---------------|
|           |          |              |                |              |               |

|                  |                       |                    |                            |                                                           | Per                                               | cent Diff                                           | erence (                                             | (%) <sup>a</sup>                                |                          |
|------------------|-----------------------|--------------------|----------------------------|-----------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------------------------|--------------------------|
| Field Sample No. | NWCF ETS<br>Sample ID | Sample Description | Analytical Dilution Factor | Internal Standard 1<br>1,4-Dichlorobenzene-d <sub>4</sub> | Internal Standard 2<br>Naphthalene-d <sub>8</sub> | Internal Standard 3<br>Acenaphthene-d <sub>10</sub> | Internal Standard 4<br>Phenanthreene-d <sub>10</sub> | Internal Standard 5<br>Chrysene-d <sub>12</sub> | Perylene-d <sub>12</sub> |

a. Recoveries of internal standards are not typically calculated for samples analyzed by Method 8260B and 8270C, and internal standard recoveries are evaluated as Percent Difference from the daily standard. Percent Difference is calculated using the following equation:

Percent Difference (%D) = 
$$\frac{Observed\ Value - Expected\ Value}{Expected\ Value} \times 100\%$$

Where: Observed Value = the area of the internal standard in the sample and

Expected Value = the area of the internal standard in the daily standard.

b. This value is outside of the laboratory and project target acceptance range.

The sample extracts of the back-half fractions of the offgas sample trains were analyzed at a dilution factor of five since analysis of the extracts without dilution gave evidence of loss of several of the internal standards. The internal standard perylene-d12 did not recover from the extract analyses at a dilution factor of five. There was insufficient recovery of this internal standard to allow quantification of the related target analytes without applying further dilution. The internal standard compounds acenaphthene-d10 and chrysene-d12 also exhibited recoveries that are lower than the target acceptance criteria in the 1:5 analysis of the extract for the back-half fraction extract for Run 1. However, there was sufficient recovery of each of these internal standards to provide useful results for the related target analytes.

A second extract analysis was performed for each of the offgas back-half composite samples at a dilution factor of 100. The back-half composite sample extracts exhibit reduced recovery of perylene-d12 at the increased dilution factor of 100, but there was sufficient recovery of perylene-d12 to quantify the seven target analytes that are calculated relative to it. The results based on perylene-d12 for the 1:100 dilution of the extracts are usable.

### 5.2.3.3 SVOC Surrogate Recovery Assessment

Six surrogate compounds were spiked onto all of the SVOC samples before extraction per SW-846 Method 8270C. Three of the surrogates are base/neutral compounds, and three of the surrogates are acid extractable. All of the three acid extractable surrogates are phenols, which are a class of organic compounds that contain a benzene ring with the hydroxyl group attached. A sampling surrogate compound was also applied to the XAD-2® resin tubes at the laboratory before sampling. This additional surrogate provides a measurement of the efficiency of the entire process, from sampling to the conclusion of the analysis. The sampling surrogate applied to the XAD-2® tubes used to collect samples was <sup>13</sup>C<sub>3</sub>-naphthalene. This is a base-neutral compound that is distinguished from the native naphthalene by carbon-13 labeling. A summary of the semi-volatile surrogate performance is given in Table 11.

Table 11. SVOC surrogate compound recoveries.

|                  |                       |                                                                                                     | Percent Recovery (%) <sup>a</sup> |                       |                             |                   |                          |                           |           |
|------------------|-----------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------|-----------------------------|-------------------|--------------------------|---------------------------|-----------|
| Field Sample No. | NWCF ETS<br>Sample ID | Sample Description                                                                                  | 2-Fluorophenol                    | Phenol-d <sub>5</sub> | Nitrobenzene-d <sub>5</sub> | 2-Fluorobiphenyl  | 2,4,6-<br>Tribromophenol | Terphenyl-d <sub>14</sub> | Surrogate |
| A-3353/A-3354    | 0010-STRT-1           | Particulate Filter/Front Half of the<br>Filter Holder and Probe Solvent<br>Rinses                   | 71%                               | 66%                   | 66%                         | 70%               | 75%                      | 76%                       | NA        |
| A-3355/A-3356    | 0010-STRT-1           | XAD-2 Resin Tube/Back Half of the<br>Filter Holder and Coil Condenser<br>Solvent Rinses             | 65%                               | 50%                   | 87%                         | 148% <sup>b</sup> | 44%                      | 122%                      | 78%       |
| A-3357/A-3358    | 0010-STRT-1           | Condensate, Impinger Contents, and Glassware Solvent Rinses                                         | 73%                               | 75%                   | 80%                         | 86%               | 84%                      | 93%                       | NA        |
| A-3372/A-3373    | 0010-STRT-2           | Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses                         | 65%                               | 61%                   | 64%                         | 66%               | 70%                      | 76%                       | NA        |
| A-3374/A-3375    | 0010-STRT-2           | XAD-2 Resin Tube/Back Half of the<br>Filter Holder and Coil Condenser<br>Solvent Rinses             | 68%                               | 55%                   | 84%                         | 106%              | 52%                      | 96%                       | 86%       |
| A-3376/A-3377    | 0010-STRT-2           | Condensate, Impinger Contents, and<br>Glassware Solvent Rinses                                      | 39%                               | 35%                   | 43%                         | 46%               | 53%                      | 82%                       | NA        |
| A-3397/A-3398    | 0010-STRT-2           | Blank Train Particulate Filter/Front<br>Half of the Filter Holder and Probe<br>Solvent Rinses       | 75%                               | 68%                   | 73%                         | 76%               | 74%                      | 81%                       | NA        |
| A-3399/A-3400    | 0010-STRT-2           | Blank Train XAD-2 Resin Tube/Back<br>Half of the Filter Holder and Coil<br>Condenser Solvent Rinses | 69%                               | 66%                   | 74%                         | 81%               | 3.1% <sup>b</sup>        | 82%                       | 78%       |
| A-3401/A-3402    | 0010-STRT-2           | Blank Train Condensate, Impinger<br>Contents, and Glassware Solvent<br>Rinses                       | 67%                               | 71%                   | 72%                         | 79%               | 75%                      | 89%                       | NA        |
| A-3403/A-3404    | 0010-END-1            | Particulate Filter/Front Half of the<br>Filter Holder and Probe Solvent<br>Rinses                   | 72%                               | 67%                   | 69%                         | 71%               | 72%                      | 78%                       | NA        |
| A-3405/A-3406    | 0010-END-1            | XAD-2 Resin Tube/Back Half of the<br>Filter Holder and Coil Condenser<br>Solvent Rinses             | 79%                               | 57%                   | 90%                         | 128% <sup>b</sup> | 50%                      | 100%                      | 86%       |
| A-3407/A-3408    | 0010-END-1            | Condensate, Impinger Contents, and Glassware Solvent Rinses                                         | 77%                               | 80%                   | 77%                         | 78%               | 81%                      | 90%                       | NA        |
| A-3422/A-3423    | 0010-END-2            | Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses                         | 75%                               | 71%                   | 74%                         | 76%               | 66%                      | 81%                       | NA        |
| A-3424/A-3425    | 0010-END-2            | XAD-2 Resin Tube/Back Half of the<br>Filter Holder and Coil Condenser<br>Solvent Rinses             | 68%                               | 55%                   | 92%                         | 134%              | 54%                      | 110%                      | 85%       |
| A-3426/A-3427    | 0010-END-2            | Condensate, Impinger Contents, and<br>Glassware Solvent Rinses                                      | 67%                               | 76%                   | 78%                         | 81%               | 83%                      | 88%                       | NA        |
| A-3378           | 0010-STRT-2           | XAD-2 Resin Tube Trip/Reagent<br>Blank                                                              | 55%                               | 61%                   | 63%                         | 67%               | 0.0% <sup>b</sup>        | 84%                       | 66%       |
|                  |                       | Surrogate Laboratory Percent<br>Recovery Acceptance Range:                                          | %001-61                           | 15-124%               | 35-122%                     | 34-115%           | 33-130%                  | 28-132%                   | 50-150%   |

a. Percent recovery of surrogate compounds is calculated using the following equation:

Percent Re cov ery (%) =  $\frac{Observed \ Value}{x \ 100!}$ 

Expected Value

where: Observed Value = the measured mass of the surrogate standard in the sample and

Expected Value = the mass of the surrogate standard spiked on the sample.

b. This value is outside of the laboratory and project target acceptance range.

The laboratory surrogate recoveries that were obtained for the front-half composite samples are generally excellent. There are no obvious problems with the analysis of this matrix, which includes the particulate filter and solvent rinses of the front-half of the filter holder and the probe. All of the laboratory surrogate percent recovery values for the front-half samples were all within the target acceptance range. There were no significant differences between the acid surrogate performance for Runs 1 through 4 and the blank train.

The back-half samples exhibited good recoveries for both the base-neutral and the acid extractable surrogates. 2-Fluorobiphenyl recovery from the back-half fractions of Runs 1, 3 and 4 were above the target acceptance range for surrogate recovery, while the percent recovery of 2-fluorobiphenyl for Run 2 was near the upper end of the target acceptance range. The percent recovery of 2-fluorobiphenyl for both the blank train and the XAD-2<sup>®</sup> resin tube trip/reagent blank was near the center of the target acceptance range. Reduced recovery of the related internal standard, acenapthylene-d<sub>10</sub> in the offgas samples appears to cause the observed high recoveries of 2-fluorobiphenyl. A high bias to the results for all of the target analytes that are calculated against acenaphthylene-d<sub>10</sub> appears to be indicated by the increased recovery of 2-fluorobiphenyl. Inspection of the data shows that there are no positive results based on acenaphthylene-d<sub>10</sub>. Therefore, the detection limits are defensible and there is no adverse impact on data quality.

Phenol-d<sub>5</sub> and 2-fluorophenol exhibited acceptable recovery in the blank train back-half sample and the XAD-2 trip/reagent blank, but 2,4,6-tribromophenol did not recover well. The 2,4,6-tribromophenol results were much lower than the target acceptance limits, with no recovery at all from the trip/reagent blank sample. These results were atypical of the data set in that the 2,4,6-tribromophenol recoveries in the offgas samples were well within the target acceptance range for all four runs. The associated laboratory method blank exhibited a good recovery of the 2,4,6-tribromophenol, but the laboratory control sample (LCS) and the laboratory control sample duplicate (LCSD) each exhibited a low recovery of this surrogate. Also, the LCS have low recoveries of 4-nitrophenol and pentachlorophenol, which are acidic compounds potentially sensitive to pH affects. There was no control of pH for these solid matrix samples. The surrogates were applied to the matrix in a Soxhlet extractor immediately prior to extraction. There were low levels of nitrates present in the offgas, and it is probable that the XAD-2 samples were rendered slightly acidic by contact with the offgas. Acidic samples are more likely to release the acid extractable surrogates during the extraction process. Recovery of the 2,4,6-tribromophenol was well within the target acceptance limits for the offgas samples; hence, there is no impact on the offgas data quality because the phenomenon is not observed in the offgas sample results.

On the basis of laboratory surrogate recovery, the results for the SVOC train back-half composite sample data were usable for assessment of the NWCF ETS offgas contents. All of the laboratory surrogate recoveries are consistently within the target acceptance range. The condensate, impinger contents and associated glassware rinse samples also exhibited acceptable results for all of the laboratory surrogate compounds. The sampling surrogate compound that was applied to the XAD-2® resin tubes at the laboratory before sampling provide an independent measurement of the efficiency of the entire process, from sampling to the conclusion of the analysis. The  $^{13}C_3$ -naphthalene sampling surrogate recovered well from all runs. This further indicates that the data for the SVOCs are reliable.

## 5.2.3.4 SVOC Laboratory Control Sample and Matrix Spike Sample Performance

Laboratory control samples associated with the front half (glass fiber filter) matrix were prepared and analyzed in duplicate as required by the QAPjP. There are two spiked compounds that exhibited results that were outside the target acceptance limits. The recovery of 2,4-dinitrotoluene in the LCS was slightly below the target acceptance range. The relative percent difference (RPD) for pentachlorophenol was above the target acceptance range. However, neither of these results indicates a significant loss of

data quality. All of the laboratory surrogates in the LCS/laboratory control samples duplicate (LCSD) analyses associated with the front-half samples are within target acceptance ranges.

Laboratory control samples associated with the back-half composite samples were prepared and analyzed in duplicate. The base-neutral surrogate recovery results for the LCS were similar to the results for the field samples, and were within the stated target acceptance range. The LCS exhibit low recoveries of 4-nitrophenol and pentachlorophenol, which are acidic compounds that are sensitive to pH effects. Pentachlorophenol is the most acidic of the spiked compounds, and had almost no recovery. The laboratory control sample and laboratory control sample duplicate both have low recoveries of the acidic laboratory surrogate 2,4,6-tribromophenol. This appears to be because there was no control of pH for these solid samples. The surrogate recoveries of similar compounds were well within target acceptance ranges for the NWCF ETS offgas samples; consequently, there is no impact on the offgas data quality as a result of these low recoveries in the LCS/LCSD.

Laboratory control samples based upon the aqueous matrix were prepared and analyzed in duplicate. The condensate and impinger contents sample for Run 2 was split into three aliquots, and a matrix spike/matrix spike duplicate pair was analyzed. All spiked analyte and surrogate percent recovery and RPD results for the laboratory control and matrix spike samples were within the stated target acceptance ranges.

### 5.3 Metals

A standard U.S. EPA Method 0060 Multi-Metals Train (MMT) configuration was used to collect NWCF ETS offgas samples for the assessment of metals (including mercury) content. An offgas sample having a nominal volume of 3.0 m³ was collected over a duration of 3-4 hours. Two sample collection runs were completed at the beginning and two at the end of consecutive evaporator batches to provide a total of four runs to characterize metals emissions. The following sample components were collected from the 0060 train after the completion of each run:

- Particle Filter
- 0.1N Nitric Acid (HNO<sub>3</sub>) Probe Rinse
- 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> Impinger Contents
- Empty Impinger 4 Contents
- 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> Impingers
- 8N HCl Impinger Rinses

Final nitric acid probe rinse samples were collected after the sampling was completed. The glass-lined sampling probe could not be routinely removed from the offgas sampling manifold for rinsing after each run. Instead, the front-half rinse samples were limited to the connecting tubing, filter housing elements and other connecting glassware that were installed outside the manifold assembly. The glass-lined probe was only removed from the offgas line after all offgas trains were completed for the test series. Probe rinse samples of the glass-lined probe were collected to assess the maximum amount of metals that adhered to the inside of the probe during testing. The probes were rinsed three times with acetone, followed by three rinses with 0.1N nitric acid. These samples were combined for metals analysis after the acetone probe rinses were analyzed for PM. Since the same probe was used for all sampling runs used during the test series, a larger volume of offgas was represented by these acetone and nitric acid probe rinses than was pulled through the probe just for metals analysis.

Field reagent and blank samples were collected in compliance with the QAPjP. Laboratory method blanks were also prepared and analyzed in support of the data, as required by SW-846 sample analysis requirements.

### 5.3.1 Metals Target Analyte List

The target analyte list for the metals is given in Table 12. These metals, except for Hg, were analyzed by inductively coupled argon plasma spectroscopy per EPA Method 6010B. Mercury (Hg) was analyzed using cold vapor atomic absorption spectroscopy (CVAAS) Method 7470A.

Table 12. Metals target analyte list.

| Aluminum (Al)  | Chromium (Cr)  | Nickel (Ni)   |
|----------------|----------------|---------------|
| Antimony (Sb)  | Cobalt (Co)    | Selenium (Se) |
| Arsenic (As)   | Copper (Cu)    | Silver (Ag)   |
| Barium (Ba)    | Lead (Pb)      | Thallium (Tl) |
| Beryllium (Be) | Manganese (Mn) | Vanadium (V)  |
| Cadmium (Cd)   | Mercury (Hg)   | Zinc (Zn)     |

### 5.3.2 Metals Analytical Results

The compatible matrices of the MMT samples were separated into the train's front-half and backhalf samples during the sample preparation steps. The front-half samples consisted of the 0.1N nitric acid probe and filter housing rinses, and the particulate filter. The combined offgas condensate, and the 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> impinger catches comprised the MMT back-half composite. The train's fourth impinger was used to separate the components of the train that contained 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> from the peroxide contained in the front impingers. The fourth impinger was left empty during set-up. Its contents at the completion of a run and 0.1N HNO<sub>3</sub> collection rinses were only analyzed for mercury. The 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> solution is used to trap elemental mercury (Hg). Thus, a composite sample was prepared from these impingers for the analysis of mercury, only. The internal surfaces of the backhalf impinger glassware received a final deionized (D.I.) water rinse during the train sample collections. These rinsates were collected and added to the appropriate impinger sample and included in the back-half composites. A final rinse of the potassium permanganate impingers was conducted with 8N HCl, and was collected as a separate sample for mercury analysis.

The sample collection and analysis are outlined in the STL final report. Sample fraction and run totals are listed in Appendix A. The run totals (in  $\mu g$ ) are the sum of results for the front half and backhalf composite samples, and in the case of mercury, include the permanganate/sulfuric impinger composite totals. Results for the blank trains were not used to correct train totals as allowed by Method 0060 guidance.

### 5.3.3 Metals Data Quality Assessment

Samples were shipped using overnight delivery service to the laboratory. All Method 0060 train samples that were collected during the offgas sampling program were received at the laboratory in good condition. No losses of samples due to breakage or loss of shipment occurred. Samples derived from the Method 0060 trains are not required to be refrigerated after sample collection. All of the run fractions were processed and analyzed by STL in the time requirements specified in the QAPjP.

The data quality indicators of the sampling and analytical processes for the Method 0060 train samples indicate that the metals data collected from these samples represent acceptable characterization of the offgas emissions. Sufficient data has been collected to allow accuracy and precision to be measured for these parameters. Accuracy has been measured by analyzing LCS, post digestion spikes (PDS), and a limited set of matrix spikes. Precision was measured by the preparation and analysis of laboratory control sample duplicates. The data quality indicators present sufficient evidence that the data are of acceptable quality and are usable for the NWCF ETS offgas emissions inventory.

### 5.3.3.1 Metals Trains Reagent and Blank Data Assessment

Laboratory method blanks were prepared and analyzed in support of the data. Review of the laboratory method blank data indicates that the laboratory did not appear to introduce significant fugitive contamination to the samples.

Reagent blanks were collected in the field and processed to assess the inherent metallic analyte background in the media being used for sampling. A representative front-half composite reagent blank (a quartz fiber particulate filter and 120 mL 0.1 N HNO<sub>3</sub> rinse reagent), a representative back-half reagent blank (175 mL of the 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> impinger solution), and a sample of the INTEC-supplied deionized water (210 mL) were collected and analyzed for the project target metallic analytes including mercury. Portions of the 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> impinger solution, and the 8N HCl rinse solution were collected and analyzed for mercury. Aluminum and selenium were detected in the front-half composite reagent blank at levels that were above the laboratory RL. The amounts of aluminum, antimony, barium, nickel, selenium, and zinc indicate that the reagent may have contributed to the offgas sampling train front-half results. Other metals were detected at relatively insignificant amounts. The back-half reagent blank exhibits manganese and zinc above the laboratory RL. The levels of aluminum, barium, chromium, nickel, lead, manganese, selenium, and zinc indicate that the reagent may have contributed to the offgas sampling train back-half fraction results. The INTEC deionized water did not exhibit significant levels of any metals, although aluminum was found at 5.2 μg.

The blank train samples exhibit similar results as those obtained for the reagent blanks, with two exceptions. Manganese was found in the blank train back-half composite sample at a level (3700  $\mu$ g) that far exceeded the offgas sample results. This occurrence can be traced to contamination of the back-half composite sample by KMnO<sub>4</sub> reagent. Zinc was found at a level of 34  $\mu$ g. This amount is roughly an order of magnitude higher that the reagent blank sample, and similar to the offgas sampling train results.

### 5.3.3.2 Method 0060 Train Accuracy and Precision Assessment

The quality control procedures that were implemented during the analyses of these samples for the purposes of assessing the general accuracy and precision of the analytical processes included the analysis of LCSs, LCSDs, PDS, and MS/MSD samples. Laboratory control samples test the accuracy and precision of the laboratory processes independent of stack gas matrix effects. The quantitative recovery of PDSs provides a second indicator of accuracy for the metals analysis for matrices (e.g., the front-half and back-half samples) from which matrix spikes cannot be prepared without affecting detection limits.

These spikes act as "internal standards" and signal when problems are encountered with the digestate matrix. When acceptable quantitative recoveries are observed for a PDS, the sample introduction onto the ICP is considered to be taking place correctly and the instrument has quantified the analytes present in the digestate correctly. Low recoveries typically indicate that viscosity or matrix interference effects may have been encountered. Matrix spikes (post sampling) of mercury were applied to the four back-half fraction samples. Accurate and precise recovery of the spiked mercury indicates that the entire analytical process, including preparation, is in control.

Matrix spikes of the ICP metals were not performed for the back-half composite sample matrix because this process would raise detection levels while adequate quality control information can be otherwise obtained. In terms of compliance, SW-846 Method 0060 does not require matrix spike recovery information for the evaluation of metals train samples, while SW-846 Method 6010B requires them to be performed for each sample batch or sample delivery group (SDG). The reasoning behind the lack of matrix spike requirements in the Method 0060 relates to the difficulty of dividing a front-half train portion, which contains the particulate filter, into three equal portions of the PM sample. Dividing the filter is a precarious operation. Particulate matter may not be evenly distributed on the filter, and cutting the filter to obtain equal portions of particulate material on each portion of the filter is difficult to execute. Analysis of MS/MSD samples for the front-half composite sample in not technically advisable. Particulate matter is the fraction of the captured stack gas sample that contributes typically the greatest level of metals to the Method 0060 samples.

Post digestion spikes were allowed in the QAPjP as an alternative QC measurement to replace MS/MSDs for both the front half and the back half train fractions. Post digestion spikes give an adequate demonstration of recovery for these samples, and are allowed by quality procedures sections of SW-846 methods for flame atomic absorption and graphite furnace atomic absorption. When coupled with laboratory control samples, and laboratory control sample duplicates, the quality of Method 0060 train sample analysis can be completely evaluated.

The LCS and PSDs corresponding to the front-half composite samples exhibited acceptable recoveries for all target metals. The recoveries of the metals, were within the target recovery range of 75% to 125%, with the exception of manganese and mercury. Mercury recoveries were high for Run 1, Run 2, Run 4 and the Final Acetone and Nitric Acid Probe Rinse. Manganese exhibited a low recovery only for Run 4.

The back-half sample fractions were also supported by laboratory control sample analysis and post digestion spike analysis. Post digestion spikes were analyzed for the back-half samples from Runs 1 and 2. The laboratory control sample results were accurate and reproducible, and indicate that the analytical processes were in control. All of the post digestion spike results were acceptable, but the mercury results have little meaning because the native levels of mercury in the samples were very high relative to the spike levels. Matrix spikes of the Run 1 back-half fractions for mercury of the impinger number 4 contents, 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> impinger contents, and the 8N HCl rinse fractions were successful. Matrix spike results for the back-half composite sample for Run 1 could not be calculated because the native level of mercury was too high, relative to the spike level.

In general, the metals laboratory control sample, post digestion spike, and matrix spike recoveries indicate acceptable performance and provide a strong indication that the analytical processes used were in control. A review of the calculated RPDs (presented in the final STL data package and archived for this project), obtained from the analysis of LCS, indicates that these analytical processes are highly reproducible.

The data were reviewed for evidence of interelement interference because ICP (AES) analysis is subject to interelement interference from "high" levels of a few analytes. Aluminum (Al) is the only element present in the NWCF ETS samples that is in a sufficiently high concentration to be considered an interfering influence on the results for target analytes. The aluminum concentration for the Run 3 front-half composite sample is a potential interferent that could increase the results for vanadium. There is no effect, because the result for vanadium for this sample was non-detectable.

## 5.4 Particulate Matter and Acid Gases

The standard EPA Method 0050 HCl/Cl<sub>2</sub>/Particulate Train (SW-846 Method 0050) configuration was used to collect samples from the NWCF ETS offgas for the assessment of PM and acid gas vapors. An offgas sample having a nominal volume of 3.0 dscm was isokinetically collected over 3-4 hours during each sampling run. A blank train and applicable reagent blanks were collected to support the QA/QC requirements specified in the QAPjP.

A final probe rinse sample was collected after the test runs for particulate analysis. The glass-lined sampling probe could not routinely be removed from the offgas sampling manifold for rinsing after each run for safty reasons as previously discussed. Instead, the front-half acetone rinse samples for particulate were limited to accessible tubing, filter housing elements and other connecting glassware that were installed outside the manifold and probe assembly. The glass-lined probe was only removed from the manifold after all offgas sampling trains were collected. An acetone probe rinse sample of the glass-lined probe was collected after the test runs to assess the maximum amount of particulate materials that adhered to the inside of the probe during testing. The probes were rinsed three times with acetone, and the samples were submitted for particulate analysis.

## 5.4.1 Acid Gas Target analytes

The target analytes for this method are hydrogen chloride (HCl), chlorine (Cl<sub>2</sub>), hydrogen fluoride (HF), nitrate (NO<sub>3</sub>-), nitrite (NO<sub>2</sub>-), and PM.

### 5.4.2 Analysis of PM and Acid Gases

The particulate samples collected included two fractions: (1) an acetone rinse of the probe and filter housing assembly, and (2) a particulate filter. Composite samples containing the contents of the first, second, and third impingers of the train were collected for HCl, HF, HNO<sub>3</sub>, and HNO<sub>2</sub> analysis. The first impinger was empty at the beginning of the sampling run and served as a moisture knockout impinger. The second and third impingers were each initially charged with 100 mL of 0.1N H<sub>2</sub>SO<sub>4</sub>. These acidic impingers allowed for the dissociation and collection of HCl, HF, HNO<sub>3</sub>, and HNO<sub>2</sub> from the offgas. A composite sample of the fourth and fifth impinger contents, which were each initially charged with 100 mL of 0.1N NaOH, were analyzed for Cl<sup>-</sup>, F<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, and NO<sub>2</sub><sup>-</sup>. Chlorine gas (Cl<sub>2</sub>) present in the offgas does not freely dissociate in the acidic H<sub>2</sub>SO<sub>4</sub> medium; therefore, it passes through the first three impingers as an unreacted gas and reacts when it comes in contact with the NaOH solution as follows:

$$Cl_2 + 2OH^- \xrightarrow{NaOH} 2OCl^- + Cl^- + H_2O$$

At STL, the particulate filter samples were dried at 105°C and the acetone probe rinse samples were evaporated to dryness at room temperature. Both fractions were stored in a dessicator for 24 hours, then analyzed gravimetrically. Replicate weights were obtained until constant weights were achieved.

The difference between pre-sampling and post-drying gravimetric measurements were then calculated for each sample.

The 0.1N H<sub>2</sub>SO<sub>4</sub> and 0.1N NaOH impinger samples were analyzed by ion chromatography using SW-846 Methods 9056 and 9057, as implemented by STL Analytical Laboratories Method, KNOX-WC-0005, *Anion Analysis by Ion Chromatography*, KNOX-WC-0005 (April 20,1999). The calibration range extended from 0.5 mg/L to 20 mg/L for all of the target anions. In order to quantify all of the target anions, several analyses were conducted at different dilution factors that ranged from 1 to 10. Dilution was performed both to bring the sample concentration within the instrument calibration range and to overcome matrix effects. The optimum value was chosen for reporting, with the lowest achieved detection limits reported in each case. The final data for each anion were based on analyses that were within the calibration range of the instrument.

The tabulated data summaries provided in the STL Final Report are listed in Appendix A. Each anion result is reduced to a "Risk Result" by selecting the default value for use in risk assessment calculations in accordance with project guidelines.

### 5.4.3 PM and Acid Gas Data Quality Assessment

Samples were shipped using Federal Express overnight delivery service to the laboratory. All Method 0050 train samples that were collected during the offgas sampling program were received at the laboratory in good condition. No losses of samples due to breakage or loss of shipment occurred. All Method 0050 train fractions were processed on schedule, as required by the QAPjP, and analytical results were obtained for all of the expected analyses.

Sufficient data have been collected and reviewed to address the relative precision and accuracy of the particulate and anion target analyte measurements. The data quality indicators present sufficient evidence that the data are of acceptable quality and are usable for the NWCF ETS emissions inventory.

## 5.4.3.1 Method 0050 Train Reagent Blank Assessment

A particulate filter, the  $0.1N\ H_2SO_4$  and  $1N\ NaOH$  reagents, and a sample of the INTEC supplied deionized (D.I.) water were collected during sample collection and were processed as reagent blanks in order to assess the presence of background analytes. These reagent blank samples were analyzed for the same parameters as the actual train samples, and showed minimal background levels of the target analytes. Chloride was detected in the  $0.1N\ H_2SO_4$  reagent blank at a level that was below the RL for the laboratory. Nitrate was detected in the  $0.1N\ NaOH$  reagent blank and the D.I. water reagent blank at low levels that had no impact on the final results. The sample results have been presented without blank corrections with the exception of tare subtraction required for the particulate analysis. All sample calculations of offgas concentrations were performed without blank or background correction.

## 5.4.3.2 Method 0050 Blank Train Assessment

A set of blank train samples was collected in conjunction with the four Method 0050 runs. The blank train samples exhibited similar results as the reagent blanks. There was no evidence of significant contributions to anion contributions in the sample results as a consequence of the sample train component preparation or handling.

## 5.4.3.3 Laboratory Control Sample and Matrix Spike Sample Assessment

Laboratory control sample percent recoveries indicate that the analytical process was in control. However, there were reduced recoveries of chloride in the matrix spike samples, due to apparent matrix effects. The other anions exhibit percent recoveries that are within target acceptance limits. Overall recovery of all of the target anions was sufficient to indicate that the data are useful for their intended purposes. The RPD results for both the LCS and the matrix spike samples indicate that a high level of precision is represented by this data.

## 6. PROCESS STREAM CHARACTERIZATION RESULTS

During the NWCF ETS off-gas emissions sampling activities, the NWCF ETS was being used to process a blend of two parts by volume of solution from INTEC Tank Farm Facility (TFF) vessel WM-184 and one part by volume of solution from INTEC TFF vessel WM-181. The campaign to process this blend was initiated on May 4, 2001 and continued through December 2001. At the same time the off-gas sampling was being performed, RCRA-quality liquid samples of NWCF ETS process streams were collected for analysis. These samples were collected under the protocols and QA/QC specified in sampling and analysis PLN-613 and PLN-407, the ALD QAPjP for environmental samples. These samples consisted of one each of the blended feed, condensed overheads, and concentrated bottoms. In addition, process samples of the feed were analyzed prior to initiation of processing the blend in the NWCF ETS to ensure that the chemistry of the feed solution was compatible with process equipment. Finally, samples of the condensed overheads and the concentrated bottoms from the first several batches processed were analyzed to ensure that the chemistry of those streams was compatible with down-stream process equipment. It should be noted that the non-RCRA samples were not analyzed per RCRA protocol; therefore limited QA/QC controls were evaluated.

These data obtained for the process streams may be used for component material balances around the NWCF ETS and are included in this report to provide a complete picture of the NWCF ETS and to provide a convenient location to obtain the data for subsequent system analyses. It should be noted that some limitations exist with this data. First, the INTEC Analytical Laboratory Department (ALD) that analyzed these samples has a more limited standard target analyte list for volatile organic compounds and semi-volatile organic compounds than the contract laboratory that analyzed the off-gas samples. The INTEC ALD TAL of volatile and semi-volatile organic compounds are contained in Appendix C. Second, some of the process samples (especially those taken to ensure compatibility with the NWCF ETS and down-stream equipment) were not taken at the exact same time as the off-gas samples. However, it is reasonable to assume that the process control system provides consistent batching of the feed streams and consistent control of the process variables. Third, the samples taken prior to initiation of the blend campaign, as well as those taken during processing the first several batches were only analyzed for a limited number of analytes. Since the purpose of these samples was to ensure compatibility between the solution chemistry and the process equipment, only those analytes that might challenge the envelopes of associated safety bases were targeted.

The results of the inorganic analyses of the feed samples are contained in Table 13, those results for the concentrated bottoms are contained in Table 14, and those for the condensed overheads are contained in Table 15. Organic compound analyses were only performed on one sample from each of the three streams; therefore, the organic analysis results for all three streams are contained in Tables 16 and 17. The INTEC ALD analytical reports for these samples are contained in Appendix C.

Table 13. Inorganic analyses of feed streams processed during NWCF ETS off-gas emissions sampling.

| Analysis Log #:            | 0009272 | 0009274 | 0010022 | 00100415 | 0010164 | 0010167  | 0104103    | 0104125    | 0104142    | 0105062  | 0105063 | 0105112 | 0106071    |
|----------------------------|---------|---------|---------|----------|---------|----------|------------|------------|------------|----------|---------|---------|------------|
| Analysis, units:           |         |         |         |          |         |          |            |            |            |          |         |         |            |
| Sp. G.                     |         | 1.1602  | 1.1549  |          |         | 1.1579   | 1.2220     | 1.2201     | 1.2409     | 1.1976   |         |         |            |
| Acid, N                    |         | 1.564   | 1.596   |          |         | 1.633    | 1.842      | 1.823      | 1.854      | 1.781    |         |         | 1.711      |
| Al, <i>M</i>               |         | 0.2209  | 0.2189  |          |         | 0.2127   | 0.526      | 0.537      | 0.521      | 0.451    |         |         | 0.42448    |
| Sb, <i>M</i>               |         |         |         |          |         |          |            |            |            |          |         |         | <0.000002  |
| As, <i>M</i>               |         |         |         |          |         |          |            |            |            |          |         |         | 0.00000447 |
| Ba, <i>M</i>               |         |         |         |          |         |          |            |            |            |          |         |         | 0.0000290  |
| Be, <i>M</i>               |         |         |         |          |         |          |            |            |            |          |         |         | 0.0000105  |
| B, <i>M</i>                |         | 0.0130  | 0.0134  |          |         | 0.0137   | 0.0076     | 0.0076     | 0.0082     | 0.00971  |         |         |            |
| Cd, <i>M</i>               |         | 0.00411 | 0.00426 |          |         | 0.00420  | < 0.000948 | < 0.000948 | < 0.000948 | 0.00156  |         |         | 0.00156    |
| Ca, <i>M</i>               |         | 0.04376 | 0.04526 |          |         | 0.04684  | 0.01618    | 0.0163     | 0.0169     | 0.02528  |         |         |            |
| Cl, M                      |         | 0.0179  | 0.0117  |          |         | 0.0117   | 0.0276     | 0.0278     | 0.02835    | 0.0226   |         |         |            |
| Cr, <i>M</i>               |         | 0.00275 | 0.00252 |          |         | 0.00284  | 0.00169    | 0.0017     | 0.0018     | 0.00194  |         |         | 0.00196    |
| Co, <i>M</i>               |         |         |         |          |         |          |            |            |            |          |         |         | 0.00000283 |
| Cu, <i>M</i>               |         |         |         |          |         |          |            |            |            |          |         |         | 0.0004244  |
| F, <i>M</i>                |         | 0.08485 | 0.1365  |          |         | 0.8122   | 0.0291     | 0.0258     | 0.0260     | 0.0500   |         |         | 0.04351    |
| Fe, M                      |         | 0.0113  | 0.0121  |          |         | 0.0129   | 0.01422    | 0.0138     | 0.0149     | 0.0133   |         |         |            |
| Pb, <i>M</i>               |         |         |         |          |         |          |            |            |            |          |         |         | 0.0005369  |
| Mn, <i>M</i>               |         |         |         |          |         |          |            |            |            |          |         |         | 0.007841   |
| Hg, <i>M</i>               |         | 0.00198 | 0.00102 |          |         | 0.000603 | 0.000748   | 0.000633   | 0.000678   | 0.000613 |         |         | 0.000743   |
| Ni, <i>M</i>               |         |         |         |          |         |          |            |            |            |          |         |         | 0.00113    |
| NO <sub>3</sub> , <i>M</i> |         | 2.839   | 3.111   |          |         | 3.222    | 3.91       | 3.89       | 3.96       | 3.279    |         |         |            |
| PO <sub>4</sub> , <i>M</i> |         |         |         |          |         |          |            |            |            |          |         |         |            |
| K, <i>M</i>                |         | 0.821   | 0.124   |          |         | 0.127    | 0.0895     | 0.0880     | 0.0880     | 0.0987   |         |         |            |
| Se, M                      |         |         |         |          |         |          |            |            |            |          |         |         | < 0.000003 |
| Ag, M                      |         |         |         |          |         |          |            |            |            |          |         |         | 0.0000011  |
| Na, M                      |         | 5.70    | 0.848   |          |         | 0.853    | 1.32       | 1.31       | 1.36       | 1.17     |         |         |            |
| SO₄, <i>M</i>              |         | 0.0316  | 0.0343  |          |         | 0.0385   | 0.0162     | 0.0087     | 0.0106     | 0.0288   |         |         |            |
| Tl, <i>M</i>               |         |         |         |          |         |          |            |            |            |          |         |         | <0.000001  |
| U, <i>M</i>                |         |         | 0.00032 |          |         | 0.00031  | 0.000185   | 0.000184   | 0.000168   | 0.000206 |         |         | 0.000209   |

Table 13. Inorganic analyses of feed streams processed during NWCF ETS off-gas emissions sampling.

| Analysis Log #:   | 0009272 | 0009274 | 0010022 | 00100415 | 0010164 | 0010167 | 0104103   | 0104125   | 0104142   | 0105062   | 0105063 | 0105112 | 0106071   |
|-------------------|---------|---------|---------|----------|---------|---------|-----------|-----------|-----------|-----------|---------|---------|-----------|
| Analysis, units:  |         |         |         |          |         |         |           |           |           |           |         |         |           |
| V, <i>M</i>       |         |         |         |          |         |         |           |           |           |           |         |         | 0.000012  |
| Zn, M             |         |         |         |          |         |         |           |           |           |           |         |         | 0.0006313 |
| Zr, <i>M</i>      |         | 0.0053  | 0.0054  |          |         | 0.0053  | < 0.00278 | < 0.00278 | < 0.00278 | < 0.00279 |         |         |           |
| H-3, mCi/L        | 0.0158  |         |         | 0.0154   | 0.0126  |         |           |           |           |           | 0.0223  | 0.0219  |           |
| Co-57. mCi/L      |         |         |         |          |         |         | 0.01171   |           |           |           |         |         |           |
| Co-60, mCi/L      |         | 0.0705  | 0.0649  |          |         | 0.0627  | 0.01357   | 0.01710   | 0.01697   |           |         |         |           |
| Sr (total), mCi/L | 20.4    |         |         | 24.28    | 20.69   |         |           |           |           |           | 6.76    | 16.7    |           |
| Cs-134, mCi/L     |         | 0.0705  | 0.0635  |          |         | 0.0646  |           | 0.00546   | 0.00555   | 0.0212    |         |         |           |
| Cs-137, mCi/L     |         | 25.8    | 26.1    |          |         | 26.2    | 12.8      | 14.24     | 14.38     | 19.4      |         |         |           |
| Eu-154, mCi/L     |         | 0.214   | 0.224   |          |         | 0.197   | 0.0299    | 0.0319    | 0.0324    |           |         |         |           |
| Eu-155, mCi/L     |         | 0.0484  | 0.0451  |          |         | 0.0451  |           |           |           |           |         |         |           |
| Nb-94, mCi/L      |         | 0.00316 | 0.00308 |          |         | 0.00373 |           |           |           | 0.00209   |         |         |           |
| Zr-95, mCi/L      |         | 0.0125  | 0.0115  |          |         | 0.0121  |           |           |           | 0.00477   |         |         |           |
| Sb-125, mCi/L     |         |         |         |          |         | 0.0368  |           |           | 0.130     |           |         |         |           |
| Am-241, mCi/L     |         |         |         |          |         |         |           |           |           |           |         |         |           |
| TIC,¹ μg/mL       |         |         |         |          |         |         |           |           |           |           |         |         | <119      |
| UDS, g/L          |         |         |         |          |         |         |           |           |           |           |         |         | 0.619     |
| Total inorganic c | arbon.  |         |         | -        |         |         |           |           |           |           |         |         |           |

| Table 14. Inorganic analy | yses of bottoms | streams during | NWCF ETS off- | gas emissions |
|---------------------------|-----------------|----------------|---------------|---------------|
| Analysis Log #:           | 0105106         | 0106146        | 0106214       | 0106233       |
| Analysis, units:          |                 |                |               |               |
| Sp. G.                    | 1.0747          | 1.3564         |               | 1.3036        |
| Acid, N                   | 2.559           | 2.868          | 1.741         | 2.830         |
| A1, <i>M</i>              | 0.518           | 0.859          | 0.31256       | 0.711         |
| Sb, <i>M</i>              |                 |                | 0.0000128     |               |
| As, M                     |                 |                | < 0.000008    |               |
| Ba, M                     |                 |                | 0.0000216     |               |
| Be, M                     |                 |                | 0.0000067     |               |
| B, M                      |                 |                |               |               |
| Cd, M                     |                 |                | 0.00131       |               |
| Ca, M                     |                 |                |               |               |
| Cl, <i>M</i>              | 0.0226          | 0.02866        |               | 0.03732       |
| Cr, M                     |                 |                | 0.001674      |               |
| Co, M                     |                 |                | 0.0000241     |               |
| Cu, M                     |                 |                | 0.0003003     |               |
| F, <i>M</i>               | 0.0466          | 0.0900         | 0.052775      | 0.0684        |
| Fe, <i>M</i>              | 0.0100          | 0.0700         | 0.00-2        |               |
| Pb, <i>M</i>              |                 |                | 0.0004164     |               |
| Mn, <i>M</i>              |                 |                | 0.006174      |               |
| Hg, <i>M</i>              |                 |                | 0.000568      |               |
| Ni, M                     |                 |                | 0.0009426     |               |
|                           | 4.03            | 5.27           | 0.00007420    | 7.22          |
| $NO_3, M$                 | 0.003871        | 0.01399        |               | 0.01382       |
| $PO_4, M$                 | 0.003871        | 0.129          |               | 0.154         |
| K, <i>M</i>               | 0.0139          | 0.129          | < 0.000012    | 0.154         |
| Se, M                     |                 |                | <0.000012     |               |
| Ag, M                     | 0.505           | 1.56           | <u> </u>      | 1.91          |
| Na, M                     | 0.505           | 1.30           |               | 1.91          |
| SO <sub>4</sub> , M       |                 |                | <0.000004     |               |
| Tl, <i>M</i>              | 0.000047        | 0.000211       | <0.000004     | 0.0004257     |
| U, <i>M</i>               | 0.000247        | 0.000311       | 0.000261      | 0.0004357     |
| V, <i>M</i>               |                 |                | 0.000011      |               |
| Zn, M                     |                 |                | 0.000494      |               |
| Zr, M                     | 0.0100          | 0.0151         |               |               |
| H-3, mCi/L                | 0.0108          | 0.0151         |               |               |
| Co-57, mCi/L              |                 |                |               |               |
| Co-60, mCi/L              | 0.0352          |                |               |               |
| Sr (total), mCi/L         |                 |                |               |               |
| Cs-134, mCi/L             | 0.0236          |                |               |               |
| Cs-137, mCi/L             | 21.2            |                |               |               |
| Eu-154, mCi/L             | 0.0904          |                |               |               |
| Eu-155, mCi/L             |                 |                |               |               |
| Nb-94, mCi/L              |                 |                |               |               |
| Zr-95, mCi/L              | 0.00528         |                |               |               |
| Sb-125, mCi/L             |                 |                |               |               |
| Am-241, mCi/L             |                 |                |               |               |
| TIC,¹ μg/mL               |                 |                | <119          |               |
| UDS, g/L                  | 5.3             | 1.187          | 1.288         | 0.725         |
| Total inorganic carbon.   |                 |                |               |               |

| Table 15. Inor                             | ganic analys | ses of conde | nsate strean                          | ns during N  | WCF ETS o    | off-gas emis | sions        |
|--------------------------------------------|--------------|--------------|---------------------------------------|--------------|--------------|--------------|--------------|
| Analysis Log #:                            | 0105061      | 0105073      | 0105087                               | 0105092      | 0106145      | 0106221      | 0106241      |
| Analysis, units:                           |              |              |                                       |              |              |              |              |
| Sp. G.                                     | 1.0127       | 1.0121       | 1.0131                                | 1.0131       | 1.0138       |              | 1.0130       |
| Acid, N                                    | 0.467        | 0.450        | 0.476                                 | 0.480        | 0.498        | 0.514        | 0.471        |
| Al, <i>M</i>                               | 0.00108      | < 0.0008     | < 0.00042                             | < 0.00075    | < 0.00042    | 0.00006312   | < 0.00042    |
| Sb, <i>M</i>                               |              |              |                                       |              |              | < 0.0000004  |              |
| As, <i>M</i>                               |              |              |                                       |              |              | < 0.0000004  |              |
| Ba, <i>M</i>                               |              |              |                                       |              |              | 0.000000066  |              |
| Be, <i>M</i>                               |              |              |                                       |              |              | < 0.0000001  |              |
| B, <i>M</i>                                |              |              |                                       |              |              |              |              |
| Cd, <i>M</i>                               |              |              |                                       |              |              | < 0.00000004 |              |
| Ca, <i>M</i>                               |              |              |                                       |              |              |              |              |
| Cl, <i>M</i>                               | 0.004928     | 0.00485      | 0.005156                              | 0.00525      | 0.005602     |              | 0.00539      |
| Cr, <i>M</i>                               | 0.001,540    | 3,33,102     |                                       |              |              | 0.00000052   |              |
| Co, <i>M</i>                               |              |              |                                       |              |              | < 0.0000002  |              |
| Cu, <i>M</i>                               |              |              |                                       |              |              | < 0.0000003  |              |
| F, <i>M</i>                                | < 0.00041    | < 0.00037    | < 0.00037                             | < 0.00037    | < 0.00018    | 0.0001791    | < 0.00018    |
| Fe, <i>M</i>                               | VO.00041     | 10.00057     | -0.00057                              | 10.00057     | 0.000.0      | 0.000.75     | 3133333      |
| Pb, <i>M</i>                               |              |              |                                       |              |              | < 0.0000004  |              |
| Mn, <i>M</i>                               |              |              |                                       |              |              | 0.00000024   |              |
|                                            | 0.0000229    | 0.0000189    | 0.0000186                             | 0.0000115    | 0.0000274    | 0.00001969   | 0.0000163    |
| Hg, M                                      | 0.0000229    | 0.0000169    | 0.0000100                             | 0.0000115    | 0.0000274    | 0.00000055   | 0.0000105    |
| Ni, <i>M</i><br>NO <sub>3</sub> , <i>M</i> | 0.4011       | 0.4198       | 0.02049                               | 0.4233       | 0.4393       | 0.00000055   | 0.4007       |
| • .                                        | 0.4011       | 0.4196       | 0.02049                               | 0.4255       | 0.4373       |              | 0.4007       |
| $PO_4, M$                                  |              |              |                                       |              |              |              |              |
| K, <i>M</i>                                |              |              |                                       |              |              | < 0.0000007  |              |
| Se, M                                      |              |              |                                       |              |              | <0.0000007   |              |
| Ag, M                                      |              |              |                                       |              |              | <0.0000002   |              |
| Na, M                                      | 0.000153     | 0.000120     | <0.00003                              | 0.000113     | 0.000083     |              | < 0.000059   |
| $SO_4, M$                                  | 0.000153     | 0.000120     | < 0.00003                             | 0.000112     | 0.000083     | < 0.0000002  | <0.000039    |
| Tl, <i>M</i>                               | -0.0000014   | -0.0000014   | -0.0000014                            | <0.0000014   | <0.0000014   |              | < 0.0000014  |
| U, <i>M</i>                                | < 0.0000014  | < 0.0000014  | < 0.0000014                           | < 0.0000014  | < 0.0000014  | <0.0000014   | <0.0000014   |
| V, <i>M</i>                                |              |              |                                       | F            |              | <0.0000002   |              |
| Zn, M                                      |              |              |                                       |              |              | 0.00000081   |              |
| Zr, M                                      |              |              |                                       |              |              |              |              |
| H-3, mCi/L                                 |              |              |                                       | •            |              |              |              |
| Co-57, mCi/L                               |              |              |                                       |              |              |              |              |
| Co-60, mCi/L                               |              |              |                                       |              |              |              |              |
| Sr (total), mCi/L                          |              |              |                                       |              |              |              |              |
| Cs-134, mCi/L                              |              |              |                                       |              |              |              |              |
| Cs-137, mCi/L                              |              |              |                                       |              |              |              |              |
| Eu-154, mCi/L                              |              |              |                                       |              |              |              |              |
| Eu-155, mCi/L                              |              |              |                                       |              |              |              |              |
| Nb-94, mCi/L                               |              |              |                                       |              |              |              |              |
| Zr-95, mCi/L                               |              |              |                                       |              |              |              |              |
| Sb-125, mCi/L                              |              |              |                                       |              |              |              |              |
| Am-241, mCi/L                              |              |              |                                       |              |              |              |              |
| TIC,¹ μg/mL                                |              |              |                                       |              |              | <23.8        |              |
| UDS, g/L                                   | none visible | none visible | none visible                          | none visible | none visible | 0.0          | none visible |
| 1. Total inorganic c                       | arbon.       |              | · · · · · · · · · · · · · · · · · · · |              |              |              |              |
|                                            |              |              |                                       |              |              |              |              |

| Stream                                     | Blended I   |             | Botton |    | Condensate |     |
|--------------------------------------------|-------------|-------------|--------|----|------------|-----|
|                                            | Result      | LQ          | Result | LQ | Result     | LQ  |
| Analyte, units:                            |             |             |        |    |            |     |
| TOC, μg/mL                                 | 608.462     |             | 754.99 |    | 147.853    |     |
| Chloromethane, μg/L                        | <10         | U M         | <10    | U  | <10        | U   |
| Vinyl Chloride, μg/L                       | <10         | U           | <10    | U  | <10        | U   |
| Bromomethane, μg/L                         | 4           | J           | 37     | ВМ | 160        | EBM |
| Chloroethane, µg/L                         | <10         | U           | <10    | U  | <10        | U   |
| Trichlorofluoromethane, µg/L               | <10         | U           | <10    | U  | <10        | U   |
| 1,1-Dichloroethene, μg/L                   | <10         | U           | <10    | U  | <10        | U   |
| 1,1,2-Trichloro-1,2,2-                     | <10         | U           | <10    | U  | <10        | U   |
| Carbon disulfide, µg/L                     | <10         | U           | <10    | U  | <10        | U   |
| Acetone, μg/L                              | 9           | J           | <20    | UΖ | 32         | Y   |
| Methylene chloride                         | <10         | U           | <20    | UΖ | <20        | UΖ  |
| Trans-1,2-dichloroethene, μg/L             | < 10        | U           | <10    | U  | <10        | U   |
| 1,1-Dichloroethane, µg/L                   | <10         | U           | <10    | U  | <10        | U   |
| Cis-1,2-dichloroethene, µg/L               | <10         | U           | <10    | U  | <10        | U   |
| 2-Butanone, μg/L                           | <10         | U           | <10    | U  | <10        | U   |
| Chloroform, µg/L                           | <10         | U           | <10    | U  | <10        | U   |
| 1,1,1-Trichloroethane, µg/L                | <10         | U           | <10    | U  | <10        | U   |
| Carbon tetrachloride, µg/L                 | <10         | U           | <10    | U  | <10        | U   |
| Benzene, µg/L                              | <10         | U           | <10    | U  | <10        | U   |
| 1,2-Dichloroethane, µg/L                   | <10         | U M         | <10    | U  | <10        | U   |
| Trichloroethene, μg/L                      | <10         | U           | <10    | U  | <10        | U   |
| 1,2-Dichloropropane, µg/L                  | <10         | U           | <10    | U  | <10        | U   |
| Bromodichloromethane, µg/L                 | <10         | U           | <10    | U  | <10        | U   |
| Cis-1,3-dichloropropene, µg/L              | <10         | U           | <10    | U  | <10        | U   |
| 4-Methyl-2-pentanone, μg/L                 | <10         | U           | <10    | U  | <10        | U   |
| Toluene, μg/L                              | <10         | U           | <10    | U  | <10        | U   |
| Trans-1,3-dichloropropene, μg/L            | <10         | U           | <10    | U  | <10        | U   |
| 1,1,2-Trichloroethane, µg/L                | <10         | U           | <10    | U  | <10        | U   |
| Tetrachloroethene, μg/L                    | <10         | U           | <10    | U  | <10        | U   |
| 2-Hexanone, μg/L                           | <10         | U           | <10    | U  | <10        | U   |
| Dibromochloromethane, µg/L                 | <10         | U           | <10    | U  | <10        | U   |
| Chlorobenzene, µg/L                        | <10         | U           | <10    | U  | <10        | U   |
| Ethylbenzene, µg/L                         | <10         | U           | <10    | U  | <10        | U   |
| M-xylene and p-xylene, μg/L                | <20         | U           | <20    | U  | <20        | U   |
| O-xylene, μg/L                             | <10         | U           | <10    | U  | <10        | U   |
| Styrene, µg/L                              | <10         | U           | <10    | U  | <10        | U   |
| Bromoform, µg/L                            | <10         | U           | <10    | U  | <10        | U   |
| 1,1,2,2-Tetrachloroethane, μg/L            | <10         | U           | <10    | U  | <10        | U   |
| Tentatively Identified Compounds:          |             |             |        |    |            |     |
| Unknowns, number                           | 1/10        | J           |        |    |            |     |
| LQ = lab qualifiers (see Appendix C for de | efinitions) | <del></del> |        |    |            |     |

| Stream                      | Blende  | d Feed | Botto  | ms  | Condensate |     |
|-----------------------------|---------|--------|--------|-----|------------|-----|
| Analysis Log #:             | 0106    | 071    | 01062  | 221 | 01062      | 214 |
|                             | Result  | LQ     | Result | LQ  | Result     | LQ  |
| Analyte, units:             |         |        |        |     |            |     |
| TOC, μg/mL                  | 608.462 |        | 754.99 |     | 147.853    |     |
| N-Nitrosodimethylamine      | <20     | U M    | 36     |     | 42         |     |
| Pyridine                    | <20     | U      | <20    | U   | <20        | U   |
| Phenol                      | <20     | U      | <20    | U   | <20        | U   |
| bis(2-Chloroethyl)ether     | <20     | U      | <20    | U   | <20        | U   |
| 2-Chlorophenol              | <20     | U      | <20    | U   | <20        | U   |
| 1,3-Dichlorobenzene         | <20     | U      | <20    | U   | <20        | U   |
| 1,4-Dichlorobenzene         | <20     | U      | <20    | U   | <20        | U   |
| 1,2-Dichlorobenzene         | <20     | U      | <20    | U   | <20        | U   |
| 2-Methylphenol              | <20     | U      | <20    | U   | <20        | U   |
| bis(2-Chloroisopropyl)ether | <20     | U      | <20    | U   | <20        | U   |
| 3 & 4-Methylphenol          | <20     | U      | <20    | U   | <20        | U   |
| N-Nitroso-di-n-propylamine  | <20     | U      | <20    | U   | <20        | U   |
| Hexachloroethane            | <20     | U      | <20    | U   | <20        | U   |
| Nitrobenzene                | <20     | U M    | <20    | U   | <20        | U   |
| Isophorone                  | <20     | U      | <20    | U   | <20        | U   |
| 2-Nitrophenol               | <20     | U      | <20    | U   | <20        | U   |
| 2,4-Dimethylphenol          | <20     | U      | <20    | U   | <20        | U   |
| bis(2-Chloroethoxy)methane) | <20     | U      | <20    | U   | <20        | U   |
| 2,4-Dichlorophenol          | <20     | U      | <20    | U   | <20        | U   |
| 1,2,4-Trichlorobenzene      | <20     | U      | <20    | U   | <20        | U   |
| Naphthalene                 | <20     | U      | <20    | U   | <20        | U   |
| 4-Chloroaniline             | <20     | U      | <20    | U   | <20        | U   |
| Hexachlorobutadiene         | <20     | U      | <20    | U   | <20        | U   |
| 4-Chloro-3-methylphenol     | <20     | U      | <20    | U   | <20        | U   |
| 2-Methylnaphthalene         | <20     | U      | <20    | U   | <20        | U   |
| Hexachlorocyclopentadiene   | <20     | U      | <20    | U   | <20        | U   |
| 2,4,6-Trichlorophenol       | <20     | U      | <20    | U   | <20        | U   |
| 2,4,5-Trichlorophenol       | <20     | U      | <20    | U   | <20        | U   |
| 2-Chloronaphthalene         | <20     | U      | <20    | U   | <20        | U   |
| 2-Nitroaniline              | <20     | U      | <20    | U   | <20        | U   |
| Dimethylphthalate           | <20     | U      | <20    | U   | <20        | U   |
| 2,6-Dinitrotoluene          | <20     | U      | <20    | U   | <20        | U   |
| Acenaphthylene              | <20     | U      | <20    | U   | <20        | U   |
| 3-Nitroaniline              | <20     | U      | <20    | U   | <20        | U   |
| Acenaphthene                | <20     | U      | <20    | U   | <20        | U   |

Table 17. SVOC analyses of NWCF ETS streams during NWCF ETS off-gas emissions Blended Feed Bottoms Condensate Stream 0106221 0106214 0106071 Analysis Log #: LQ LQ Result LQ Result Result Analyte, units: 44 Μ 110 M 2,4-Dinitrophenol 420 DMH 4-Nitrophenol U <20 U M <20 <20 U M Dibenzofuran <20 U <20 U <20 U 2,4-Dinitrotoluene U U <20 U <20 <20 Diethylphthalate <20 UM< 20 U M U M < 20 4-Chlorophenyl-phenylether U <20 U < 20 U <20 Fluorene U U <20 <20 U < 20 4-Nitroaniline U <20 U <20 U <20 4,6-Dinitro-2-methylphenol U M <20 U M <20 U M <20 N-Nitrosodiphenylamine U <20 U <20 U <20 U U Tri-n-butyl phosphate U U Azobenzene 4-Bromophenyl-phenylether <20 U U <20 U <20 Hexachlorobenzene <20 U <20 U <20 U Pentachlorophenol U <40 U <40 U <40 Phenanthrene U <20 U <20 U <20 Anthracene U <20 U <20 U <20 Carbazole U <20 U U <20 < 20 Di-n-butylphthalate <20 U M <20 U M <20 U Fluoranthene <20 U <20 U U < 20 Pyrene U <20 U <20 U <20 Butylbenzylphthalate < 20 U <20 U <20 U 3,3'-Dichlorobenzidine <20 U M < 20 U <20 U M Chrysene U <20 U <20 U <20 Benzo(a)anthracene U U <20 U <20 <20 bis(2-Ethylhexyl)phthalate U <140 U <20 U <20 Di-n-octylphthalate U U <20 U <20 <20 Benzo(b)fluoranthene <20 U <20 U <20 U Benzo(k)fluoranthene U < 20 U <20 U <20 Benzo(a)pyrene U <20 U <20 U <20 Indeno(1,2,3-cd)pyrene U <20 U <20 <20 U Dibenzo(a,h)anthracene U <20 U <20 U <20 Benzo(g,h,I)perylene U <20 U <20 U <20 Tentatively Identified Compounds: 19/509 J 5/130 J Unknowns, number identified/conc. 7/501 J 17 J Tri-n-butyl phosphate

LQ = lab qualifiers (see Appendix C for definitions)

## 7. PROCESS OPERATING CONDITIONS

The NWCF ETS is operated as described in Section 2. The evaporator is initially filled with fresh waste solution. The temperature in the evaporator flash column, prior to initiation of stream is usually between 50 and 60°C. Steam flow is ramped from 0 to 1730 lb/hr in 15 to 45 minutes and then maintained for eight to ten hours until the desired solution density is obtained. Approximately 2 to 3 hours is required for the column to reach a full boil at around 100°C. Fresh feed solution is added to the evaporator until near the end of the batch. The temperature increases 3-4° throughout the batch as the concentration increases to the target density.

Offgas sampling at the beginning of the evaporator run was synchronized with the initiation of steam to the evaporator. Approximately 3 hours was needed to collect the offgas samples, including the SMVOC runs. This provided a representative average of the emissions during the startup period. SMVOC samples were actually started 15-20 minutes prior to steam initiation in order to capture any burst of volatile organic emissions on the onset of solution heating. Sample collection at the end of the evaporator batches was coordinated with the ETS operators in order to sample during the final 3-4 hours of the evaporator batch.

Process parameter data were collected during the NWCF ETS emissions sampling by the NWCF Distributive Control System (DCS). A history of key process variables was collected using fifteen-minute average data. The data were then tabulated for the times when the sampling was taking place. Appendix D compiles the process parameters for the sixteen sample collection runs.

The evaporator operated within normal operating parameters throughout the period of sample collection. The feed batches had very similar densities and temperatures, indicating very similar compositions. The total flow from the NWCF (containing the NWCF ETS emissions) was essentially constant limiting variation due to deposition or re-entrainment.

During the collection of sample train 0060-STRT-02, sampling was interrupted for an emergency drill while the evaporator batch continued. Sampling was interrupted from 0850 to 0922 on June 6, 2001 until sampling personnel were notified that they could continue. During this time, the average temperature in the evaporator increased from 76.4 to 97.4 degrees.

## 8. DQO ASSESSMENT AND PROJECT SURVEILLANCE

Data quality objectives (DQOs) for the NWCF ETS offgas emissions project are defined in the quality assessment project plan (QAPjP, company document PLN-879). Sample collection in the field was coordinated by the Project Technical Leads (PTL) with independent surveillance performed by the Project Quality Assurance Officer (PQAO). The sample collection activities were monitored by the PTL and PQAO, thus ensuring that the sample collection activities were completed in accordance with the test plan and QAPjP and that the samples were maintained under proper custody and conditions at all times. All changes to the test plan required advance approval from the PTL and PQAO prior to being implemented during sample collection. A standard field change form was used to document the approvals for these changes.

The services of the INEEL Sample Management Office (SMO) were not enlisted to review the analytical data. This was previously completed on the NWCF Calciner offgas emissions inventory, but was not within the budget constraints of the current project. Therefore, a cursory review of the analytical data QA/QC requirements was completed by the PQAO and is provided in lieu of the Limitations and Validation (L&V) reports that are provided by the SMO on previous projects.

# 8.1 Documented Field Changes

The QAPjP allowed for in-field changes to requirements of the QAPjP and sampling protocols as long as such changes were approved per Section 13.1 of the QAPjP. Also allowed by the QAPjP were properly approved changes to the sampling checklists. Seven field change forms capturing 11 different requested variances from the QAPjP or standard protocol were approved.

### 8.1.1 VOC Sample Collection

Method 0031 for VOCs still requires the storage of Tenax® and Anasorb-747® tubes at less than 10°C after tube conditioning, during transport, and up to the time of tube usage in sampling. This is a typical protocol deviation among current laboratory service providers, since it is deemed unnecessary in conjunction with the common practice of sealing the resin tubes in air-tight containers and using a trip blank to identify potential fugitive contamination that may occur prior to use of the tubes in the field and during their return to the laboratory. Conditioned sample media availability, schedule slippage, and laboratory technical guidance were critical factors in the project field decision to waive this requirement via a field change once it was determined that the laboratory had not complied.

The method requirement that conditioned media tubes not be exposed to severe pressure variations during transport is satisfied amply by the multiple layers of containment used by the contract laboratory providing the sample tubes. Therefore, in this regard, no field change was applicable. It should also be noted that all of the Tenax® and Anasorb-747® tubes were cooled to 0-10°C immediately following sample collection.

The initial intent of the contract sampling team was to not preserve aqueous samples collected for VOCs (Method 0031) by acidification with 8N HCl to a measured pH of < 2. The BBWI Project Technical Lead and the PQAO pointed out that it would be preferable to perform this standard EPA preservation protocol on such aqueous samples and on associated reagent water blanks. A field change to the sampling checklist reflecting that guidance was approved and sampling team was so instructed.

Another field change was proposed and approved to require another pair of Tenax®/Anasorb-747® tubes be collected as a field blank for the second day of Method 0031 sampling. The project had already varied in the QAPjP from the standard method requirement for a field blank every two hours of sampling based on the expected sampling period and reviews of cost /benefit and technical applicability of this QC-related method requirement to sample train operations, as scheduled.

The last field change related to the 0031 sample trains and protocols was one to keep the flowrates at or below 0.5 Lpm rather than going with the standard EPA Method 0031 upper limit of 1 Lpm. This allowed four sets of tubes to be ran in the 0031 sampling trains over a typical sampling interval meeting or exceeding the method target sampling time of 2 hours. This is compliant with the intent of Section 1.8 of the standard EPA SMVOC method.

## 8.1.2 SVOC Sample Collection

One field change form was approved specific to the Method 010 trains for SVOCs. This change incorporated a final field dilution of the condensate fractions from these trains from just under a total volume of 500 mL to a total volume of 1 liter. This reflects a dilution normally performed on the samples after receipt at the laboratory. By performing this dilution in the field under close supervision of the project tech lead and sample team leads, the project was readily able to comply with the 70 Bq/gram ceiling limit for shipping the associated SVOC samples in a non-radiological classification per DOT regulations.

### 8.1.3 SCS Trains and Screening

A field change was approved to allow for cancellation of a scheduled third radiological contamination evaluation train (SCS-EVAP-3), based on consistent and low radioactivity results obtained for all previous sample contamination trains and routine gamma counting screening that was performed in accordance with MCP-1173, *Package and Ship NWCF Offgas Emissions Samples Offsite for Analysis*, Revision 2.

## 8.1.4 Metals and Anions Sample Collection

No field changes were required for the metals and anions sample collection runs. All runs proceeded in accordance with the sample collection checklists and test plans.

### 8.1.5 Miscellaneous Decisions

A final field change capturing five different field decisions was processed and approved. Per QAPjP language, not all of the decisions under this field change were required by project planning documents to be documented by a field change. However, the PQAO and the PTL decided it would be a best management practice to well document these decisions, and this process was the most accommodating and represented a configuration management control mechanism totally internal to the project. The following change elements were approved on this change form.

## Element1:

It was determined that the pH meters supplied by the sampling contractor and in the field for this project could not meet reasonable time to stabilization criteria. Based on this fact, a field decision was made by PQAO and PTL to allow the samplers to do all pH measurements with pH paper versus requiring a meter. This was facilitated by the fact that in-field neutralizations of liquid sample fractions was not necessary as in the emissions inventory for

the NWCF Calciner. Approval was given at beginning of sample collections for the use of indicator paper for pH measurements in NaOH impinger sample fractions due to the harsh effects of the high pH.

#### Element 2:

This documents and certifies the assumption made early in project that the oxygen monitor readings of the sampled gas stream basically reflected the concentration of oxygen in ambient air. This assumption was used to relax standard EPA method calibration protocols and was already allowed by the QAPjP.

#### Element 3:

In conjunction with Element 2 above, it was decided to use oxygen cylinders already in inventory and marked as 20.8% O<sub>2</sub> rather than secure standards as cited in 40 CFR 60. In an associated decision, it was determined that for this project, the percent drift determinations would be made over time lines comparable to the actual train run times versus the 24-hour comparison baselines found in the 40 CFR 60 regulations which were inferentially tied to continuous monitoring.

#### Element 4:

Similar to Element 3 above, two other decisions related to the operation of the "continuous emissions monitoring system (CEMS)" monitors were made before inception of sample collections. First, use of a non-heated Perma-Pure® dryer to condition sample stream was authorized. Second, a rotameter with a 0-0.8 Lpm range was selected for use with the  $O_2$  monitor. This resulted in a target flowrate of 0.75 Lpm rather than the 1.0 Lpm cited in the standard method.

### Element 5:

Typical condensate recoveries from Method 0050 and Method 0060 trains were much less than 1.0 ml. The condensate and knockout (KO) rinse was added to impinger K1- K2 contents and rinses. This was per approved checklists. Additionally, for VOCs, the condensate fraction was topped to fill a 20-ml standard VOA vial and acidified with 8N HCl to a pH of <2. Reagent water blanks for VOCs analyses were processed in same fashion as 0031 condensates. In retrospect this decision element is redundant to other field changes already processed.

# 8.2 Data Quality Indicators

As of this point, all post-laboratory data evaluations for achievement of qualitative objectives and for quantitative data quality indicator acceptance criteria have been performed by the PTL and the PQAO. With the exception of a final evaluation of inter-train precision based on calculations of RSDs associated with results of surrogates from all trains for VOCs and all trains for SVOCs, the data quality indicators presented in the QAPjP have all been evaluated.

Reviews of analytical reports indicated that method performance and associated QC, as depicted in the lab reports, met analytical method and project planning document requirements, with a few instances of failures to meet individual QC criteria. The results for the vast majority of

associated QC data meet QAPjP criteria and support current designated project uses of this data. As stated, an independent analytical data validation to the cited Statement of Work (SOW) requirements found in ER-SOW-156, INEL Sample Management Office (SMO) Statement of Work for Inorganic & Miscellaneous Classical Analyses, Revision 1, ER-SOW-169, Statement of Work for Organic Analyses Performed for INEL Sample Management Office, Revision 0, or in associated standard analytical methods has not been performed. A full data validation process could potentially lead to additional data qualifications based on standard methods or cited SOWs.

## 8.3 Sampling Documentation Reviews

As in past emissions tests conducted for the NWCF Calciner, all field sheets related to sample collections were reviewed in the field as the sampling proceeded. Reviews were conducted by both the PTL and by the PQAO, and were completed to schedule per the QAPjP. Minor omissions or errors in field-level paperwork were therefore immediately caught and corrections were implemented while the sampling team was still in the field, and/or, if deemed necessary, so that re-sampling could occur with minimal delays or additional costs. Most observations that required corrective actions involved the accuracy or completeness of field data forms, and these instances were actually infrequent with respect to the sheer volume of field data entries required for the project.

All data were manually recorded in the field into the associated logbooks, sample data sheets and sampling checklists associated for each sample train type used during project sample collections. The data on sample data sheets were then uploaded into laptop computer templates of these same respective forms. There were some observed anomalies between some of the field definitions on the paper copies versus those on the electronic templates. These were noted in the individual internal PQAO reports to the PTL during each train type (0031, 0030, 0050, 0060) testing period. The sampling contractor (SAIC) made accommodations in each case by either giving more specific instructions to the sample collectors regarding the required entries on the paper forms, or by changing appropriate entry fields in the electronic templates. All changes were reviewed and approved in the field as required by the QAPjP.

As a result of reviews of the field-level documentation, it was discovered that the sample collectors had noted that sample #3411, Set#1 Anasorb-747® tube for Train 0031-END-1 had a crack at one end. Subsequent reviews of the laboratory entries into the related chain-of-custody forms did not indicate that this condition was noted by lab personnel on receipt of the samples. The laboratory analytical results appear consistent with other corresponding Anasorb-747® results and meet the necessary surrogate and internal standard recoveries.

Reviews of calibration documentation for associated sampling equipment identified no deficiencies with respect to requirements. Reviews of chain-of-custody and request for analysis forms identified no deficiencies in those documents.

# 8.4 Records Management

Records associated with this project have been retained and filed in an approved secure central file location (CFL) per company records management requirements. Project records have been categorized and dispositioned as environmental records and are currently assigned a permanent retention period. Per the project QAPjP and related company requirements and procedures for the designation and management of quality records, the following records have been further characterized as quality records:

- Quality Assurance Project Plan (QAPjP)
- Test Plans
- Logbooks
- Certificates of Analysis
- Calibrations
- Field Data Sheets
- Field Changes
- COC/RFA
- Analytical Data and Emissions Calculations Spreadsheets
- QA Reports
- Limitation and Validation Reports (not applicable yet for this project phase)
- Final Reports

Some of the above records are in paper form, some in electronic format, and some in dual media. All are stored appropriately in locked cabinets and controlled key access within the designated CFL. A file index has been prepared for these project records, and is available at the CFL. All records in CFL have been assigned appropriate INEEL uniform file codes in compliance with associated company procedures for management of files and records.

# 8.5 Review of Spreadsheet Calculations

As part of their contracted services, the sampling contractor provided spreadsheets which captured all appropriate field sampling data, analytical data, and project-required plant operations data, and which calculated from this data estimated total emissions rates from the NWCF ETS. As referred to elsewhere in this report, these estimates are conservative contributors to the emissions related to the operation of the ETS itself because other sources of miscellaneous plant tank operations continuously emit purge and/or vessel sparging gases to this same NWCF offgas line.

The first line of independent review and QC of these contractor spreadsheets occurred internal to the contractor. A second 100% review was conducted by the PTL, with any required corrections being implemented in conjunction the contractor for sake of configuration management and documenting general agreement with changes. Lastly, the PQAO reviewed in excess of 20% of the resultant pertinent entries after each iteration of changes. This comprehensive and iterated approach exceeded the basic requirement of the QAPjP that the PQAO verify only 20% of all entries and resultant calculation values. Once the sampling contractor lead, PTL, and PQAO were in agreement with the acceptability of the spreadsheets, the spreadsheets were noted as verified and released to be used on final report compilations.

# 8.6 Analytical Results

## 8.6.1 Data Reporting and Flagging

The QAPjP, associated task order statements of work, and technical lead guidance to the analytical laboratory defined project-specific requirements for data flagging, assignment of "<" symbols, and selection of most conservative and technically defensible result values for purposes of inserting conservative (high-biased) estimators of emissions rates for each identified compound into the emissions calculations. These requirements were in addition to the standard method-related data qualification flagging, and derive from the following EPA guidance documents:

- EPA 1998a, Guidance on Collection of Emissions Data to Support Site-Specific Risk Assessments at Hazardous Waste Combustion Facilities, EPA530-D-98-002, August.
- EPA 1998b, Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities, EPA530-D-98-001A, July, Appendix A-1, Table A-1.
- Rule 1. When there was a non-detect below the MDL in a train fraction for a given compound, then the lesser of the RDL or the RL was used.
- Rule 2. When the laboratory RL is greater than the RDL, and a compound was detected above the MDL in a train fraction, but the result was less than the RDL, then the RDL was used.
- Rule 3. When the RL is less than the RDL, and a compound was detected in a given train fraction above both the MDL and RL values, but less than the RDL, then the RDL was used.
- Rule 4. When the RL is less than the RDL, and a compound was detected above the MDL, but result was less than the RL, then the RL was used (not the RDL).
- Rule 5. Any compound that was detected above the RDL was used for the risk calculation applications and no "<" ("less than") sign was assigned for that result in the respective train fraction.
- Rule 6. When a result for a SVOC or VOC target compound in a given train fraction was greater than MDL, but less than the RL, and result was assigned an estimated flag, the "<" flag was also assigned.
- Rule 7. Whenever a "<" flag was assigned to any given train fraction result, then the "<" flag propagated to the train total for that compound, unless it was dropped due to protocol of rounding to significant figures in the train total summation process. (ASTM E29-93a 1999).

Rules 2 and 5 default to the RL, not the RDL, when the RL is less than the RDL, and the "hit" was less than the RL. This was justified since the RL is a statistically established conservative RL, established by the analytical laboratory. Therefore, team assessed uses of RL value for risk calculations as a justified approach.

Most of the lab-assigned data qualifier flags are based on lab methods and procedures, and are standard to a large majority of environmental services laboratories. For metals analyses, the QAPjP required "B" flags to be assigned to metals results greater than MDL but less than the Reporting Limit.

Additionally, a system of assigning project flags "P", "N," and "A" to train total results was developed to evaluate the significance of each given target analyte result for the complete sampling train based on the relative occurrence of real hits for the various train fractions that comprised each sample train. The "P" indicated that related compound was detected in some train fractions, but not all. The "N" indicated that there was no positive detection in any train fraction for that compound. Lastly, the "A" flag on the train total result indicated that the compound was detected in all of the train sample fractions.

#### 8.6.2 Blank Corrections

Blank corrections for metals trains are allowed by the cited EPA guidance documents and standard air sampling methods. Reagent blank corrections were only made where actual hits occurred in the reagent blanks.

The performance of the SMVOC blank sample indicated that residual acetone and methylene chloride was present in the sample collection line connecting the probe to the train setup. The resulted from failure to adequately purge the sample collection line following collection of the SVOC samples which involves rinsing the line with a mixture of acetone and methylene chloride. The VOC results showed a rapid decay of acetone and methylene chloride in successive sample fractions. In spite of the fugitive contamination (which was included in the emissions inventory), volatile species emissions were very low; therefore, this problem is not considered a significant limitation of the data set. In order to correct this anomaly, it is recommended that a separate VOST probe always be used to collect the SMVOC trains. In the present inventory, the Project Technical Lead authorized the SVOC Method 5 probe for the SMVOC runs to reduce the risks associated with insertion and removal of a second probe into the NWCF offgas duct.

### 8.6.3 Data Reporting

Data reporting from laboratory was comprised of Certificates of Analysis, EDDs, and actual final reports which included complete data packages constructed to the lab's data package level equivalent to the INEEL Tier 1 reporting requirements. The INEEL internal documents that prescribe these data package expectations are ER SOWs -156 and -169. These reporting requirements were meant to allow for later validation of data should project management decide to subject this data to either a Level A or a Level B data validation per existing INEEL Sample Management Office procedures. Such a future validation decision might be made based on further identified uses of data or other criteria such as permit support, operational changes, planned facility modifications, etc.

## 8.6.4 Analytical QC

### 8.6.4.1 MS/MSD and LCS/LCSD Samples

Although analytical performance is treated in Section 5 of this report, there are some laboratory related QC aspects of results which need to be discussed in this section. The first QC topic area deriving from QAPjP relates to the selection and analysis of matrix spike samples and matrix spike duplicate samples, as well as the alternative approach of analyzing laboratory control sample spikes and duplicates.

The structural configuration of these EPA standard methods air sampling trains and non-homogeneity of matrices present in the various train sample fractions collected from the trains make traditional application of matrix spikes, matrix spike duplicates, and even sample splits very difficult. Splitting of sample fractions for analyses to calculate precision estimators obviously raises associated detection limits for those trains. Simultaneous or sequential operation and sample collections from two or three complete trains in order to derive estimates of precision and accuracy can quickly become very expensive and time consuming.

For this project, the PTL and contract laboratory project manager determined that either MS/MSDs or LCS/LCSDs with surrogate spikes would be utilized by analytical lab for various analyses. These associated surrogate spikes and acceptance criteria are listed in Table 3-1 of QAPjP. The RPD and percent recovery of these spikes were determined and provided by the contract laboratory. Evaluation of these data quality indicators was then accomplished later by the project team, using the criteria found in QAPjP Table 3-1.

The approach taken by laboratory for SVOCs was to analyze a front-half Composite LCS/LCSD and a back-half composite LCS/LCSD. For the aqueous matrices associated with 0010 trains, not only was a LCS/LCSD pair analyzed, but the lab also performed a 3-way split of the condensate and impinger contents for Run 2, using two of the split fractions to develop a MS/MSD pair. This allowed for generation of important matrix-specific information, but also tripled the detection limits for the non-QC sample aliquot. This is also discussed to a degree in Section 5.

Additionally, the XAD-2® tubes utilized in SVOC sampling were pre-spiked with 200  $\mu$ g of a  $^{13}$ C<sub>3</sub>-Naphthalene sampling surrogate. The determined recoveries of this surrogate were evaluated later in the project, and are discussed in Section 5 of this report.. Application of this labeled surrogate occurs prior to sample train operation and is a comprehensive estimator for the overall accuracy of surrogate application, collection method, laboratory sample prep, and analytical method. Additionally, recovery result is an indicator of potential losses of surrogate (or other SVOCs) or sample media cross-contamination occurring during shipments of same media to field or during shipment of collected samples back to the lab. All of the recovery results for this labeled sampling surrogate were in control.

With regard to VOC analyses of 0031 train samples, the same approach was taken, except that the QAPjP listed the recovery surrogates typical to Method 0031 and the following matrix spike compounds: 1,1-dichloroethane, trichloroethane, benzene, toulene, and chlorobenzene. These were selected with technical guidance from the INEEL SMO and reflect a subset of the standard surrogates used in the laboratory method which implements SW-846 Method 8260B. No spikes of the Tenax® media prior to sample collection were required. Again, acceptance criteria for these data quality indicators related to precision in accuracy were presented in QAPjP Table 3-1. The analytical report from the lab does not discuss results for such a LCS/LCSD. This may be a potential project-specific deficiency in the VOCs analyses unless additional data are located in the raw data packages.

For the Method 0060 metals trains, performance of post digestion spikes in accordance with EPA Method 6010B was an authorized approach. Additionally, for mercury, the QAPjP specified a MS/MSD pair. All associated acceptance criteria in terms of RPDs and percent recoveries were given in QAPjP Table 3-1. Again, for the metals train configuration there is no technically representative way to pre-spike train fractions before sample collection. As of time of this report, PQOA has not confirmed that lab reported associated LCS/LCSD results required by QAPjP.

Given the complexities of these matrices, the project team chose not to define sample fraction selection criteria or required frequencies of MS/MSDs to the lab in the QAPjP. Ongoing technical

consultations between the analytical lab and PTL determined the exact approaches which were taken in this regard for MS/MSD and LCS/LCSD analyses. They are included in the Requests-for-Analysis that were included in the Task Order Specific (TOS) Statement of Work (SOW) for sample analysis.

## 8.6.4.2 Performance for Internal Standards and Surrogates

Results for internal standards and surrogates for the VOCs analyses appeared to be acceptable based on QAPjP criteria. One outlier was Anasorb tube sample #3364 where results were non-usable. Some difficulties were encountered in recovery of the internal standard perylene-d<sub>12</sub>, one of the six internal standards for the 8270C analysis of the SVOC samples. In order to obtain acceptable recovery of this standard, it was necessary for the analytical laboratory to dilute the samples. This increased the detection limits for the reference target analyte species. A more complete discussion on this anomaly is provided in Section 5 and the STL Final Analytical Report (STL 2001).

In summary, all QA/QC criteria meet the data quality objectives with only two notable exceptions. First, there was some difficulty in recovering perylene-d<sub>12</sub>, one of the six internal standards used by the contract analytical laboratory for the Method 8270C SVOC analysis. The project used a trial XAD-2<sup>®</sup> to determine that the performance based QA/QC indicators would likely be achieved without modifications to the sample collection or analytical procedures. Thus, the poor performance of perylene-d<sub>12</sub> was not expected. It was necessary to dilute the final sample volume using methylene chloride (the same organic solvent that is used to extract the samples from the sample collection media) and then to "re-shoot" the sample with the GC/MS instrument. Dilutions of 10-100 times were needed to achieve acceptable recoveries of the perylene-d<sub>12</sub> standard. The implication of this result is that a few of target SVOC analyte data can only be considered an estimate, although the data are still usable for the emission inventory. This should not be considered a serious limitation of the data since all of the SVOC target analytes were typically less than the laboratory RL. In order to avoid this problem in future evaporator emissions testing, it is recommended that successive 1 mL samples be withdrawn from the sample solution during concentration (i.e., "blowdown") of the methylene chloride extraction solvent. This should be completed for the first run to determine the maximum concentration that is possible without failing to meet the specified internal standards recovery efficiencies.

Second, surrogate compound recoveries for one Anasorb<sup>®</sup> tube (A-3364 in Run 0031-STRT-1) failed to meet the acceptable recovery range. The results of the three corresponding Anasorb<sup>®</sup> tubes for this run were averaged and substituted for this tube. Surrogate performance and internal standard performance for all other Tenax<sup>®</sup> and Anasorb<sup>®</sup> tubes was generally excellent; therefore, the quality of the four SMVOC runs provide an accurate measurement of the target VOC analytes. Thus, this limitation did not significantly impact the run results. The run total was comparable to the results for the other 3 SMVOC runs.

# 8.7 Request for Analysis and Chain-of-Custody Forms

The analytical services laboratory used for this project utilized a system of pre-printed labels for samples based on a predetermined master sample list, in conjunction with "Request-for-Analysis" (RFA) and COC forms. This system greatly minimized chances for sample identification errors during the sample collection process. This is critical when there are multiple sample fractions for each train, many of which must be accurately combined either in the field or at the laboratory after sample receipt and log-in.

Reviews of closed out COC forms indicated only one instance of receipt of a shipping container without all container seals being intact. That occurrence was for the final probes rinses collected on June 25, 2001. There were otherwise no indications of any sample abnormalities observed for any sample receipts by the lab. All shipments of samples for analysis for organics arrived within acceptable temperature ranges per EPA criteria for sample preservation. Per the standard EPA methods, samples from 0050 and 0060 trains were not cooled during or prior to shipment.

## 8.8 Field Assessments by PQAO

In adherence with the QAPjP requirements for field assessments of sampling activities, surveillances/assessments were conducted for a single complete train run from each type of sample train used during the testing period for the NWCF ETS emissions. As a result some field changes processed, and corrective actions were taken in the field whenever necessary. There was no necessity per company procedures to initiate any forms for potential discrepancies or nonconformance reporting. Corrective actions were facilitated in the field during the respective sampling period.

Multiple types of checklists were utilized. Some criteria were based on the sampling protocol checklists themselves, while others dealt with good lab practice and work-site housekeeping. Housekeeping and lab practices ranged between acceptable to exemplary. These aspects were very important to this project given the spatial constraints of the sample collections area, rapidity of work schedule, and the multiple tasks occurring within the associated work hoods. Importance ranged from quality to safety, spill prevention, waste management, and effective radiological controls.

Field observations by the PQAO of the sampling team use of pH meters supplied by their company to perform pH measurements on project samples exhibited a failure of these meters to perform adequately with regard to stabilized readings in the buffered calibration standards or project samples. The PQAO, PTL, and SAIC sampling team lead agreed that substitution of pH indicator paper for all field pH measurements had adequate accuracy. This was facilitated by the fact that no sample neutralizations were required for this project phase. The section of this report dealing with field changes also discusses these points.

For this project, it was technically determined prior to inception of field activities that CEMS was not required to monitor the same miscellaneous gaseous emissions components that were a concern when the NWCF Calciner was running and being tested for emissions. In the past these emissions parameters included O<sub>2</sub>, CO<sub>2</sub>, CO, NO, NO<sub>2</sub>, HCl, CH<sub>4</sub>, SO<sub>2</sub> and total hydrocarbons (THC) and these derived from the aspects of feed to the Calciner and the physical presence of combustion products in the NWCF Calciner process. HCl emissions of ETS were evaluated using the results of the samples collected from the scheduled Method 0050 trains. For this project, dynamic monitoring was considered to be of technical value only for O<sub>2</sub> emissions. Additionally, it was predicted that the oxygen levels would be extremely close to those of ambient air. The monitored results from O<sub>2</sub> monitor throughout sampling campaign did actually reflect that oxygen concentration levels in the sampled offgas were essentially the same as ambient air concentrations of O<sub>2</sub>.

Latitude was built into the QAPjP regarding the operation and the calibration of the  $O_2$  monitor. Relief was given from the regulatory (40 CFR 60) requirements for the associated calibration gases, % Drift measurements, calibration frequency, etc. Additionally, the technical applications to associating the  $O_2$  levels with fairly short interval sample train runs, versus the usual regulatory application of 24-hr continuous monitoring, justified the relaxed protocol. It was determined that an appropriate calibration frequency for this monitor was that the calibrations must

occur prior to and after each test period, but not to exceed 24 hours between calibrations. Requirements were adequately implemented in the field. As part of the assessment of the operation and calibrations of  $O_2$  monitor it was documented that samplers were misinterpreting one entry associated with the documenting of % Drifts for this monitor. They were appropriately instructed in correct completion of the calibration sheets, and no further problems were observed.

## 9. OFFGAS EMISSIONS AND HEALTH RISK

Species emissions rates were calculated for all target analytes and tentatively identified compounds emitted from the NWCF Evaporator Tank System. Data for the train totals listed in Appendix A and the field sample collection data listed in Appendix B were compiled in an Microsoft Excel Program spreadsheet to compute both emissions rates [g/s basis] and offgas concentrations [ $\mu$ g/dscm basis], relative to conditions in the NWCF offgas duct where sampling was performed. Both the emissions rates and offgas concentrations summary sheets are included in Appendix B. Only a limited interpretation of emissions trends and potential risk to public health has been made at this time.

## 9.1 Emissions Rates and Trends

It was postulated that the release of organic compounds and volatile mercury present in the tank wastes would be higher at the start of the batch when the evaporator is filled with fresh feed. Conversely, it was hypothesized that metals emissions rates would increase with the density of the evaporator contents since the mechanism for non-volatile metals is primarily attributed to aerosol entrainment. Evolution of the organics, however, especially the semi-volatile organics, is a function of the evaporator temperature.

Figure 6 shows the average evaporator vessel temperature during a typical Method 5 sample collection period at the start and the end of an evaporator batch. The temperature was initially lower at the start of the run when steam to the heating coils was initiated. The temperature gradually increased, reaching the desired operating temperature of approximately 100°C at around 130 minutes-almost 3/4 through the first sampling period. Fresh feed to the evaporator was not increased significantly until the evaporator temperature reached the boiling temperature. The sample collected at the end of the evaporator run was performed when the evaporator vessel was at the peak temperature. At this time, feed was continually being supplied to maintain a constant volume in the evaporator. The volume of waste solution fed to the evaporator during the final three hours of the batch varied, but was approximately equal to ½ of the evaporator batch.

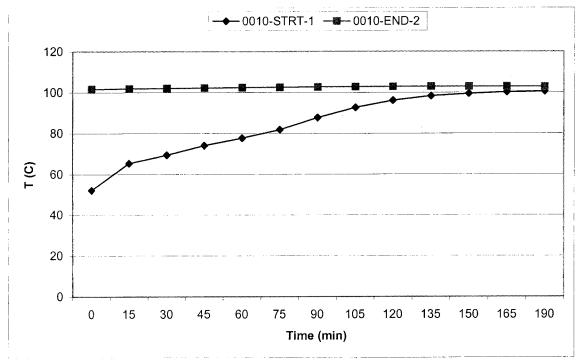



Figure 6. Average evaporator vessel temperature comparison for SVOC runs at the start and end on the evaporator batch.

## 9.1.1 Organic Compounds

Figure 7 plots the concentration of the 20 highest VOC compounds emitted from the evaporator. There are surprisingly small differences in the emissions rates at the beginning and end of the evaporator batch. The single highest volatile organic detected was dodecane, which was not a target analyte, but was reported as a tentatively identified compound. On a volumetric basis, the concentration of dodecane was only 54 ppbv. Acetone emissions were also relatively high, but still were in the low parts-per-billion range (*i.e.*, 30 ppb maximum). Some of the other volatile organic measurements were actually higher at the end of the batch, although the results were near the method detection limits and were susceptible to some process variations and sampling uncertainty at these lower levels.

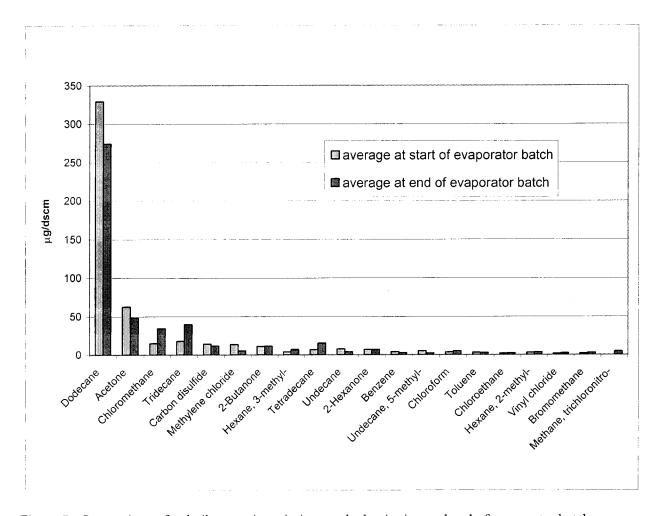



Figure 7. Comparison of volatile organic emissions at the beginning and end of evaporator batches.

The top 20 SVOCs measured in the offgas stream are plotted in Figure 8. Semivolatile organic compounds also appear to be only slightly higher at the start of the evaporator batch. Benzoic acid (a target analyte) and benzaldehyde (a tentatively identified compound) were the two most prevalent semivolatile organics emitted during operation of the NWCF ETS. The maximum emissions concentrations for benzoic acid and benzaldehyde were 310 ppb and 80 ppb, respectively. On a volumetric basis, the sum of all volatile and semivolatile organics is less than 1 ppm. All other SVOCs measurements are near the method detection limits for the respective species.

With the exception of benzoic acid, all of the SVOC species emitted from the evaporator were also detected during the NWCF Calciner offgas emissions inventory (Boardman 2001). Nearly all of the compounds are derivatives of benzene or other cyclic compounds and are possibly the products of incomplete combustion of the kerosene used to heat the Calciner. These compounds probably entered the tank system when Calciner scrub was recycled to the tank farm. It is further postulated that benzoic acid and benaldehyde were either formed during combustion of the kerosene or they were formed by oxidation of benzene and toluene in the acidic waste solutions. Relatively higher emissions of benzoic acid can be explained by noting that it is readily stripped from waste solutions by steam.

In summary, the rate of organic emissions at the start and end of the evaporator batches were not significantly different. This phenomena is attributed to the trade off between evaporator temperature and the volume of fresh waste solution fed to the evaporator during the respective sampling periods. The hourly total emissions rate for all volatile and semivolatile organic emissions was less than 0.02 lbs/hr. This is significantly less than the 3 lbs/hr limit that is generally considered significant for RCRA waste treatment units permitting decisions.

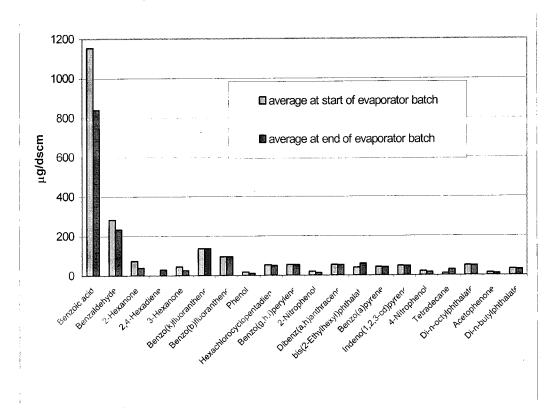



Figure 8. Comparison of semi-volatile organic emissions at the beginning and end of evaporator batches

# 9.1.2 Inorganic Compounds

The average metals emissions rates at the beginning and end of evaporator batches are plotted in Figure 9. As anticipated, metals emissions, including mercury, were typically higher at the end of an evaporator batch when the evaporator solution reached its maximum density. Assuming aerosol droplet entrainment with the overhead gas was constant throughout the run, then the emissions of all nonvolatile species should correlate with the solution density. The exception is mercury. If volatile elemental mercury exists as a dissolved gas in the waste solutions, then it would tend to be volatilized at the beginning of the evaporator runs. Otherwise, if the mercury is complexed or speciated in the wastes, then it would tend to be emitted as a non-volatile entrained species. These data indicate that mercury was mainly emitted as non-volatile particulate, although no speciation was attempted to distinguish elemental versus oxidized forms of mercury in the effluent gas stream. Aluminum, manganese, and zinc emissions appear to correlate with their relative abundance in the evaporator feed and bottoms. The emissions of all other metals were relatively low, as were their concentrations in the feed.

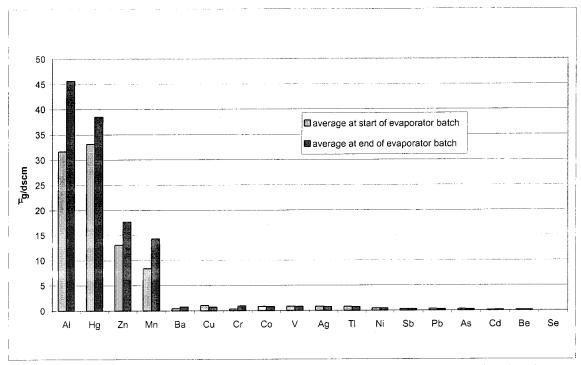



Figure 9. Comparison of metals emissions at the beginning and end of evaporator batches (not including final probe rinse species apportionment).

Throughout the sampling period, it was necessary to leave the 12-ft Method 5 sample collection probe at a fixed position in the offgas duct to reduce the potential for contamination spread and personnel radiation exposures. The probe was removed at the end of the 3-week sampling period and rinsed with acetone, followed by nitric acid, to obtain a final probe rinse measurement of particulate and metals absorbed on the probe's glass liner. Approximately 93 dscm of offgas sample was drawn through the probe over the duration of the offgas emissions inventory. The apportioned amount of particulate and metals for a single run is thus roughly 3/93 [dscm/dscm] or 3.2% of the total particulate and metals mass measured in the final probe rinse. Thus, 3.2% of the particulate and metals detected in the final probe rinses should be apportioned to the run averages.

The difference between the four most abundant metals detected in the offgas and the apportioned amount in the final probe rinse, relative to the average emissions was <10% for Zn, <6% for Al, <0.5% for Mn, and <0.1% for Hg. The percent of apportioned probe mass for the minor species was also typically low, although a comparison of the results is skewed by the fact that the measurements are near or below the analytical method detection limits. In conclusion, these results indicate that the metals uptaken on the probe liner were insignificant with respect to obtaining an accurate emissions inventory for the target metals species.

Total particulate and chloride emissions rate averages at the start and end two evaporator batches are illustrated in Figures 10 and 11. There were relatively small differences in the chloride emissions at the start and end of the batch. Hydrochloric acid levels are significantly higher as expected. Still, the sum of chloride emission contributions from HCl and Cl<sub>2</sub> is less than 1 ppmv.

Particulate emissions follow the trend of the semi-volatile organic species which were slightly higher at the beginning of the batch. Figure 11 also compares the apportioned particulate measurement for the final probe rinse (*viz.*, 3.2% of the final probe particulate measurement as discussed above). The relative amount of particulate absorbed on the probe was 20-25% of the train total. It can be inferred that some SVOCs were also deposited on the probe liner, with the maximum being similar to the particulate. This fact should be taken into consideration when using the SVOC emissions rates.

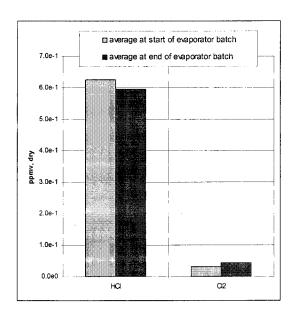



Figure 10. Comparison of chloride emissions at the beginning and end of evaporator batches.

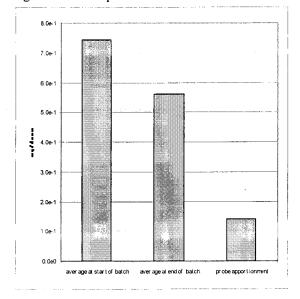



Figure 11. Comparison of particulate emissions at the beginning and end of the evaporator run with probe particulate apportionment.

## 9.2 Emissions Health Risk

The emission rates of hazardous air pollutants from the NWCF ETS were used to calculate risk to human health. Pollutants from the NWCF ETS are released from the same point and under the same conditions as NWCF Calciner emissions. Therefore, to a close approximation, the NWCF ETS can be scaled to the risk terms previously determined for the NWCF Calciner. The NWCF Calciner results are described in NWCF Calciner Emissions Inventory -Final Report for Phase IV Testing (2001).

Compounds with an EPA hazards quotient (HQ) or a cancer risk (Risk) present in the NWCF ETS samples, were ratioed to the NWCF Calciner emissions rate to determine an estimated NWCF ETS risk. Maximum values were used to bound risks. The NWCF Calciner emission rates were normalized to an annual basis. To compare the NWCF ETS results, measured NWCF ETS emissions were multiplied by a factor of 0.274 to normalize them to an annual basis. This is based on the NWCF ETS operating twelve hours a day, 200 days a year.

It was observed that the emissions rates were much lower for the NWCF ETS than from the NWCF Calciner with the exception of benzoic acid. The semi-volatiles were the largest contributor to the HQ and the Risk. The largest contributor was a phthalate (bis(2 ethylhexyl)phthalate) which is a common sampling or laboratory contaminate from plastics such as tubing, bottles, etc. Most of the materials "detected" were present at levels below the RL and in only a few samples. Benzoic acid, the single organic found in high concentrations than the NWCF Calciner, has a relatively low cancer risk and hazard quotient compound. The total HQ for the NWCF ETS was 6.2e-6 as compared to 3.3 e-03 for the NWCF Calciner and 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to 1.9e-07 for the NWCF Calciner and an EPA target of 1e-5.

A risk summary is given in Figures 12 and 13. Tables 18, 19, 20, and 21 give the concentration ratios and scaled risk factors.

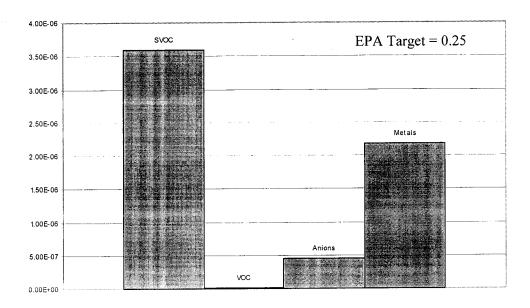



Figure 12. NWCF ETS EPA hazards quotient.

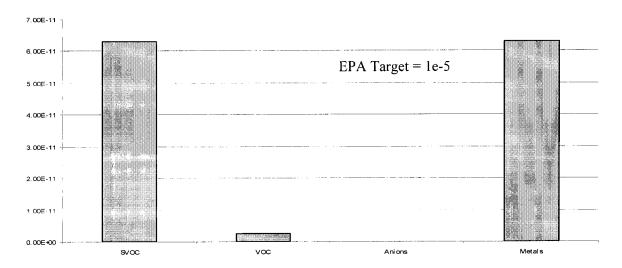



Figure 13. NWCF ETS cancer risk by pollutant category.

Table 18. Risk scaling of Method 0010 analytes.

| Analyte                     | NWCF<br>Hazard | Concentration<br>Ratio | NWCF ETS<br>Hazard | Risk     |
|-----------------------------|----------------|------------------------|--------------------|----------|
| Acenaphthene                | 3.70E-12       | 2.61                   | 9.60E-12           |          |
| Acenaphthylene              |                |                        |                    |          |
| Acetophenone                | 5.60E-09       | 0.0481                 | 2.69E-10           |          |
| Anthracene                  | 6.60E-12       | 351                    | 2.31E-10           |          |
| Benzoic acid                | 4.50E-09       | 0.15                   | 6.75E-10           |          |
| Benzo(a)anthracene          |                |                        |                    |          |
| Benzo(a)pyrene              |                |                        |                    |          |
| Benzo(b)fluoranthene        |                |                        |                    |          |
| Benzo(g,h,i)perylene        |                |                        |                    |          |
| Benzo(k)fluoranthene        |                |                        |                    |          |
| bis(2-Chloroethyl)ether     | 9.90E-10       | 0.02                   | 1.98E-11           | 2.00E-11 |
| bis(2-Ethylhexyl)phthalate  | 1.70E-04       | 0.013                  | 2.21E-06           | 2.00E-11 |
| 4-Bromophenyl-phenylether   | 4.60E-07       | 0.03                   | 1.38E-08           |          |
| Butylbenzylphthalate        | 7.50E-09       | 0.02                   | 1.50E-10           |          |
| Carbazole                   |                |                        |                    |          |
| 2-Chloronaphthalene         | 4.20E-09       | 0.02                   | 8.40E-11           |          |
| 2-Chlorophenol              | 2.20E-06       | 8.00E-04               | 1.76E-09           |          |
| 4-Chlorophenyl phenyl ether |                |                        |                    |          |
| Chrysene                    |                |                        |                    |          |
| Di-n-butylphthalate         | 4.50E-07       | 0.025                  | 1.13E-08           |          |
| Di-n-octylphthalate         | 3.50E-09       | 0.1                    | 3.50E-10           |          |
| Dibenz(a,h)anthracene       |                |                        |                    |          |
| Dibenzofuran                |                |                        |                    |          |
| 1,2-Dichlorobenzene         | 1.60E-09       | 0.09                   | 1.44E-10           |          |
| 1,3-Dichlorobenzene         | 9.90E-10       | 0.1                    | 9.90E-11           |          |
| 1,4-Dichlorobenzene         | 3.90E-10       | 0.12                   | 4.68E-11           |          |
| Diethylphthalate            | 3.20E-09       | 0.02                   | 6.40E-11           |          |
| Dimethyl phthalate          | 1.40E-10       | 2.00E-02               | 2.80E-12           |          |
| 2,4-Dinitrotoluene          | 3.90E-08       | 0.014                  | 5.46E-10           |          |
| 2,6-Dinitrotoluene          | 2.10E-06       | 0.02                   | 4.20E-08           |          |
| 1,2-Diphenylhydrazine       | 3.50E-09       | 0.02                   | 7.00E-11           | 8.00E-12 |
| Fluoranthene                | 9.70E-10       | 21.51                  | 2.09E-08           |          |
| Fluorene                    |                |                        |                    |          |
| Hexachlorocyclopentadiene   | 2.40E-04       | 2.00E-03               | 4.80E-07           |          |
| Hexachlorobenzene           | 6.10E-07       | 0.02                   | 1.22E-08           | 1.50E-1  |
| Hexachlorobutadiene         |                |                        |                    |          |
| Hexachloroethane            | 8.20E-07       | 0.014                  | 1.15E-08           | 1.50E-1  |
| Indeno(1,2,3-cd)pyrene      |                |                        |                    |          |
| Isophorone                  | 3.90E-09       | 0.02                   | 7.80E-11           | 1.00E-14 |
| 2-Methylnaphthalene         |                |                        |                    |          |

Table 18. Risk scaling of Method 0010 analytes.

| Analyte                      | NWCF     | Concentration | NWCF ETS | Risk     |
|------------------------------|----------|---------------|----------|----------|
|                              | Hazard   | Ratio         | Hazard   |          |
| N-Nitrosodimethylamine       |          |               |          |          |
| N-Nitrosodiphenylamine       | 2.40E-12 | 0.03          | 7.20E-14 |          |
| Naphthalene                  | 3.60E-07 | 0.014         | 5.04E-09 |          |
| Nitrobenzene                 | 3.40E-09 | 3.00E-03      | 1.02E-11 |          |
| 2-Nitrophenol                |          |               |          |          |
| 4-Nitrophenol                | 1.40E-06 | 8.00E-04      | 1.12E-09 |          |
| 2,2'-Oxybis(1-chloropropane) |          |               |          |          |
| Phenanthrene                 |          |               |          |          |
| Phenol                       | 2.90E-08 | 4.00E-03      | 1.16E-10 |          |
| Pyrene                       | 3.20E-08 | 341           | 1.09E-06 |          |
| 1,2,4-Trichlorobenzene       | 1.60E-09 | 0.1           | 1.60E-10 |          |
| Total                        |          | -             | 3.90E-06 | 6.32E-11 |

1. Compounds evaluated using PAH high resolution method for NWCF Calciner.

Table 19. Risk scaling for Method 0031 analytes.

| Analyte                 | NWCF     | Concentration | NWCF ETS | Risk      |
|-------------------------|----------|---------------|----------|-----------|
|                         | Hazard   | Ratio         | Hazard   |           |
| Acetone                 | 6.30E-08 | 0.023         | 1.45E-09 |           |
| Benzene                 | 4.10E-06 | 7.70E-04      | 3.16E-09 |           |
| Bromomethane            |          |               |          |           |
| 2-Butanone              | 1.50E-09 | 0.046         | 6.90E-11 |           |
| Carbon disulfide        | 9.00E-10 | 0.147         | 1.32E-10 |           |
| Carbon tetrachloride    | 1.30E-08 | 0.0351        | 4.56E-10 | 1.70E-13  |
| Chlorobenzene           | 4.80E-08 | 0.0076        | 3.65E-10 |           |
| Chloroethane            | 3.20E-11 | 0.044         | 1.41E-12 |           |
| Chloroform              | 1.90E-08 | 0.044         | 8.36E-10 | 6.60E-13  |
| Chloromethane           | 1.50E-09 | 0.466         | 6.99E-10 | 3.70E-13  |
| Dichlorodifluoromethane | 2.00E-09 | 0.0466        | 9.32E-11 |           |
| 1,2-Dichloroethane      | 3.20E-08 | 0.0356        | 1.14E-09 | 3.00E-13  |
| 1,1-Dichloroethene      | 1.00E-08 | 0.041         | 4.10E-10 | 3.40E-13  |
| 1,2-Dichloropropane     | 8.10E-08 | 0.03          | 2.43E-09 | 1.90E-13  |
| Methylene chloride      | 5.50E-10 | 0.877         | 4.82E-10 | 4.80E-13  |
| Toluene                 | 7.20E-10 | 0.055         | 3.96E-11 |           |
| Trichlorofluoromethane  | 8.30E-10 | 0.02          | 1.66E-11 |           |
| Vinyl chloride          | 1.80E-12 | 0.0356        | 6.41E-14 | 6.40E-14  |
| o-Xylene                | 4.80E-11 | 0.018         | 8.64E-13 |           |
| Totals                  |          |               | 1.18E-08 | 2.574E-12 |

Table 20. Risk scaling for Method 0050 analytes.

| Analyte                                 | NWCF Hazard | Concentration | NWCF ETS | Risk |
|-----------------------------------------|-------------|---------------|----------|------|
|                                         |             | Ratio         | Hazard   |      |
| *************************************** |             |               |          |      |
| Chloride (as HCl)                       | 1.50E-05    | 0.02          | 3.00E-07 |      |
| Chloride (as Cl2)                       | 1.70E-07    | 0.0047        | 7.99E-10 |      |
| Fluoride (as HF)                        | 3.50E-05    | 0.00082       | 2.87E-08 |      |
| Nitrate (as HNO3)                       | 9.50E-04    | 0.00008       | 7.60E-08 |      |
| Nitrite (as HNO2)                       |             |               |          |      |
| Particulate                             |             |               |          |      |
|                                         |             |               |          |      |
| Total                                   |             |               | 4.05E-07 |      |

Table 21. Risk scaling for Method 0060 analytes.

| Analyte        | NWCF Hazard | Concentration | HLLWE Hazard | Risk     |
|----------------|-------------|---------------|--------------|----------|
|                |             | Ratio         |              |          |
| Aluminum (Al)  | 5.7E-09     | 0.036         | 2.1E-10      |          |
| Antimony (Sb)  | 1.50E-09    | 0.056         | 8.48E-11     |          |
| Arsenic (As)   | 1.30E-14    | 2.2E-7        | 7.8E-22      |          |
| Barium (Ba)    | 7.50E-06    | 0.0025        | 1.88E-08     |          |
| Beryllium (Be) |             |               |              |          |
| Cadmium (Cd)   | 1.70E-07    | 0.026         | 4.5E-09      | 1.70E-12 |
| Chromium (Cr)  | 9.00E-07    | 0.047         | 4.23E-08     | 6.0E-11  |
| Cobalt (Co)    |             |               |              |          |
| Copper (Cu)    | 4.50E-09    | 0.017         | 7.5E-11      |          |
| Lead (Pb)      | 2.90E-08    | 0.008         | 2.4E-10      |          |
| Manganese (Mn) | 1.60E-05    | 0.085         | 1.36E-06     |          |
| Mercury (Hg)   | 2.10E-04    | 0.0036        | 7.56E-07     |          |
| Nickel (Ni)    | 2.30E-11    | 0.07          | 1.61E-12     | 1.30E-12 |
| Selenium (Se)  | 8.20E-10    | 2.00E-11      | 1.64E-20     |          |
| Silver (Ag)    |             |               |              |          |
| Thallium (Tl)  | 2.7E-8      | 0.14          | 4.0E-9       |          |
| Vanadium (V)   |             |               |              |          |
| Zinc (Zn)      | 2.00E-08    | 5.00E-05      | 1.00E-12     |          |
|                |             | •             | Total        |          |
| Total          |             |               | 2.19E-06     | 6.3E-11  |

### 10. CONCLUSIONS

Characterization samples for the NWCF ETS were collected with only minor deviations from EPA protocols. Due to ALARA concerns, the samples were collected at a single point in the duct and the probe was not removed between sample trains. The NWCF ETS emissions rates for all species were relatively low in terms of regulatory emissions limits and health risk considerations. It was observed that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. Mercury emissions were less than 5 ppbv (< 40  $\mu$ g/dscm), while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. Particulate emissions (included the apportioned particulate recovered in the final probe rinse) are less than 0.9 mg/dscm and less than 0.7 mg/dscm at the beginning and end of the evaporator batch, respectively.

The estimated HQ for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The estimated cancer risk was 1.3e-10 compared to an EPA target of 1.0e-5. The NWCF ETS offgas emissions inventory was completed in accordance with the QAPjP developed and approved for this activity. Conventional EPA sampling and analytical methods were used to characterize volatile and semivolatile organic compounds, multiple metals, HCl/Cl<sub>2</sub>, and particulate emissions.

Diligence in following sample checklists, continuous monitoring by either the Project Technical Leads and Quality Assurance Office, use of a master sample collection list, pre-defined sample labels, and RFA/COC documentation provided for the best possible sample collection accuracy and consistency. The data are believed to be accurate and representative of the NWCF ETS for the feed and system operating conditions during the offgas sampling period. A compilation of the process operating parameters, the offgas sample analytical data summaries, and the calculated emissions rates and liquid composition data for the evaporator feed, overhead condensate, and bottoms are included in the report appendices for permit applications purposes.

NWCF ETS operations were normal and consistent throughout the three-week sample collection period. Feed batches were consistent, as were the evaporator operating parameters and offgas system conditions. Radiation levels in the offgas samples were extremely low. Extended gamma scanning did not identify any gamma emitters in either the sample contamination trains or ongoing screening samples. Gross beta and gross alpha levels were only detected in the pico-curies range, easily meeting all of the analytical laboratory sample acceptance criteria. Tritium levels were low and proportionate to the low levels of moisture that were present in the NWCF offgas stream. Oxygen levels in the offgas duct were comparable to ambient air conditions.

Species absorption in the probe liner was minor. The exception may be organic particulate. The apportioned amount of organic particulate contained in the final probe rinse was approximately 25% of the average Method 0050 run total particulate measurements. This suggests that some semi-volatile organic matter could be potentially deposited on the probe liner. Even when the SVOC results are conservatively escalated by 25%, to account for the maximum potential portion of semivolatile material adsorbed on the probe liner, the outcome of the emissions rates are risk calculations are not significant.

Metal adsorption on the probe was low for all metals. Less than 0.1% of the mercury was deposited on the probe liner. Therefore, apportionment of the final probe rinse to the Method 0060 Metals trains is not significant.

#### 11. REFERENCES

- ASTM Standard E29-93a, 1999, "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications."
- Bechtel BWXT Idaho, LLC, 2000, Balance of Plant Sampling and Analysis Plan (Input to PEWE and LET&D), PLN-613, Rev. 1, February 2000.
- Bechtel BWXT Idaho, LLC, 2001, INTEC Quality Assurance Project Plan for HLLWE Offgas Emissions Inventory Project, PLN-880, Rev. 0, May 2001.
- Bechtel BWXT Idaho, LLC, 2001, Test Plan for the HLLWE Gas Emission Inventory, PLN-879, Rev. 0, May 2001.
- Bechtel BWXT Idaho, LLC, 2001, Package and Ship NWCF Offgas Emissions Samples Offsite for Analysis, MCP-1173, Rev. 2, June 2001.
- Bechtel BWXT Idaho, LLC, Sample NWCF Offgas for Emissions Characterization, TPR-5496, Rev. 6, June 2001.
- Boardman, R. D., L. J. Young, N. R. Soelberg, and L. A. Matejka, 2001, NWCF Calciner Emissions Inventory Final Report for Phase IV Testing, EXT-01-00260, February 2001.
- Severn Trent Services, 2001, Analytical Report for the Idaho Nuclear Technology and Engineering Center (INTEC) High Level Waste Evaporator (HLLWE) Effluent Gas Emissions Inventory, September 2001.

# APPENDIX A ANALYTICAL DATA SUMMARIES

|  |  |   | · |  |  |
|--|--|---|---|--|--|
|  |  | • |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |

### **CONTENTS**

| Table A-1.  | HLLWE Run ID: 0010-STRT-1                                         | A1     |
|-------------|-------------------------------------------------------------------|--------|
| Table A-2.  | HLLWE Run ID: 0010-END-1                                          | A2     |
| Table A-3.  | HLLWE Run ID: 0010-STRT-2                                         | A3     |
| Table A-4.  | HLLWE Run ID: 0010-END-2                                          | A4     |
| Table A-5.  | HLLWE Run ID: 0010-BT-1                                           | A5     |
| Table A-6.  | Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank                  | A6     |
| Table A-7.  | HLLWE Run ID: 0031-STRT-1                                         | A7     |
| Table A-8.  | HLLWE Run ID: 0031-END-1                                          | A8     |
| Table A-9.  | HLLWE Run ID: 0031-STRT-2                                         | A9     |
| Table A-10. | HLLWE Run ID: 0031-END-2                                          | A10    |
| Table A-11. | Run 2, VOST Tenax Tube Pair Field Blank                           | A11    |
| Table A-12. | Run 2, VOST Anasorb 747 Tube Field Blank                          | A12    |
| Table A-13. | HLLWE Run ID: 0050-STRT-1                                         | A13    |
| Table A-14. | HLLWE Run ID: 0050-END-1                                          | A14    |
| Table A-15. | HLLWE Run ID: 0050-STRT-2                                         | A15    |
| Table A-16. | HLLWE Run ID: 0050-END-2                                          | A16    |
| Table A-17. | M5 Particulate and Anion Train Run 2 Reagent Blanks               | A17    |
| Table A-18. | M5 Particulate and Anion Train Run 2 INTEC                        |        |
|             | Deionized Water Reagent Blank                                     | A18    |
| Table A-19. | M5 Particulate and Anion Train Final Acetone Probe Rinse          | A19    |
| Table A-20. | HLLWE Run ID: 0060-STRT-1                                         | A20    |
| Table A-21. | HLLWE Run ID: 0060-END-1                                          | A21    |
| Table A-22. | HLLWE Run ID: 0060-STRT-2                                         | A22    |
| Table A-23. | HLLWE Run ID: 0060-END-2                                          | A23    |
| Table A-24. | HLLWE Run ID: 0060-BT-1                                           | A24    |
| Table A-25. | Method 0060 Multi-Metals Train (MMT) Analytical Results           |        |
|             | Summary Run 2 Front Half Composite Reagent Blank                  | A25    |
| Table A-26. | Method 0060 Multi-Metals Train (MMT) Analytical Results           |        |
|             | Summary Run 2 Back Half Composite Reagent Blank                   | A26    |
| Table A-27. | Method 0060 Multi-Metals Train (MMT) Analytical Results           |        |
|             | Summary Run 2 Mercury Impinger Composite Reagent Blank            | A27    |
| Table A-28. | Method 0060 Multi-Metals Train (MMT) Analytical Results           |        |
|             | Summary Run 2 HCl Impinger Rinse Solution Reagent Blank           | A28    |
| Table A-29. | Method 0060 Multi-Metals Train (MMT) Analytical Results           |        |
|             | Summary Run 2 INTEC Deionized Water Reagent Blank                 | A29    |
| Table A-30. | Final (Post-Test) Acetone Probe Rinse and Nitric Acid             |        |
|             | Probe Rinse Composite Metallic Analyte Analytical Results Summary | . A-30 |

|  |  |  | , |  |
|--|--|--|---|--|
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |

BECHTEL BWXT IDAHO, LLC (BBWI)
INTEC HLLWE Effluent Gas Emissions Inventory
Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### MM-5 Train Summary - Run 1 Train Totals Semivolatile Organic Compounds Analytical Results Summary Table A-1. HLLWE Run ID: 0010-STRT-1

Field Sample Name:

MM-5 Train

Sample Description:

MM-5 Train Totals for Semivolatile Organic Compounds Analysis

|                             | CAS<br>Registry | MM-5 Train<br>Front Half<br>Composite <sup>1</sup><br>(µg) |                   | MM-5 Train<br>Back Half<br>Composite <sup>2</sup><br>(μg) |      | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(µg) |      | MM-5<br>Tota<br>(Tota | Project<br>Specific |                   |
|-----------------------------|-----------------|------------------------------------------------------------|-------------------|-----------------------------------------------------------|------|------------------------------------------------------------|------|-----------------------|---------------------|-------------------|
| Analyte                     | Number          | Risk Result                                                | Flag <sup>5</sup> | Risk Result                                               | Flag | Risk Result                                                | Flag | Total <sup>6</sup>    | Flag                | Flag <sup>7</sup> |
| Target Compound List        |                 |                                                            | ,                 |                                                           |      |                                                            |      |                       |                     |                   |
| Acenaphthene                | 83-32-9         | 1.3                                                        | U                 | 6.6                                                       | U    | 1.9                                                        | U    | < 9.8                 |                     | N                 |
| Acenaphthylene              | 208-96-8        | 1.3                                                        | U                 | 6.6                                                       | U    | 1.6                                                        | U    | < 9.5                 |                     | N                 |
| Acetophenone                | 9[8-86-2        | 2.0                                                        | U                 | 44                                                        | J    | 2.6                                                        | U    | < 49                  | J                   | Р                 |
| Aniline                     | 62-53-3         | 2.5                                                        | U                 | 94                                                        | U    | 18                                                         | U    | < 110                 |                     | N                 |
| Anthracene                  | 120-12-7        | 1.3                                                        | U                 | 6.6                                                       | U    | 1.6                                                        | U    | < 9.5                 |                     | N                 |
| Benzidine                   | 92-87-5         | 100                                                        | U                 | 500                                                       | U    | 66                                                         | U    | < 670                 |                     | N                 |
| Benzoic acid                | 65-85-0         | 100                                                        | U                 | 4,800                                                     | Е    | 9.4                                                        | U    | < 4,900               | Е                   | P                 |
| Benzo(a)anthracene          | 56-55-3         | 2.2                                                        | U                 | 7.6                                                       | U    | 1.7                                                        | U    | < 12                  |                     | N                 |
| Benzo(a)pyrene              | 50-32-8         | 2.6                                                        | U                 | 130                                                       | U    | 1.8                                                        | U    | < 130                 |                     | N                 |
| Benzo(b)fluoranthene        | 205-99-2        | 3.7                                                        | U                 | 290                                                       | U    | 4.2                                                        | U    | < 300                 |                     | N                 |
| Benzo(g,h,i)perylene        | 191-24-2        | 7.3                                                        | U                 | 160                                                       | U    | 2.1                                                        | U    | < 170                 |                     | N                 |
| Benzo(k)fluoranthene        | 207-08-9        | 5.5                                                        | U                 | 420                                                       | U    | 2.9                                                        | U    | < 430                 |                     | N                 |
| Benzyl alcohol              | 100-51-6        | 92                                                         | U                 | 470                                                       | U    | 4.2                                                        | U    | < 570                 |                     | N                 |
| bis(2-Chloroethoxy)methane  | 111-91-1        | 1.5                                                        | U                 | 6.6                                                       | U    | 2.0                                                        | U    | < 10                  |                     | N                 |
| bis(2-Chloroethyl)ether     | 111-44-4        | 2.0                                                        | U                 | 7.3                                                       | U    | 1.7                                                        | U    | < 11                  |                     | N                 |
| bis(2-Ethylhexyl)phthalate  | 117-81-7        | 14                                                         |                   | 100                                                       | J    | 11                                                         |      | < 120                 | J                   | A                 |
| 4-Bromophenyl-phenylether   | 101-55-3        | 1.4                                                        | U                 | 6.6                                                       | U    | 1.4                                                        | U    | < 9.4                 |                     | N                 |
| Butylbenzylphthalate        | 85-68-7         | 2.9                                                        | U                 | 7.9                                                       | U    | 2.3                                                        | U    | < 13                  |                     | N                 |
| Carbazole                   | 86-74-8         | 2.0                                                        | U                 | 8.4                                                       | U    | 2.2                                                        | U    | < 13                  |                     | N                 |
| 4-Chloro-3-methylphenol     | 59-50-7         | 2.6                                                        | U                 | 8.1                                                       | U    | 6.6                                                        | U    | < 17                  |                     | N                 |
| 4-Chloroaniline             | 106-47-8        | 3.1                                                        | U                 | 79                                                        | U    | 7.9                                                        | U    | < 90                  |                     | N                 |
| 2-Chloronaphthalene         | 91-58-7         | 1.3                                                        | U                 | 6.6                                                       | U    | 1.4                                                        | U    | < 9.3                 |                     | N                 |
| 2-Chlorophenol              | 95-57-8         | 2.6                                                        | U                 | 6.6                                                       | U    | 1.7                                                        | U    | < 11                  |                     | N                 |
| 4-Chlorophenyl phenyl ether | 7005-72-36      | 1.3                                                        | U                 | 6.6                                                       | U    | 3.1                                                        | U    | < 11                  |                     | N                 |
| Chrysene                    | 218-01-9        | 2.3                                                        | U                 | 8.4                                                       | U    | 1.3                                                        | U    | < 12                  |                     | N                 |

## MM-5 Train Summary - Run 1 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-1. HLLWE Run ID: 0010-STRT-1

|                                 | CAS<br>Registry | Front H<br>Composi | MM-5 Train<br>Front Half<br>Composite <sup>1</sup><br>(μg) |             | MM-5 Train<br>Back Half<br>Composite <sup>2</sup><br>(μg) |             | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) |                    | MM-5 Train<br>Totals <sup>4</sup><br>(Total μg) |                   |
|---------------------------------|-----------------|--------------------|------------------------------------------------------------|-------------|-----------------------------------------------------------|-------------|------------------------------------------------------------|--------------------|-------------------------------------------------|-------------------|
| Analyte                         | Number          | Risk Result        | Flag <sup>5</sup>                                          | Risk Result | Flag <sup>5</sup>                                         | Risk Result | Flag <sup>5</sup>                                          | Total <sup>6</sup> | Flag                                            | Flag <sup>7</sup> |
|                                 |                 |                    |                                                            |             |                                                           |             |                                                            |                    |                                                 |                   |
| Di-n-butylphthalate             | 84-74-2         | 1.9                | J                                                          | 100         | U                                                         | 2.3         | U                                                          | < 100              | J                                               | P                 |
| Di-n-octylphthalate             | 117-84-0        | 11                 |                                                            | 150         | U                                                         | 2.5         | J                                                          | < 160              | J                                               | P                 |
| Dibenz(a,h)anthracene           | 53-70-3         | 5.2                | U                                                          | 160         | U                                                         | 2.9         | U                                                          | < 170              |                                                 | N                 |
| Dibenzofuran                    | 132-64-9        | 1.4                | U                                                          | 6.6         | U                                                         | 2.9         | U                                                          | < 11               |                                                 | N                 |
| 1,2-Dichlorobenzene             | 95-50-1         | 2.2                | U                                                          | 6.8         | U                                                         | 1.7         | U                                                          | < 11               |                                                 | N                 |
| 1,3-Dichlorobenzene             | 541-73-1        | 3.1                | U                                                          | 7.3         | U                                                         | 1.4         | U                                                          | < 12               |                                                 | N                 |
| 1,4-Dichlorobenzene             | 106-46-7        | 2.9                | U                                                          | 11          | J                                                         | 2.0         | U                                                          | < 16               | J                                               | Р                 |
| 3,3'-Dichlorobenzidine          | 91-94-1         | 7.1                | U                                                          | 97          | U                                                         | 7.9         | U                                                          | < 110              |                                                 | N                 |
| 2,4-Dichlorophenol              | 120-83-2        | 3.9                | U                                                          | 6.6         | U                                                         | 2.3         | U                                                          | < 13               |                                                 | N                 |
| Diethylphthalate                | 84-66-2         | 5.4                | J                                                          | 9.4         | U                                                         | 1.4         | U                                                          | < 16               | J                                               | Р                 |
| Dimethyl phthalate              | 131-11-3        | 1.7                | U                                                          | 6.6         | U                                                         | 1.3         | U                                                          | < 9.6              | •                                               | N                 |
| 2,4-Dimethylphenol              | 105-67-9        | 7.6                | U                                                          | 50          | U                                                         | 1.5         | U                                                          | < 59               |                                                 | N                 |
| 4,6-Dinitro-2-methylphenol      | 534-52-1        | 13                 | U                                                          | 120         | U                                                         | 1.5         | U                                                          | < 130              |                                                 | N                 |
| 2,4-Dinitrophenol               | 51-28-5         | 15                 | U                                                          | 250         | U                                                         | 3.9         | U                                                          | < 270              |                                                 | N                 |
| 2,4-Dinitrotoluene              | 121-14-2        | 4.2                | U                                                          | 6.6         | U                                                         | 2.6         | U                                                          | < 13               |                                                 | N                 |
| 2.6-Dinitrotoluene              | 606-20-2        | 3.4                | U                                                          | 6.6         | U                                                         | 2.1         | U                                                          | < 12               |                                                 | N                 |
| 1,2-Diphenylhydrazine           | 122-66-7        | 1.7                | U                                                          | 6.6         | U                                                         | 1.5         | U                                                          | < 9.8              |                                                 | N                 |
| Fluoranthene                    | 206-44-0        | 1.3                | U                                                          | 7.1         | U                                                         | 1.8         | U                                                          | < 10               |                                                 | N                 |
| Fluorene                        | 86-73-7         | 1.3                | U                                                          | 6.6         | U                                                         | 2.6         | U                                                          | < 10               |                                                 | N                 |
| Hexachlorocyclopentadiene       | 77-47-4         | 26                 | U                                                          | 130         | U                                                         | 6.6         | U                                                          | < 160              |                                                 | N                 |
| Hexachlorobenzene               | 118-74-1        | 1.5                | U                                                          | 6.6         | U                                                         | 2.6         | U                                                          | < 11               |                                                 | N                 |
| Hexachlorobutadiene             | 87-68-3         | 3.7                | U                                                          | 9.7         | U                                                         | 1.9         | U                                                          | < 15               |                                                 | N                 |
| Hexachloroethane                | 67-72-1         | 6.6                | U                                                          | 7.1         | U                                                         | 1.9         | U                                                          | < 16               |                                                 | N                 |
| Indeno(1,2,3-cd)pyrene          | 193-39-5        | 5.5                | U                                                          | 140         | U                                                         | 2.3         | U                                                          | < 150              |                                                 | N                 |
| Isophorone                      | 78-59-1         | 1.7                | U                                                          | 6.6         | U                                                         | 1.8         | U                                                          | < 10               |                                                 | N                 |
| 2-Methylnaphthalene             | 91-57-6         | 1.5                | U                                                          | 6.6         | U                                                         | 2.3         | U                                                          | < 10               |                                                 | N                 |
| 2-Methylphenol                  | 95-48-7         | 6.0                | U                                                          | 39          | U                                                         | 2.1         | U                                                          | < 47               |                                                 | N                 |
| 3-Methylphenol & 4-Methylphenol | 65794-96-9      | 6.0                | U                                                          | 26          | U                                                         | 2.2         | U                                                          | < 34               |                                                 | N                 |

## MM-5 Train Summary - Run 1 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-1. HLLWE Run ID: 0010-STRT-1

|                                | CAS<br>Registry | MM-5 Train<br>Front Half<br>Composite <sup>1</sup><br>(μg) |                   | MM-5 Train<br>Back Half<br>Composite <sup>2</sup><br>(μg) |                   | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) |                   | MM-5 Train<br>Totals <sup>4</sup><br>(Total μg) |      | Project<br>Specific |
|--------------------------------|-----------------|------------------------------------------------------------|-------------------|-----------------------------------------------------------|-------------------|------------------------------------------------------------|-------------------|-------------------------------------------------|------|---------------------|
| Analyte                        | Number          | Risk Result                                                | Flag <sup>5</sup> |                                                           | Flag <sup>5</sup> | Risk Result                                                | Flag <sup>5</sup> | Total <sup>6</sup>                              | Flag | Flag <sup>7</sup>   |
| N-Nitroso-di-n-propylamine     | 621-64-7        | 1.9                                                        | IJ                | 6.6                                                       | U                 | 2.3                                                        | U                 | < 11                                            |      | N                   |
| N-Nitrosodimethylamine         | 62-75-9         | 1.9                                                        | U                 | 6.6                                                       | U                 | 2.2                                                        | U                 | < 11                                            |      | N                   |
| N-Nitrosodiphenylamine         | 86-30-6         | 1.6                                                        | U                 | 12                                                        | U                 | 1.4                                                        | U                 | < 15                                            |      | N                   |
| Naphthalene                    | 91-20-3         | 1.3                                                        | U                 | 7.9                                                       | U                 | 1.8                                                        | U                 | < 11                                            |      | N                   |
| 2-Nitroaniline                 | 88-74-4         | 1.5                                                        | U                 | 6.6                                                       | U                 | 2.9                                                        | U                 | < 11                                            |      | N                   |
| 3-Nitroaniline                 | 99-09-2         | 10                                                         | U                 | 26                                                        | U                 | 4.7                                                        | U                 | < 41                                            |      | N                   |
| 4-Nitroaniline                 | 100-01-6        | 6.0                                                        | U                 | 26                                                        | U                 | 3.9                                                        | U                 | < 36                                            |      | N                   |
| Nitrobenzene                   | 98-95-1         | 1.9                                                        | U                 | 12                                                        | J                 | 1.7                                                        | U                 | < 16                                            | J    | P                   |
| 2-Nitrophenol                  | 88-75-5         | 8.4                                                        | U                 | 80                                                        |                   | 2.6                                                        | U                 | < 91                                            |      | P                   |
| 4-Nitrophenol                  | 100-02-7        | 8.7                                                        | U                 | 63                                                        | J                 | 3.9                                                        | U                 | < 76                                            | J    | Р                   |
| 2,2'-Oxybis(1-chloropropane) 8 | 108-60-1        | 2.6                                                        | U                 | 10                                                        | U                 | 1.8                                                        | U                 | < 14                                            |      | N                   |
| Pentachlorobenzene             | 608-93-5        | 1.4                                                        | U                 | 6.6                                                       | U                 | 2.3                                                        | U                 | < 10                                            |      | N                   |
| Pentachloronitrobenzene        | 82-68-8         | 2.0                                                        | U                 | 6.6                                                       | U                 | 2.6                                                        | U                 | < 11                                            |      | N                   |
| Pentachlorophenol              | 87-86-5         | 50                                                         | U                 | 250                                                       | U                 | 3.4                                                        | U                 | < 300                                           |      | N                   |
| Phenanthrene                   | 85-01-8         | 1.3                                                        | U                 | 6.6                                                       | U                 | 1.9                                                        | · U               | < 9.8                                           |      | N                   |
| Phenol                         | 108-95-2        | 2.9                                                        | U                 | 72                                                        |                   | 2.2                                                        | U                 | < 77                                            |      | P                   |
| Pyrene                         | 129-00-0        | 1.9                                                        | U                 | 6.8                                                       | U                 | 1.4                                                        | U                 | < 10                                            |      | N                   |
| Pyridine                       | 110-86-1        | 2.3                                                        | U                 | 9.7                                                       | U                 | 5.2                                                        | U                 | < 17                                            |      | N                   |
| 1,2,4,5-Tetrachlorobenzene     | 95-94-3         | 2.3                                                        | U.                | 6.6                                                       | U                 | 2.2                                                        | U                 | < 11                                            |      | N                   |
| 1,2,4-Trichlorobenzene         | 120-82-1        | 1.9                                                        | U                 | 7.9                                                       | U                 | 2.2                                                        | U                 | < 12                                            |      | N                   |
| 2,4,5-Trichlorophenol          | 95-95-4         | 6.0                                                        | U                 | 17                                                        | U                 | 2.1                                                        | U                 | < 25                                            |      | N                   |
| 2,4,6-Trichlorophenol          | 88-06-2         | 3.7                                                        | U                 | 10                                                        | U                 | 2.5                                                        | U                 | < 16                                            |      | N                   |

## MM-5 Train Summary - Run 1 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-1. HLLWE Run ID: 0010-STRT-1

| CAS<br>Registry | MM-5 Train<br>Front Half<br>Composite <sup>1</sup><br>(ug)                                                                                                                            | MM-5 Train<br>Back Half<br>Composite <sup>2</sup><br>(µg)                                                                                                                                                                 | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MM-5 Train<br>Totals <sup>4</sup><br>(Total µg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project<br>Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number          |                                                                                                                                                                                       |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flag <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 |                                                                                                                                                                                       |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 625-86-5        | 4.1                                                                                                                                                                                   |                                                                                                                                                                                                                           | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 589-38-8        |                                                                                                                                                                                       | 190                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 591-78-6        |                                                                                                                                                                                       | 230                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2216-33-3       | 7.9                                                                                                                                                                                   |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100-52-7        |                                                                                                                                                                                       | 1,100                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 112-40-3        |                                                                                                                                                                                       | 67                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 629-50-5        |                                                                                                                                                                                       | 20                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 629-59-4        | 8.6                                                                                                                                                                                   |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 629-62-9        | 15                                                                                                                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 126-73-8        | 23                                                                                                                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 294-62-2        | 20                                                                                                                                                                                    |                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 629-78-7        | 5.5                                                                                                                                                                                   |                                                                                                                                                                                                                           | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 112-95-8        |                                                                                                                                                                                       |                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 57-10-3         | 5.4                                                                                                                                                                                   |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 57-11-4         | 3.6                                                                                                                                                                                   |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 791-28-6        |                                                                                                                                                                                       |                                                                                                                                                                                                                           | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 629-94-7        |                                                                                                                                                                                       |                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7098-22-8       |                                                                                                                                                                                       |                                                                                                                                                                                                                           | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 112-95-8        |                                                                                                                                                                                       |                                                                                                                                                                                                                           | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | Registry<br>Number  625-86-5 589-38-8 591-78-6 2216-33-3 100-52-7 112-40-3 629-50-5 629-59-4 629-62-9 126-73-8 294-62-2 629-78-7 112-95-8 57-10-3 57-11-4 791-28-6 629-94-7 7098-22-8 | CAS Registry Number  625-86-5  625-86-5  591-78-6  2216-33-3  7.9  100-52-7  112-40-3  629-50-5  629-59-4  8.6  629-62-9  15  126-73-8  23  294-62-2  20  629-78-7  57-10-3  57-11-4  3.6  791-28-6   629-94-7  7098-22-8 | CAS<br>Registry<br>Number         Front Half<br>Composite¹<br>(μg)         Back Half<br>Composite²<br>(μg)           625-86-5         4.1            589-38-8          190           591-78-6          230           2216-33-3         7.9            100-52-7          1,100           112-40-3          67           629-50-5          20           629-59-4         8.6            629-62-9         15            126-73-8         23            294-62-2         20            57-10-3         5.4            57-11-4         3.6            791-28-6             629-94-7             7098-22-8 | CAS Registry Number         Front Half Composite¹ (μg)         Back Half Composite² (μg)         Condensate Composite³ (μg)           625-86-5         4.1          9.5           589-38-8          190            591-78-6          230            100-52-7          1,100            629-50-5          20            629-59-4         8.6             629-62-9         15             126-73-8         23             294-62-2         20          11           629-78-7         5.5          3.4           112-95-8           2.0           57-10-3         5.4             57-11-4         3.6             791-28-6           8.7           629-94-7           2.0 | CAS Registry Number         Front Half Composite (μg)         Back Half Composite (μg)         Condensate Composite (μg)         MM-5 Total (Total (Tota | CAS<br>Registry<br>Number         Front Half<br>Composite <sup>1</sup><br>(μg)         Back Half<br>Composite <sup>2</sup><br>(μg)         Condensate<br>Composite <sup>3</sup><br>(μg)         MM-5 Train<br>Totals <sup>4</sup><br>(Total μg)           625-86-5<br>89-38-8         4.1          9.5         14         N,J,M           591-78-6          230          230         N,J,M           100-52-7          1,100          1,100         N,J,M           629-50-5          20          20         N,J,M           629-62-9         15          15         N,J,M           629-78-7         5.5          23         N,J,M           629-78-7         3.4         8.9         N,J,M           112-95-8           2.0         2.0         N,J,M           57-10-3         5.4           5.4         N,J,M           791-28-6           2.0         2.0         N,J,M           7098-22-8           8.6         N,J,M           7098-22-8           2.0         2.0         N,J,M           7098-22-8 |

#### Footnotes:

- The MM-5 Train Front Half Composite consists of the Particulate Filter and the Front Half of the Filter Holder and Probe Solvent Rinses.
- The MM-5 Train Back Half Composite consists of the XAD-2 Resin Tube and the Back Half of the Filter Holder and Coil Condenser Solvent Rinses.
- <sup>3</sup> The MM-5 Train Condensate Composite consists of the Condensate and Impinger Contents and the Glassware Solvent Rinses.
- The total mass for each semivolatile compound found in the MM-5 sampling train consists of the sum of the MM-5 train's Front Half Composite contents, the train's Back Half Composite contents, and the Condensate Composite. The calculation is as follows:

(Total  $\mu g$  in the Front Half) + (Total  $\mu g$  in the Back Half) + (Concentration in the Condensate Composite x Condensate Composite Volume) = Total  $\mu g$  in the MM-5 Sampling Train.

Therefore:  $(\mu g) + (\mu g) + (\mu g/Liter \times Liter) = Total \mu g$ 

The MM-5 Train Run Total (in Total  $\mu g$ ) is the sum of results for the three (3) MM-5 train sample fractions using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
- ♦ When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MM-5 Train Total are the cumulative set of flags for each train component included as part of the MM-5 train total. A flag attached to an MM-5 train component is carried through to the "MM-5 Train Total" column when the associated component analytical result is a significant number in comparison to the MM-5 Train Total. That is, if the MM-5 Train Total is affected by an MM-5 train component analytical result, the flag is carried through to the MM-5 Train Total, but if the MM-5 Train Total is not affected by an MM-5 train component, the flag is not carried through to the MM-5 Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
  - ♦ A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these values are regarded as estimated values.
  - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
  - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
  - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.
  - An "A" qualifier indicates that this result is an Aldol-condensation product.
  - An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- <sup>8</sup> Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

#### MM-5 Train Summary - Run 3 Train Totals Semivolatile Organic Compounds Analytical Results Summary Table A-2. HLLWE Run ID: 0010-END-1

Field Sample Name:

MM-5 Train

Sample Description:

MM-5 Train Totals for Semivolatile Organic Compounds Analysis

|                             | CAS<br>Registry  | MM-5 Ti<br>Front H<br>Compos<br>(µg) | alf               | MM-5 Tr<br>Back Ha<br>Composi<br>(μg) | alf<br>ite <sup>2</sup> | MM-5 Ti<br>Condens<br>Compos<br>(μg) | ate<br>ite <sup>3</sup> | MM-5<br>Tota<br>(Tota | als <sup>4</sup><br>I μg) | Project<br>Specific |
|-----------------------------|------------------|--------------------------------------|-------------------|---------------------------------------|-------------------------|--------------------------------------|-------------------------|-----------------------|---------------------------|---------------------|
| Analyte                     | Number           | Risk Result                          | Flag <sup>5</sup> | Risk Result                           | Flag <sup>5</sup>       | Risk Result                          | Flag <sup>5</sup>       | Total <sup>6</sup>    | Flag                      | Flag <sup>7</sup>   |
| Target Compound List        |                  |                                      |                   |                                       |                         |                                      |                         |                       |                           |                     |
| Acenaphthene                | 83-32-9          | 1.3                                  | U                 | 6.6                                   | U                       | 1.9                                  | U                       | < 9.8                 |                           | N                   |
| Acenaphthylene              | 208-96-8         | 1.3                                  | U                 | 6.6                                   | U                       | 1.6                                  | U                       | < 9.5                 |                           | N                   |
| Acetophenone                | 9[8-86-2         | 2.0                                  | U                 | 31                                    | J                       | 2.6                                  | U                       | < 36                  | J                         | P                   |
| Aniline                     | 62-53-3          | 2.5                                  | U                 | 94                                    | U                       | 18                                   | U                       | < 110                 |                           | N                   |
| Anthracene                  | 120-12-7         | 1.3                                  | U                 | 6.6                                   | U                       | 1.6                                  | U                       | < 9.5                 |                           | N                   |
| Benzidine                   | 92-87-5          | 100                                  | U                 | 500                                   | U                       | 66                                   | U                       | < 670                 |                           | N                   |
| Benzoic acid                | 65-85-0          | 100                                  | U                 | 2,500                                 | Е                       | 9.4                                  | U                       | < 2,600               | Е                         | P                   |
| Benzo(a)anthracene          | 56-55-3          | 2.2                                  | U                 | 7.6                                   | U                       | 1.7                                  | U                       | < 12                  |                           | N                   |
| Benzo(a)pyrene              | 50-32-8          | 2.6                                  | U                 | 130                                   | U                       | 1.8                                  | U                       | < 130                 |                           | N                   |
| Benzo(b)fluoranthene        | 205-99-2         | 3.7                                  | U                 | 290                                   | U                       | 4.2                                  | U                       | < 300                 |                           | N                   |
| Benzo(g,h,i)perylene        | 191-24-2         | 7.3                                  | U                 | 160                                   | U                       | 2.1                                  | U                       | < 170                 |                           | N                   |
| Benzo(k)fluoranthene        | 207-08-9         | 5.5                                  | U                 | 420                                   | U                       | 2.9                                  | U                       | < 430                 |                           | N                   |
| Benzyl alcohol              | 100-51-6         | 92                                   | U                 | 470                                   | U                       | 4.2                                  | U                       | < 570                 |                           | N                   |
| bis(2-Chloroethoxy)methane  | 111-91-1         | 1.5                                  | U                 | 6.6                                   | U                       | 2.0                                  | U                       | < 10                  |                           | N                   |
| bis(2-Chloroethyl)ether     | 111-44-4         | 2.0                                  | U                 | 7.3                                   | U                       | 1.7                                  | U                       | < 11                  |                           | N                   |
| bis(2-Ethylhexyl)phthalate  | 117-81-7         | 49                                   |                   | 100                                   | U                       | 68                                   | ,,                      | < 220                 |                           | P                   |
| 4-Bromophenyl-phenylether   | 101-55-3         | 1.4                                  | U                 | 6.6                                   | U                       | 1.4                                  | U                       | < 9.4                 |                           | N                   |
| Butylbenzylphthalate        | 85-68-7          | 2.9                                  | U                 | 7.9                                   | U                       | 2.3                                  | U                       | < 13                  |                           | N                   |
| Carbazole                   | 86-74-8          | 2.0                                  | U                 | 8.4                                   | U                       | 2.2                                  | U                       | < 13                  |                           | N                   |
| 4-Chloro-3-methylphenol     | 59-50-7          | 2.6                                  | U                 | 8.1                                   | U                       | 6.6                                  | U                       | < 17                  |                           | N                   |
| 4-Chloroaniline             | 106-47-8         | 3.1                                  | U                 | 79                                    | U                       | 7.9                                  | U                       | < 90                  |                           | N                   |
| 2-Chloronaphthalene         | 91-58-7          | 1.3                                  | U                 | 6.6                                   | U                       | 1.4                                  | U                       | < 9.3                 |                           | N                   |
| 2-Chlorophenol              | 95 <b>-</b> 57-8 | 2.6                                  | U                 | 6.6                                   | U                       | 1.7                                  | U                       | < 11                  |                           | N                   |
| 4-Chlorophenyl phenyl ether | 7005-72-36       | 1.3                                  | U                 | 6.6                                   | U                       | 3.1                                  | U                       | < 11                  |                           | N                   |
| Chrysene                    | 218-01-9         | 2.3                                  | U                 | 8.4                                   | U                       | 1.3                                  | U                       | < 12                  |                           | N                   |

## MM-5 Train Summary - Run 3 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-2. HLLWE Run ID: 0010-END-1

|                                 | CAS<br>Registry  | MM-5 Train<br>Front Half<br>Composite <sup>1</sup><br>(μg) |                   | MM-5 Train<br>Back Half<br>Composite <sup>2</sup><br>(μg) |                   | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) |                   | MM-5 Train<br>Totals <sup>4</sup><br>(Total μg) |          | Project<br>Specific |
|---------------------------------|------------------|------------------------------------------------------------|-------------------|-----------------------------------------------------------|-------------------|------------------------------------------------------------|-------------------|-------------------------------------------------|----------|---------------------|
| Analyte                         | Number           | Risk Result                                                | Flag <sup>5</sup> | Risk Result                                               | Flag <sup>5</sup> | Risk Result                                                | Flag <sup>5</sup> | Total <sup>6</sup>                              | Flag     | Flag <sup>7</sup>   |
|                                 | 04.74.3          | 1.0                                                        | T                 | 100                                                       | U                 | 2.3                                                        | U                 | < 100                                           | J        | P                   |
| Di-n-butylphthalate             | 84-74-2          | 1.9                                                        | J<br>J            | 150                                                       | U                 | 2.5                                                        | J                 | < 160                                           | J        | P                   |
| Di-n-octylphthalate             | 117-84-0         | 8.4                                                        |                   |                                                           | U                 | 2.9                                                        | U                 | < 170                                           | J        | N                   |
| Dibenz(a,h)anthracene           | 53-70-3          | 5.2                                                        | U                 | 160                                                       | U                 | 2.9                                                        | U                 | < 11                                            |          | N                   |
| Dibenzofuran                    | 132-64-9         | 1.4                                                        | U                 | 6.6                                                       |                   |                                                            |                   | < 11                                            |          | N                   |
| 1,2-Dichlorobenzene             | 95-50-1          | 2.2                                                        | U                 | 6.8                                                       | U                 | 1.7                                                        | U                 | < 12                                            |          | N                   |
| 1,3-Dichlorobenzene             | 541-73-1         | 3.1                                                        | U                 | 7.3                                                       | U                 | 1.4                                                        | U                 |                                                 | J        | P                   |
| 1,4-Dichlorobenzene             | 106-46-7         | 2.9                                                        | U                 | 6.8                                                       | J                 | 2.0                                                        | U                 | < 12                                            | J        | N                   |
| 3,3'-Dichlorobenzidine          | 91-94-1          | 7.1                                                        | U                 | 97                                                        | U                 | 7.9                                                        | U                 | < 110                                           |          |                     |
| 2,4-Dichlorophenol              | 120-83-2         | 3.9                                                        | U                 | 6.6                                                       | U                 | 2.3                                                        | U                 | < 13                                            |          | N                   |
| Diethylphthalate                | 84-66-2          | 3.9                                                        | U                 | 9.4                                                       | U                 | 1.4                                                        | U                 | < 15                                            | <u> </u> | N                   |
| Dimethyl phthalate              | 131-11-3         | 1.7                                                        | U                 | 6.6                                                       | U                 | 1.3                                                        | U                 | < 9.6                                           |          | N                   |
| 2,4-Dimethylphenol              | 105-67-9         | 7.6                                                        | U                 | 50                                                        | U                 | 1.5                                                        | U                 | < 59                                            | <u> </u> | N                   |
| 4,6-Dinitro-2-methylphenol      | 534-52-1         | 13                                                         | U                 | 120                                                       | U                 | 1.5                                                        | U                 | < 130                                           |          | N                   |
| 2,4-Dinitrophenol               | 51-28-5          | 16                                                         | U                 | 250                                                       | U                 | 3.9                                                        | U                 | < 270                                           |          | N                   |
| 2,4-Dinitrotoluene              | 121-14-2         | 4.2                                                        | U                 | 6.6                                                       | U                 | 2.6                                                        | U                 | < 13                                            |          | N                   |
| 2,6-Dinitrotoluene              | 606-20-2         | 3.4                                                        | U                 | 6.6                                                       | U                 | 2.1                                                        | U                 | < 12                                            |          | N                   |
| 1,2-Diphenylhydrazine           | 122-66-7         | 1.7                                                        | U                 | 6.6                                                       | U                 | 1.5                                                        | U                 | < 9.8                                           |          | N                   |
| Fluoranthene                    | 206-44-0         | 1.3                                                        | U                 | 7.1                                                       | U                 | 1.8                                                        | U                 | < 10                                            |          | N                   |
| Fluorene                        | 86-73-7          | 1.3                                                        | U                 | 6.6                                                       | U                 | 2.6                                                        | U                 | < 10                                            |          | N                   |
| Hexachlorocyclopentadiene       | 77-47-4          | 26                                                         | U                 | 130                                                       | U                 | 6.6                                                        | U                 | < 160                                           |          | N                   |
| Hexachlorobenzene               | 118-74-1         | 1.5                                                        | U                 | 6.6                                                       | U                 | 2.6                                                        | U                 | < 11                                            |          | N                   |
| Hexachlorobutadiene             | 87-68-3          | 3.7                                                        | U                 | 9.7                                                       | U                 | 1.9                                                        | U                 | < 15                                            |          | N                   |
| Hexachloroethane                | 67-72-1          | 6.6                                                        | U                 | 7.1                                                       | U                 | 1.9                                                        | U                 | < 16                                            |          | N                   |
| Indeno(1,2,3-cd)pyrene          | 193-39-5         | 5.5                                                        | U                 | 140                                                       | U                 | 2.3                                                        | U                 | < 150                                           |          | N                   |
| Isophorone                      | 78-59-1          | 1.7                                                        | U                 | 6.6                                                       | U                 | 1.8                                                        | U                 | < 10                                            |          | N                   |
| 2-Methylnaphthalene             | 91-57 <b>-</b> 6 | 1.5                                                        | U                 | 6.6                                                       | U                 | 2.3                                                        | U                 | < 10                                            |          | N                   |
| 2-Methylphenol                  | 95-48-7          | 6.0                                                        | U                 | 39                                                        | U                 | 2.1                                                        | U                 | < 47                                            |          | N                   |
| 3-Methylphenol & 4-Methylphenol | 65794-96-9       | 6.0                                                        | U                 | 26                                                        | U                 | 2.2                                                        | U                 | < 34                                            |          | N                   |

## MM-5 Train Summary - Run 3 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-2. HLLWE Run ID: 0010-END-1

|                                | CAS<br>Registry | MM-5 Train<br>Front Half<br>Composite <sup>1</sup><br>(µg) |                   | MM-5 Train<br>Back Half<br>Composite <sup>2</sup><br>(μg) |                   | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) |                   | MM-5 Train<br>Totals <sup>4</sup><br>(Total μg) |      | Project<br>Specific |
|--------------------------------|-----------------|------------------------------------------------------------|-------------------|-----------------------------------------------------------|-------------------|------------------------------------------------------------|-------------------|-------------------------------------------------|------|---------------------|
| Analyte                        | Number          | Risk Result                                                | Flag <sup>5</sup> | Risk Result                                               | Flag <sup>5</sup> | Risk Result                                                | Flag <sup>5</sup> | Total <sup>6</sup>                              | Flag | Flag <sup>7</sup>   |
| N-Nitroso-di-n-propylamine     | 621-64-7        | 1.9                                                        | U                 | 6.6                                                       | U                 | 2.3                                                        | U                 | < 11                                            |      | N                   |
| N-Nitrosodimethylamine         | 62-75-9         | 1.9                                                        | U                 | 6.6                                                       | U                 | 2.2                                                        | U                 | < 11                                            |      | N                   |
| N-Nitrosodiphenylamine         | 86-30-6         | 1.6                                                        | U                 | 12                                                        | U                 | 1.4                                                        | U                 | < 15                                            |      | N                   |
| Naphthalene                    | 91-20-3         | 1.3                                                        | U                 | 7.9                                                       | U                 | 1.8                                                        | U                 | < 11                                            |      | N                   |
| 2-Nitroaniline                 | 88-74-4         | 1.5                                                        | U                 | 6.6                                                       | U                 | 2.9                                                        | U                 | < 11                                            |      | N                   |
| 3-Nitroaniline                 | 99-09-2         | 10                                                         | U                 | 26                                                        | U                 | 4.7                                                        | U                 | < 41                                            |      | N                   |
| 4-Nitroaniline                 | 100-01-6        | 6.0                                                        | U                 | 26                                                        | U                 | 3.9                                                        | U                 | < 36                                            |      | N                   |
| Nitrobenzene                   | 98-95-1         | 1.9                                                        | U                 | 11                                                        | J                 | 1.7                                                        | U                 | < 15                                            | J    | P                   |
| 2-Nitrophenol                  | 88-75-5         | 8.4                                                        | U                 | 30                                                        | J                 | 2.6                                                        | U                 | < 41                                            | J    | Р                   |
| 4-Nitrophenol                  | 100-02-7        | 8.7                                                        | U                 | 42                                                        | U                 | 3.9                                                        | U                 | < 55                                            |      | N                   |
| 2,2'-Oxybis(1-chloropropane) 8 | 108-60-1        | 2.6                                                        | U                 | 10                                                        | U                 | 1.8                                                        | U                 | < 14                                            |      | N                   |
| Pentachlorobenzene             | 608-93-5        | 1.4                                                        | U                 | 6.6                                                       | U                 | 2.3                                                        | U                 | < 10                                            |      | N                   |
| Pentachloronitrobenzene        | 82-68-8         | 2.0                                                        | U                 | 6.6                                                       | U                 | 2.6                                                        | U                 | < 11                                            |      | N                   |
| Pentachlorophenol              | 87-86-5         | 50                                                         | U                 | 250                                                       | U                 | 3.4                                                        | U                 | < 300                                           |      | N                   |
| Phenanthrene                   | 85-01-8         | 1.3                                                        | U                 | 6.6                                                       | U                 | 1.9                                                        | U                 | < 9.8                                           |      | N                   |
| Phenol                         | 108-95-2        | 2.9                                                        | U                 | 32                                                        | J                 | 2.2                                                        | J                 | < 37                                            | J    | P                   |
| Pyrene                         | 129-00-0        | 1.9                                                        | U                 | 6.8                                                       | U                 | 1.4                                                        | U                 | < 10                                            |      | N                   |
| Pyridine                       | 110-86-1        | 2.3                                                        | U                 | 9.7                                                       | U                 | 5.2                                                        | U                 | < 17                                            |      | N                   |
| 1,2,4,5-Tetrachlorobenzene     | 95-94-3         | 2.3                                                        | U                 | 6.6                                                       | U                 | 2.2                                                        | U                 | < 11                                            |      | N                   |
| 1,2,4-Trichlorobenzene         | 120-82-1        | 1.9                                                        | U                 | 7.9                                                       | U                 | 2.2                                                        | U                 | < 12                                            |      | N                   |
| 2,4,5-Trichlorophenol          | 95-95-4         | 6.0                                                        | Ų                 | 17                                                        | U                 | 2.1                                                        | U                 | < 25                                            |      | N                   |
| 2,4,6-Trichlorophenol          | 88-06-2         | 3.7                                                        | U                 | 10                                                        | U                 | 2.5                                                        | U                 | < 16                                            |      | N                   |

## MM-5 Train Summary - Run 3 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-2. HLLWE Run ID: 0010-END-1

| Registry  | Composite <sup>1</sup> (µg)                                                                                                                                                        | Back Half<br>Composite <sup>2</sup><br>(µg)                                                                                                       | Condensate<br>Composite <sup>3</sup><br>(µg)                                                                                                                                                                                                                                                                                                                                            | MM-5<br>Tota<br>(Tota                                                                                                                                                                                                                                                                                                                                                                                                  | Project<br>Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number    | Risk Result Flag <sup>5</sup>                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         | Total <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                     | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flag <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                                                                    |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 625-86-5  | 4.7                                                                                                                                                                                |                                                                                                                                                   | 3.1                                                                                                                                                                                                                                                                                                                                                                                     | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 589-38-8  |                                                                                                                                                                                    | 96                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 591-78-6  |                                                                                                                                                                                    | 120                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         | 120                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3074-71-3 | 9.9                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 100-52-7  |                                                                                                                                                                                    | 740                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         | 740                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 104-57-4  |                                                                                                                                                                                    | 72                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         | 72                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4748-78-1 |                                                                                                                                                                                    | 57                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         | 57                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 112-40-3  |                                                                                                                                                                                    | 48                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 629-50-5  |                                                                                                                                                                                    | 21                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 592-46-1  |                                                                                                                                                                                    | 45                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         | 45                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 592-46-1  |                                                                                                                                                                                    | 110                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         | 110                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 629-59-4  |                                                                                                                                                                                    | 96                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 126-73-8  | 16                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 294-62-2  | 24                                                                                                                                                                                 |                                                                                                                                                   | 6.5                                                                                                                                                                                                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 629-78-7  | 4.0                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 57-11-4   | 2.0                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                    | N,J,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | 625-86-5<br>589-38-8<br>591-78-6<br>3074-71-3<br>100-52-7<br>104-57-4<br>4748-78-1<br>112-40-3<br>629-50-5<br>592-46-1<br>592-46-1<br>629-59-4<br>126-73-8<br>294-62-2<br>629-78-7 | 625-86-5 4.7 589-38-8 591-78-6 3074-71-3 9.9 100-52-7 104-57-4 4748-78-1 112-40-3 592-46-1 592-46-1 629-59-4 126-73-8 16 294-62-2 24 629-78-7 4.0 | 625-86-5       4.7          589-38-8        96         591-78-6        120         3074-71-3       9.9          100-52-7        740         104-57-4        72         4748-78-1        57         112-40-3        48         629-50-5        21         592-46-1        45         592-46-1        96         126-73-8       16          294-62-2       24          629-78-7       4.0 | 625-86-5       4.7        3.1         589-38-8        96          591-78-6        120          3074-71-3       9.9           100-52-7        740          104-57-4        72          4748-78-1        57          112-40-3        48          629-50-5        21          592-46-1        45          592-46-1        96          126-73-8       16           294-62-2       24        6.5         629-78-7       4.0 | 625-86-5       4.7        3.1       7.8         589-38-8        96        96         591-78-6        120        120         3074-71-3       9.9         9.9         100-52-7        740        74         104-57-4        72        72         4748-78-1        57        57         112-40-3        48        48         629-50-5        21        21         592-46-1        45        45         592-46-1        96        96         126-73-8       16        96        96         126-73-78-7       4.0        6.5       30         629-78-7       4.0         4.0 | 625-86-5       4.7        3.1       7.8       N,J,M         589-38-8        96        96       N,J,M         591-78-6        120        120       N,J,M         3074-71-3       9.9         9.9       N,J,M         100-52-7        740        740       N,J,M         104-57-4        72        72       N,J,M         4748-78-1        57        57       N,J,M         629-50-5        21        21       N,J,M         592-46-1        45       N,J,M       110        110       N,J,M         592-46-1        96        96       N,J,M         126-73-8       16        96       N,J,M         294-62-2       24        6.5       30       N,J,M         629-78-7       4.0       N,J,M        4.0       N,J,M |

#### Footnotes:

- The MM-5 Train Front Half Composite consists of the Particulate Filter and the Front Half of the Filter Holder and Probe Solvent Rinses
- <sup>2</sup> The MM-5 Train Back Half Composite consists of the XAD-2 Resin Tube and the Back Half of the Filter Holder and Coil Condenser Solvent Rinses.
- <sup>3</sup> The MM-5 Train Condensate Composite consists of the Condensate and Impinger Contents and the Glassware Solvent Rinses.
- The total mass for each semivolatile compound found in the MM-5 sampling train consists of the sum of the MM-5 train's Front Half Composite contents, the train's Back Half Composite contents, and the Condensate Composite. The calculation is as follows:

(Total µg in the Front Half) + (Total µg in the Back Half) + (Concentration in the Condensate Composite x Condensate Composite Volume)

= Total µg in the MM-5 Sampling Train.

Therefore:  $(\mu g) + (\mu g) + (\mu g/Liter \times Liter) = Total \mu g$ 

The MM-5 Train Run Total (in Total  $\mu g$ ) is the sum of results for the three (3) MM-5 train sample fractions using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
- ♦ When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MM-5 Train Total are the cumulative set of flags for each train component included as part of the MM-5 train total. A flag attached to an MM-5 train component is carried through to the "MM-5 Train Total" column when the associated component analytical result is a significant number in comparison to the MM-5 Train Total. That is, if the MM-5 Train Total is affected by an MM-5 train component analytical result, the flag is carried through to the MM-5 Train Total, but if the MM-5 Train Total is not affected by an MM-5 train component, the flag is not carried through to the MM-5 Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- <sup>5</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
  - A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these values are regarded as estimated values.
  - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
  - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
  - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.
  - An "A" qualifier indicates that this result is an Aldol-condensation product.
  - An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of
    one (1).
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- <sup>8</sup> Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

#### MM-5 Train Summary - Run 2 Train Totals Semivolatile Organic Compounds Analytical Results Summary Table A-3. HLLWE Run ID: 0010-STRT-2

Field Sample Name:

MM-5 Train

Sample Description:

MM-5 Train Totals for Semivolatile Organic Compounds Analysis

|                             | CAS<br>Registry | stry (µg)   |                   | MM-5 Train<br>Back Half<br>Composite <sup>2</sup><br>(μg) |                   | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) |                   | MM-5 '<br>Tota<br>(Total | Project<br>Specific |                   |
|-----------------------------|-----------------|-------------|-------------------|-----------------------------------------------------------|-------------------|------------------------------------------------------------|-------------------|--------------------------|---------------------|-------------------|
| Analyte                     | Number          | Risk Result | Flag <sup>5</sup> | Risk Result                                               | Flag <sup>5</sup> | Risk Result                                                | Flag <sup>5</sup> | Total <sup>6</sup>       | Flag                | Flag <sup>7</sup> |
|                             |                 |             |                   |                                                           |                   |                                                            |                   |                          |                     |                   |
| Target Compound List        | 62.20.0         | 1.2         | U                 | 6.6                                                       | U                 | 8.0                                                        | J                 | < 16                     | J                   | P                 |
| Acenaphthene                | 83-32-9         | 1.3         | U                 | 6.6                                                       | U                 | 7.6                                                        | J                 | < 16                     | J                   | P                 |
| Acenaphthylene              | 208-96-8        | 1.3         |                   | <b></b>                                                   | J                 | 7.9                                                        | U                 | < 42                     | J                   | P                 |
| Acetophenone                | 9[8-86-2        | 2.0         | U                 | 32                                                        |                   |                                                            | ·····             | < 150                    | J                   | N                 |
| Aniline                     | 62-53-3         | 2.5         | U                 | 94                                                        | U                 | 55                                                         | U                 |                          | J                   | P                 |
| Anthracene                  | 120-12-7        | 1.3         | U                 | 6.6                                                       | U                 | 8.3                                                        | J                 | < 16                     | J                   | N                 |
| Benzidine                   | 92-87-5         | 100         | U                 | 500                                                       | U                 | 200                                                        | U                 | < 800                    | -                   |                   |
| Benzoic acid                | 65-85-0         | 100         | U                 | 2,200                                                     | Е                 | 29                                                         | U                 | < 2,300                  | E                   | P                 |
| Benzo(a)anthracene          | 56-55-3         | 2.2         | U                 | 7.6                                                       | U                 | 9.0                                                        | J                 | < 19                     | J                   | P                 |
| Benzo(a)pyrene              | 50-32-8         | 2.6         | U                 | 130                                                       | U                 | 9.3                                                        | J                 | < 140                    | J                   | P                 |
| Benzo(b)fluoranthene        | 205-99-2        | 3.7         | U                 | 290                                                       | U                 | 13                                                         | J                 | < 300                    | J                   | P                 |
| Benzo(g,h,i)perylene        | 191-24-2        | 7.3         | U                 | 160                                                       | U                 | 9.5                                                        | J                 | < 180                    | J                   | P                 |
| Benzo(k)fluoranthene        | 207-08-9        | 5.5         | U                 | 420                                                       | U                 | 9.0                                                        | J                 | < 430                    | J                   | P                 |
| Benzyl alcohol              | 100-51-6        | 92          | U                 | 470                                                       | U                 | 12                                                         | U                 | < 570                    |                     | N                 |
| bis(2-Chloroethoxy)methane  | 111-91-1        | 1.5         | U                 | 6.6                                                       | U                 | 6.0                                                        | U                 | < 14                     |                     | N                 |
| bis(2-Chloroethyl)ether     | 111-44-4        | 2.0         | U                 | 7.3                                                       | U                 | 6.4                                                        | J                 | < 16                     | J                   | P                 |
| bis(2-Ethylhexyl)phthalate  | 117-81-7        | 16          |                   | 100                                                       | J                 | 16                                                         | J                 | < 130                    | J                   | A                 |
| 4-Bromophenyl-phenylether   | 101-55-3        | 1.4         | U                 | 6.6                                                       | U                 | 10                                                         | J                 | < 18                     | J                   | Р                 |
| Butylbenzylphthalate        | 85-68-7         | 2.9         | U                 | 7.9                                                       | U                 | 8.2                                                        | J                 | < 19                     | J                   | P                 |
| Carbazole                   | 86-74-8         | 2.0         | U                 | 8.4                                                       | U                 | 7.2                                                        | J                 | < 18                     | J                   | Р                 |
| 4-Chloro-3-methylphenol     | 59-50-7         | 2.6         | U                 | 8.1                                                       | U                 | 20                                                         | U                 | < 31                     |                     | N                 |
| 4-Chloroaniline             | 106-47-8        | 3.1         | U                 | 79                                                        | U                 | 24                                                         | U                 | < 110                    |                     | N                 |
| 2-Chloronaphthalene         | 91-58-7         | 1.3         | U                 | 6.6                                                       | U                 | 6.8                                                        | J                 | < 15                     | J                   | P                 |
| 2-Chlorophenol              | 95-57-8         | 2.6         | U                 | 6.6                                                       | U                 | 5.4                                                        | J                 | < 15                     | J                   | Р                 |
|                             | 7005-72-36      |             | U                 | 6.6                                                       | U                 | 9.4                                                        | J                 | < 17                     | J                   | P                 |
| 4-Chlorophenyl phenyl ether | 218-01-9        | 2.3         | U                 | 8.4                                                       | U                 | 9.9                                                        | J                 | < 21                     | J                   | P                 |
| Chrysene                    | 210-01-9        |             |                   |                                                           | -                 |                                                            |                   |                          |                     |                   |

## MM-5 Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-3. HLLWE Run ID: 0010-STRT-2

|                                 | CAS<br>Registry | MM-5 Tr<br>Front H<br>Composi<br>(µg) | alf               | MM-5 Tr<br>Back Ha<br>Composi<br>(μg) | alf<br>te <sup>2</sup> | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) |                   | MM-5 Train<br>Totals <sup>4</sup><br>(Total μg) |      | Project Specific Flag <sup>7</sup> |
|---------------------------------|-----------------|---------------------------------------|-------------------|---------------------------------------|------------------------|------------------------------------------------------------|-------------------|-------------------------------------------------|------|------------------------------------|
| Analyte                         | Number          | Risk Result                           | Flag <sup>5</sup> | Risk Result                           | Flag <sup>5</sup>      | Risk Result                                                | Flag <sup>5</sup> | Total <sup>6</sup>                              | Flag | Flag <sup>7</sup>                  |
|                                 |                 |                                       |                   |                                       |                        |                                                            |                   | . 110                                           | т    | n                                  |
| Di-n-butylphthalate             | 84-74-2         | 1.9                                   | U                 | 100                                   | U                      | 8.4                                                        | J                 | < 110                                           | J    | P                                  |
| Di-n-octylphthalate             | 117-84-0        | 5.5                                   | J                 | 150                                   | U                      | 7.6                                                        | U                 | < 160                                           | J    | P                                  |
| Dibenz(a,h)anthracene           | 53-70-3         | 5.2                                   | U                 | 160                                   | U                      | 8.4                                                        | J                 | < 170                                           | J    | P                                  |
| Dibenzofuran                    | 132-64-9        | 1.4                                   | U                 | 6.6                                   | U                      | 8.7                                                        | J                 | < 17                                            | J    | P                                  |
| 1,2-Dichlorobenzene             | 95-50-1         | 2.2                                   | U                 | 6.8                                   | U                      | 6.6                                                        | J                 | < 16                                            | J    | P                                  |
| 1,3-Dichlorobenzene             | 541-73-1        | 3.1                                   | U                 | 7.3                                   | U                      | 6.5                                                        | J                 | < 17                                            | J    | Р                                  |
| 1,4-Dichlorobenzene             | 106-46-7        | 2.9                                   | U                 | 6.8                                   | J                      | 6.2                                                        | <u>J</u>          | < 16                                            | J    | P                                  |
| 3,3'-Dichlorobenzidine          | 91-94-1         | 7.1                                   | U                 | 97                                    | U                      | 23                                                         | U .               | < 130                                           |      | N                                  |
| 2,4-Dichlorophenol              | 120-83-2        | 3.9                                   | U                 | 6.6                                   | U                      | 7.1                                                        | U                 | < 18                                            |      | N                                  |
| Diethylphthalate                | 84-66-2         | 3.9                                   | U                 | 9.4                                   | U                      | 8.9                                                        | J                 | < 22                                            | J    | P                                  |
| Dimethyl phthalate              | 131-11-3        | 1.7                                   | U                 | 6.6                                   | U                      | 8.1                                                        | J                 | < 16                                            | J    | P                                  |
| 2,4-Dimethylphenol              | 105-67-9        | 7.6                                   | U                 | 50                                    | U                      | 4.7                                                        | U                 | < 62                                            |      | N                                  |
| 4,6-Dinitro-2-methylphenol      | 534-52-1        | 13                                    | U                 | 120                                   | U                      | 4.5                                                        | U                 | < 140                                           |      | N                                  |
| 2,4-Dinitrophenol               | 51-28-5         | 15                                    | U                 | 250                                   | U                      | 12                                                         | U                 | < 280                                           |      | N                                  |
| 2,4-Dinitrotoluene              | 121-14-2        | 4.2                                   | U                 | 6.6                                   | U                      | 8.1                                                        | J                 | < 19                                            | J    | P                                  |
| 2,6-Dinitrotoluene              | 606-20-2        | 3.4                                   | U                 | 6.6                                   | U                      | 6.3                                                        | J                 | < 16                                            | J    | P                                  |
| 1,2-Diphenylhydrazine           | 122-66-7        | 1.7                                   | U                 | 6.6                                   | U                      | 7.5                                                        | J                 | < 16                                            | J    | P                                  |
| Fluoranthene                    | 206-44-0        | 1.3                                   | U                 | 7.1                                   | U                      | 8.5                                                        | J                 | < 17                                            | J    | P                                  |
| Fluorene                        | 86-73-7         | 1.3                                   | U                 | 6.6                                   | U                      | 8.4                                                        | J                 | < 16                                            | J    | P                                  |
| Hexachlorocyclopentadiene       | 77-47-4         | 26                                    | U                 | 130                                   | U                      | 20                                                         | U                 | < 180                                           |      | P                                  |
| Hexachlorobenzene               | 118-74-1        | 1.5                                   | U                 | 6.6                                   | U                      | 8.3                                                        | J                 | < 16                                            | J    | P                                  |
| Hexachlorobutadiene             | 87-68-3         | 3.7                                   | U                 | 9.7                                   | U                      | 6.5                                                        | J                 | < 20                                            | J    | P                                  |
| Hexachloroethane                | 67-72-1         | 6.6                                   | U                 | 7.1                                   | U                      | 6.4                                                        | J                 | < 20                                            | J    | P                                  |
| Indeno(1,2,3-cd)pyrene          | 193-39-5        | 5.5                                   | U                 | 140                                   | U                      | 7.0                                                        | J                 | < 150                                           | J    | P                                  |
| Isophorone                      | 78-59-1         | 1.7                                   | U                 | 6.6                                   | U                      | 7.4                                                        | J                 | < 16                                            | J    | P                                  |
| 2-Methylnaphthalene             | 91-57-6         | 1.5                                   | U                 | 6.6                                   | U                      | 6.8                                                        | J                 | < 15                                            | J    | P                                  |
| 2-Methylphenol                  | 95-48-7         | 6.0                                   | U                 | 39                                    | U                      | 6.3                                                        | U                 | < 51                                            |      | N                                  |
| 3-Methylphenol & 4-Methylphenol | 65794-96-9      | 6.0                                   | U                 | 26                                    | U                      | 6.8                                                        | U                 | < 39                                            |      | N                                  |

## MM-5 Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-3. HLLWE Run ID: 0010-STRT-2

|                                | CAS<br>Registry | Front H<br>Compos | MM-5 Train Front Half Composite <sup>1</sup> (μg) |                     | rain<br>alf<br>ite <sup>2</sup> | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) |                   | MM-5 Train<br>Totals <sup>4</sup><br>(Total µg) |      | Project<br>Specific |
|--------------------------------|-----------------|-------------------|---------------------------------------------------|---------------------|---------------------------------|------------------------------------------------------------|-------------------|-------------------------------------------------|------|---------------------|
| Analyte                        | Number          | Risk Result       | Flag <sup>5</sup>                                 | (μg)<br>Risk Result | Flag <sup>5</sup>               | Risk Result                                                | Flag <sup>5</sup> | Total <sup>6</sup>                              | Flag | Flag <sup>7</sup>   |
| N-Nitroso-di-n-propylamine     | 621-64-7        | 1.9               | U                                                 | 6.6                 | U                               | 6.8                                                        | U                 | < 15                                            |      | N                   |
| N-Nitrosodimethylamine         | 62-75-9         | 1.9               | U                                                 | 6.6                 | U                               | 6.6                                                        | J                 | < 15                                            | J    | P                   |
| N-Nitrosodiphenylamine         | 86-30-6         | 1.6               | U                                                 | 12                  | U                               | 7.6                                                        | J                 | < 21                                            | J    | P                   |
| Naphthalene                    | 91-20-3         | 1.3               | U                                                 | 7.9                 | U                               | 7.4                                                        | J                 | < 17                                            | J    | P                   |
| 2-Nitroaniline                 | 88-74-4         | 1.5               | U                                                 | 6.6                 | U                               | 8.4                                                        | U                 | < 17                                            |      | N                   |
| 3-Nitroaniline                 | 99-09-2         | 10                | U                                                 | 26                  | U                               | 14                                                         | U                 | < 50                                            | ,    | N                   |
| 4-Nitroaniline                 | 100-01-6        | 6.0               | U                                                 | 26                  | U                               | 12                                                         | U                 | < 44                                            |      | N                   |
| Nitrobenzene                   | 98-95-1         | 1.9               | U                                                 | 9.2                 | J                               | 8.8                                                        | J                 | < 20                                            | J    | Р                   |
| 2-Nitrophenol                  | 88-75-5         | 8.4               | U                                                 | 21                  | J                               | 7.9                                                        | J                 | < 37                                            | J    | P                   |
| 4-Nitrophenol                  | 100-02-7        | 8.7               | U                                                 | 42                  | U                               | 12                                                         | U                 | < 63                                            |      | N                   |
| 2,2'-Oxybis(1-chloropropane) 8 | 108-60-1        | 2.6               | U                                                 | 10                  | U                               | 9.7                                                        | J                 | < 22                                            | J    | P                   |
| Pentachlorobenzene             | 608-93-5        | 1.4               | U                                                 | 6.6                 | U                               | 6.8                                                        | U                 | < 15                                            |      | N                   |
| Pentachloronitrobenzene        | 82-68-8         | 2.0               | U                                                 | 6.6                 | U                               | 7.9                                                        | U                 | < 16                                            |      | N                   |
| Pentachlorophenol              | 87-86-5         | 50                | U                                                 | 250                 | U                               | 10                                                         | U                 | < 310                                           |      | N                   |
| Phenanthrene                   | 85-01-8         | 1.3               | U                                                 | 6.6                 | U                               | 8.6                                                        | J                 | < 17                                            | J    | Р                   |
| Phenol                         | 108-95-2        | 2.9               | U                                                 | 23                  | J                               | 7.4                                                        | J                 | < 33                                            | J    | P                   |
| Pyrene                         | 129-00-0        | 1.9               | U                                                 | 6.8                 | U                               | 9.4                                                        | J                 | < 18                                            | J    | P                   |
| Pyridine                       | 110-86-1        | 2.3               | U                                                 | 9.7                 | U                               | 16                                                         | U                 | < 28                                            |      | N                   |
| 1,2,4,5-Tetrachlorobenzene     | 95-94-3         | 2.3               | U                                                 | 6.6                 | U                               | 6.6                                                        | U                 | < 16                                            |      | N                   |
| 1,2,4-Trichlorobenzene         | 120-82-1        | 1.9               | U                                                 | 7.9                 | U                               | 7.4                                                        | J                 | < 17                                            | J    | P                   |
| 2,4,5-Trichlorophenol          | 95-95-4         | 6.0               | U                                                 | 17                  | U                               | 6.3                                                        | U                 | < 29                                            |      | N                   |
| 2,4,6-Trichlorophenol          | 88-06-2         | 3.7               | U                                                 | 10                  | U                               | 7.6                                                        | U_                | < 21                                            |      | N                   |

## MM-5 Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-3. HLLWE Run ID: 0010-STRT-2

|                                 | CAS<br>Registry | MM-5 Train<br>Front Half<br>Composite <sup>1</sup><br>(µg) | MM-5 Train<br>Back Half<br>Composite <sup>2</sup><br>(μg) | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) | MM-5 Train<br>Totals <sup>4</sup><br>(Total μg) |       | Project Specific  |
|---------------------------------|-----------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|-------|-------------------|
| Analyte                         | Number          | Risk Result Flag                                           | Risk Result Flag <sup>5</sup>                             | Risk Result Flag <sup>5</sup>                              | Total <sup>6</sup>                              | Flag  | Flag <sup>7</sup> |
| TICs <sup>9</sup>               |                 |                                                            |                                                           |                                                            |                                                 |       |                   |
| Furan, 2,5-dimethyl-            | 625-86-5        | 9.8                                                        |                                                           |                                                            | 9.8                                             | N,J,M | P                 |
| 3-Hexanone                      | 589-38-8        |                                                            | 96                                                        |                                                            | 96                                              | N,J,M | P                 |
| Heptane, 2,5-dimethyl-          | 2216-30-0       | 7.1                                                        |                                                           |                                                            | 7.1                                             | N,J,M | Р                 |
| Benzaldehyde                    | 100-52-7        |                                                            | 670                                                       |                                                            | 670                                             | N,J,M | P                 |
| Formic acid, phenylmethyl este  | 104-57-4        |                                                            | 52                                                        |                                                            | 52                                              | N,J,M | P                 |
| Dodecane                        | 112-40-3        |                                                            | 55                                                        |                                                            | 55                                              | N,J,M | P                 |
| Tridecane                       | 629-50-5        |                                                            | 18                                                        |                                                            | 18                                              | N,J,M | Р                 |
| Naphthalene, 1-methyl-          | 90-12-0         |                                                            |                                                           | 7.8                                                        | 7.8                                             | N,J,M | Р                 |
| Tetradecane                     | 629-59-4        |                                                            | 56                                                        |                                                            | 56                                              | N,J,M | Р                 |
| Cyclododecane                   | 294-62-2        | 5.6                                                        |                                                           |                                                            | 5.6                                             | N,J,M | P                 |
| Hexanedioic acid, bis(2-ethylh) | 103-23-1        |                                                            |                                                           | 10                                                         | 10                                              | N,J,M | P                 |
| 1,2-Benzenedicarboxylic acid,   | 1330-96-7       |                                                            |                                                           | 8.4                                                        | 8.4                                             | N,J,M | P                 |
| Benzo(e)pyrene                  | 192-97-2        |                                                            |                                                           | 14                                                         | 14                                              | N,J,M | P                 |

#### Footnotes:

- The MM-5 Train Front Half Composite consists of the Particulate Filter and the Front Half of the Filter Holder and Probe Solvent Rinses.
- The MM-5 Train Back Half Composite consists of the XAD-2 Resin Tube and the Back Half of the Filter Holder and Coil Condenser Solvent Rinses.
- <sup>3</sup> The MM-5 Train Condensate Composite consists of the Condensate and Impinger Contents and the Glassware Solvent Rinses.
- The total mass for each semivolatile compound found in the MM-5 sampling train consists of the sum of the MM-5 train's Front Half Composite contents, the train's Back Half Composite contents, and the Condensate Composite. The calculation is as follows:

(Total  $\mu g$  in the Front Half) + (Total  $\mu g$  in the Back Half) + (Concentration in the Condensate Composite x Condensate Composite Volume) = Total  $\mu g$  in the MM-5 Sampling Train.

Therefore:  $(\mu g) + (\mu g) + (\mu g/Liter \times Liter) = Total \mu g$ 

The MM-5 Train Run Total (in Total  $\mu$ g) is the sum of results for the three (3) MM-5 train sample fractions using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MM-5 Train Total are the cumulative set of flags for each train component included as part of the MM-5 train total. A flag attached to an MM-5 train component is carried through to the "MM-5 Train Total" column when the associated component analytical result is a significant number in comparison to the MM-5 Train Total. That is, if the MM-5 Train Total is affected by an MM-5 train component analytical result, the flag is carried through to the MM-5 Train Total, but if the MM-5 Train Total is not affected by an MM-5 train component, the flag is not carried through to the MM-5 Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
  - A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these
    values are regarded as estimated values.
  - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
  - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
  - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.
  - An "A" qualifier indicates that this result is an Aldol-condensation product.
  - An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of
    one (1).
  - A "Q" qualifier indicates that this result was quantitated against the response factor of a calibration standard.
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- <sup>8</sup> Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

#### MM-5 Train Summary - Run 4 Train Totals Semivolatile Organic Compounds Analytical Results Summary Table A-4. HLLWE Run ID: 0010-END-2

Field Sample Name:

MM-5 Train

Sample Description:

MM-5 Train Totals for Semivolatile Organic Compounds Analysis

|                             | CAS<br>Registry | MM-5 Ti<br>Front H<br>Compos<br>(µg) | alf               | MM-5 Train Back Half Composite <sup>2</sup> (μg) |                   | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) |                                        | MM-5 Train Totals <sup>4</sup> (Total µg) |                                         | Project<br>Specific |
|-----------------------------|-----------------|--------------------------------------|-------------------|--------------------------------------------------|-------------------|------------------------------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------|---------------------|
| Analyte                     | Number          | Risk Result                          | Flag <sup>5</sup> | Risk Result                                      | Flag <sup>5</sup> | Risk Result                                                | Flag <sup>5</sup>                      | Total <sup>6</sup>                        | Flag                                    | Flag <sup>7</sup>   |
| Target Compound List        |                 |                                      |                   | -                                                |                   |                                                            | ······································ |                                           |                                         |                     |
| Acenaphthene                | 83-32-9         | 1.3                                  | U                 | 6.6                                              | U                 | 1.9                                                        | U                                      | < 9.8                                     |                                         | N                   |
| Acenaphthylene              | 208-96-8        | 1.3                                  | U                 | 6.6                                              | U                 | 1.6                                                        | U                                      | < 9.5                                     |                                         | N                   |
| Acetophenone                | 9[8-86-2        | 2.0                                  | U                 | 32                                               | J                 | 2.6                                                        | U                                      | < 37                                      | J                                       | P                   |
| Aniline                     | 62-53-3         | 2.5                                  | U                 | 94                                               | U                 | 18                                                         | U                                      | < 110                                     |                                         | N                   |
| Anthracene                  | 120-12-7        | 1.3                                  | U                 | 6.6                                              | U                 | 1.6                                                        | U                                      | < 9.5                                     | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | N                   |
| Benzidine                   | 92-87-5         | 100                                  | U                 | 500                                              | U                 | 66                                                         | U                                      | < 670                                     |                                         | N                   |
| Benzoic acid                | 65-85-0         | 100                                  | U                 | 2,600                                            | Е                 | 9.4                                                        | U                                      | < 2,700                                   | Е                                       | Р                   |
| Benzo(a)anthracene          | 56-55-3         | 2.2                                  | U                 | 7.6                                              | U                 | 1.7                                                        | U                                      | < 12                                      | /4414444444                             | N                   |
| Benzo(a)pyrene              | 50-32-8         | 2.6                                  | U                 | 130                                              | U                 | 1.8                                                        | U                                      | < 130                                     |                                         | N                   |
| Benzo(b)fluoranthene        | 205-99-2        | 3.7                                  | U                 | 290                                              | U                 | 4.2                                                        | U                                      | < 300                                     |                                         | N                   |
| Benzo(g,h,i)perylene        | 191-24-2        | 7.3                                  | U                 | 160                                              | U                 | 2.1                                                        | U                                      | < 170                                     |                                         | N                   |
| Benzo(k)fluoranthene        | 207-08-9        | 5.5                                  | U                 | 420                                              | U                 | 2.9                                                        | U                                      | < 430                                     |                                         | N                   |
| Benzyl alcohol              | 100-51-6        | 92                                   | U                 | 470                                              | U                 | 4.2                                                        | U                                      | < 570                                     |                                         | N                   |
| bis(2-Chloroethoxy)methane  | 111-91-1        | 1.5                                  | U                 | 6.6                                              | U                 | 2.0                                                        | U                                      | < 10                                      |                                         | N                   |
| bis(2-Chloroethyl)ether     | 111-44-4        | 2.0                                  | U                 | 7.3                                              | U                 | 1.7                                                        | U                                      | < 11                                      |                                         | N                   |
| bis(2-Ethylhexyl)phthalate  | 117-81-7        | 57                                   |                   | 100                                              | J                 | 6.1                                                        | J                                      | < 160                                     | J                                       | A                   |
| 4-Bromophenyl-phenylether   | 101-55-3        | 1.4                                  | U                 | 6.6                                              | U                 | 1.4                                                        | U                                      | < 9.4                                     |                                         | N                   |
| Butylbenzylphthalate        | 85-68-7         | 2.9                                  | U                 | 7.9                                              | U                 | 2.3                                                        | U                                      | < 13                                      |                                         | N                   |
| Carbazole                   | 86-74-8         | 2.0                                  | U                 | 8.4                                              | U                 | 2.2                                                        | U                                      | < 13                                      |                                         | N                   |
| 4-Chloro-3-methylphenol     | 59-50-7         | 2.6                                  | U                 | 8.1                                              | U                 | 6.6                                                        | U                                      | < 17                                      |                                         | N                   |
| 4-Chloroaniline             | 106-47-8        | 3.1                                  | U                 | 79                                               | U                 | 7.9                                                        | U                                      | < 90                                      |                                         | N                   |
| 2-Chloronaphthalene         | 91-58-7         | 1.3                                  | U                 | 6.6                                              | U                 | 1.4                                                        | U                                      | < 9.3                                     |                                         | N                   |
| 2-Chlorophenol              | 95-57-8         | 2.6                                  | U                 | 6.6                                              | U                 | 1.7                                                        | U                                      | < 11                                      | <u> </u>                                | N                   |
| 4-Chlorophenyl phenyl ether | 7005-72-36      | 1.3                                  | U                 | 6.6                                              | U                 | 3.1                                                        | U                                      | < 11                                      |                                         | N                   |
| Chrysene                    | 218-01-9        | 2.3                                  | U                 | 8.4                                              | U                 | 1.3                                                        | U                                      | < 12                                      |                                         | N                   |

## MM-5 Train Summary - Run 4 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-4. HLLWE Run ID: 0010-END-2

|                                                  | CAS<br>Registry  | MM-5 Train Front Half Composite <sup>1</sup> (µg) |                   | MM-5 Train Back Half Composite <sup>2</sup> (μg) |                   | MM-5 Train<br>Condensate<br>Composite <sup>3</sup> |                   | MM-5 Train Totals <sup>4</sup> (Total μg) |      | Project Specific  |
|--------------------------------------------------|------------------|---------------------------------------------------|-------------------|--------------------------------------------------|-------------------|----------------------------------------------------|-------------------|-------------------------------------------|------|-------------------|
| Analyte                                          | Number           | Risk Result                                       | Flag <sup>5</sup> | Risk Result                                      | Flag <sup>5</sup> | Risk Result                                        | Flag <sup>5</sup> | Total <sup>6</sup>                        | Flag | Flag <sup>7</sup> |
| HELIPPIN THE |                  |                                                   |                   | 100                                              |                   | 2.2                                                | т т               | < 100                                     | J    | P                 |
| Di-n-butylphthalate                              | 84-74-2          | 1.9                                               | J                 | 100                                              | U                 | 2.3                                                | U                 |                                           |      | P                 |
| Di-n-octylphthalate                              | 117-84-0         | 5.5                                               | J                 | 150                                              | U                 | 2.5                                                | J                 | < 160                                     | J    | N N               |
| Dibenz(a,h)anthracene                            | 53-70-3          | 5.2                                               | U                 | 160                                              | U                 | 2.9                                                | U                 | < 170                                     |      |                   |
| Dibenzofuran                                     | 132-64-9         | 1.4                                               | U                 | 6.6                                              | U                 | 2.9                                                | U                 | < 11                                      |      | N                 |
| 1,2-Dichlorobenzene                              | 95-50-1          | 2.2                                               | U                 | 6.8                                              | U                 | 1.7                                                | U                 | < 11                                      |      | N                 |
| 1,3-Dichlorobenzene                              | 541-73-1         | 3.1                                               | U                 | 7.3                                              | U                 | 1.4                                                | U                 | < 12                                      |      | N                 |
| 1,4-Dichlorobenzene                              | 106-46-7         | 2.9                                               | U                 | 16                                               | J                 | 2.0                                                | U                 | < 21                                      | J    | P                 |
| 3,3'-Dichlorobenzidine                           | 91-94-1          | 7.1                                               | U                 | 97                                               | U                 | 7.9                                                | U                 | < 110                                     |      | N                 |
| 2,4-Dichlorophenol                               | 120-83-2         | 3.9                                               | U                 | 6.6                                              | U                 | 2.3                                                | U                 | < 13                                      |      | N                 |
| Diethylphthalate                                 | 84-66-2          | 3.9                                               | U                 | 9.4                                              | U                 | 1.4                                                | U                 | < 15                                      |      | N                 |
| Dimethyl phthalate                               | 131-11-3         | 1.7                                               | U                 | 6.6                                              | U                 | 1.3                                                | U                 | < 9.6                                     |      | N                 |
| 2,4-Dimethylphenol                               | 105-67-9         | 7.6                                               | U                 | 50                                               | U                 | 1.5                                                | U                 | < 59                                      |      | N                 |
| 4,6-Dinitro-2-methylphenol                       | 534-52-1         | 13                                                | U                 | 120                                              | U                 | 1.5                                                | U                 | < 130                                     |      | N                 |
| 2,4-Dinitrophenol                                | 51-28-5          | 16                                                | U                 | 250                                              | U                 | 3.9                                                | U                 | < 270                                     |      | N                 |
| 2,4-Dinitrotoluene                               | 121-14-2         | 4.2                                               | U                 | 6.6                                              | U                 | 2.6                                                | U                 | < 13                                      |      | N                 |
| 2,6-Dinitrotoluene                               | 606-20-2         | 3.4                                               | U                 | 6.6                                              | U                 | 2.1                                                | U                 | < 12                                      |      | N                 |
| 1,2-Diphenylhydrazine                            | 122-66-7         | 1.7                                               | U                 | 6.6                                              | U                 | 1.5                                                | U                 | < 9.8                                     |      | N                 |
| Fluoranthene                                     | 206-44-0         | 1.3                                               | U                 | 7.1                                              | U                 | 1.8                                                | U                 | < 10                                      |      | N                 |
| Fluorene                                         | 86-73-7          | 1.3                                               | U                 | 6.6                                              | U                 | 2.6                                                | U                 | < 10                                      |      | N                 |
| Hexachlorocyclopentadiene                        | 77-47-4          | 26                                                | U                 | 130                                              | U                 | 6.6                                                | U                 | < 160                                     | 1    | N                 |
| Hexachlorobenzene                                | 118-74-1         | 1.5                                               | U                 | 6.6                                              | U                 | 2.6                                                | U                 | < 11                                      |      | N                 |
| Hexachlorobutadiene                              | 87-68-3          | 3.7                                               | U                 | 9.7                                              | U                 | 1.9                                                | U                 | < 15                                      |      | N                 |
| Hexachloroethane                                 | 67-72-1          | 6.6                                               | U                 | 7.1                                              | U                 | 1.9                                                | U                 | < 16                                      |      | N                 |
| Indeno(1,2,3-cd)pyrene                           | 193-39-5         | 5.5                                               | U                 | 140                                              | U                 | 2.3                                                | U                 | < 150                                     |      | N                 |
| Isophorone                                       | 78-59-1          | 1.7                                               | U                 | 6.6                                              | U                 | 1.8                                                | U                 | < 10                                      |      | N                 |
| 2-Methylnaphthalene                              | 91 <b>-</b> 57-6 | 1.5                                               | U                 | 6.6                                              | U                 | 2.3                                                | U                 | < 10                                      |      | N                 |
| 2-Methylphenol                                   | 95-48-7          | 6.0                                               | U                 | 39                                               | U                 | 2.1                                                | U                 | < 47                                      |      | N                 |
| 3-Methylphenol & 4-Methylphenol                  | 65794-96-9       | 6.0                                               | U                 | 26                                               | U                 | 2.2                                                | U                 | < 34                                      |      | N                 |

## MM-5 Train Summary - Run 4 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-4. HLLWE Run ID: 0010-END-2

|                                | CAS<br>Registry | Front H<br>Composi | MM-5 Train Front Half Composite <sup>1</sup> (μg) |                     | rain<br>alf<br>ite <sup>2</sup> | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) |                   | MM-5 Train<br>Totals <sup>4</sup><br>(Total μg) |      | Project Specific  |
|--------------------------------|-----------------|--------------------|---------------------------------------------------|---------------------|---------------------------------|------------------------------------------------------------|-------------------|-------------------------------------------------|------|-------------------|
| Analyte                        | Number          | Risk Result        | Flag <sup>5</sup>                                 | (μg)<br>Risk Result | Flag <sup>5</sup>               |                                                            | Flag <sup>5</sup> | Total <sup>6</sup>                              | Flag | Flag <sup>7</sup> |
| N-Nitroso-di-n-propylamine     | 621-64-7        | 1.9                | U                                                 | 6.6                 | U                               | 2.3                                                        | U                 | < 11                                            |      | N                 |
| N-Nitrosodimethylamine         | 62-75-9         | 1.9                | U                                                 | 6.6                 | U                               | 2.2                                                        | U                 | < 11                                            |      | N                 |
| N-Nitrosodiphenylamine         | 86-30-6         | 1.6                | U                                                 | 12                  | U                               | 1.4                                                        | U                 | < 15                                            |      | N                 |
| Naphthalene                    | 91-20-3         | 1.3                | U                                                 | 7.9                 | U                               | 1.8                                                        | U                 | < 11                                            |      | N                 |
| 2-Nitroaniline                 | 88-74-4         | 1.5                | U                                                 | 6.6                 | U                               | 2.9                                                        | U                 | < 11                                            |      | N                 |
| 3-Nitroaniline                 | 99-09-2         | 10                 | U                                                 | 26                  | U                               | 4.7                                                        | U                 | < 41                                            |      | N                 |
| 4-Nitroaniline                 | 100-01-6        | 6.0                | U                                                 | 26                  | U                               | 3.9                                                        | U                 | < 36                                            |      | N                 |
| Nitrobenzene                   | 98-95-1         | 1.9                | U                                                 | 8.5                 | J                               | 1.7                                                        | U                 | < 12                                            | J    | Р                 |
| 2-Nitrophenol                  | 88-75-5         | 8.4                | U                                                 | 40                  | J                               | 2.6                                                        | U                 | < 51                                            | J    | P                 |
| 4-Nitrophenol                  | 100-02-7        | 8.7                | U                                                 | 42                  | J                               | 3.9                                                        | U                 | < 55                                            | J    | Р                 |
| 2,2'-Oxybis(1-chloropropane) 8 | 108-60-1        | 2.6                | U                                                 | 10                  | U                               | 1.8                                                        | U                 | < 14                                            |      | N                 |
| Pentachlorobenzene             | 608-93-5        | 1.4                | U                                                 | 6.6                 | U                               | 2.3                                                        | U                 | < 10                                            |      | N                 |
| Pentachloronitrobenzene        | 82-68-8         | 2.0                | U                                                 | 6.6                 | U                               | 2.6                                                        | U                 | < 11                                            |      | N                 |
| Pentachlorophenol              | 87-86-5         | 50                 | U                                                 | 320                 | U                               | 3.4                                                        | U                 | < 370                                           | ļ    | N                 |
| Phenanthrene                   | 85-01-8         | 1.3                | U                                                 | 6.6                 | U                               | 1.9                                                        | U                 | < 9.8                                           | ļ    | N                 |
| Phenol                         | 108-95-2        | 2.9                | U                                                 | 34                  | J                               | 2.2                                                        | J                 | < 39                                            | J    | P                 |
| Pyrene                         | 129-00-0        | 1.9                | U                                                 | 6.8                 | U                               | 1.4                                                        | U                 | < 10                                            |      | N                 |
| Pyridine                       | 110-86-1        | 2.3                | U                                                 | 9.7                 | U                               | 5.2                                                        | U                 | < 17                                            |      | N                 |
| 1,2,4,5-Tetrachlorobenzene     | 95-94-3         | 2.3                | U                                                 | 6.6                 | U                               | 2.2                                                        | U                 | < 11                                            |      | N                 |
| 1,2,4-Trichlorobenzene         | 120-82-1        | 1.9                | U                                                 | 7.9                 | U                               | 2.2                                                        | U                 | < 12                                            |      | N                 |
| 2,4,5-Trichlorophenol          | 95-95-4         | 6.0                | U                                                 | 17                  | U                               | 2.1                                                        | U                 | < 25                                            |      | N                 |
| 2,4,6-Trichlorophenol          | 88-06-2         | 3.7                | U                                                 | 10                  | U                               | 2.5                                                        | U                 | < 16                                            |      | N                 |

### MM-5 Train Summary - Run 4 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-4. HLLWE Run ID: 0010-END-2

|                                 | CAS<br>Registry | MM-5 Train<br>Front Half<br>Composite <sup>1</sup><br>(μg) | MM-5 Train<br>Back Half<br>Composite <sup>2</sup><br>(μg) | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) | MM-5<br>Tot<br>(Tota |       | Project<br>Specific |
|---------------------------------|-----------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|----------------------|-------|---------------------|
| Analyte                         | Number          | Risk Result Flag <sup>5</sup>                              | Risk Result Flag <sup>5</sup>                             |                                                            | Total <sup>6</sup>   | Flag  | Flag <sup>7</sup>   |
| TICs <sup>9</sup>               |                 |                                                            |                                                           |                                                            |                      |       |                     |
| 3-Hexanone                      | 589-38-8        |                                                            | 70                                                        |                                                            | 70                   | N,J,M | P                   |
| Benzaldehyde                    | 100-52-7        |                                                            | 730                                                       |                                                            | 730                  | N,J,M | Р                   |
| 2-Cyclohexene-1-one, 3-methyl-  | 1193-18-6       |                                                            |                                                           | 3.2                                                        | 3.2                  | N,J,M | P                   |
| Formic acid, phenylmethyl ester | 104-57-4        |                                                            | 95                                                        |                                                            | 95                   | N,J,M | P                   |
| Benzaldehyde, ethyl-            | 53951-50-1      |                                                            | 61                                                        |                                                            | 61                   | N,J,M | Р                   |
| Dodecane                        | 112-40-3        |                                                            | 37                                                        |                                                            | 37                   | N,J,M | Р                   |
| Tridecane                       | 629-50-5        |                                                            | 21                                                        |                                                            | 21                   | N,J,M | Р                   |
| 2,4-Hexadiene                   | 592-46-1        |                                                            | 28                                                        |                                                            | 28                   | N,J,M | P                   |
| 2,5-Diethylphenol               | 876-20-0        |                                                            | 100                                                       |                                                            | 100                  | N,J,M | P                   |
| Tetradecane                     | 629-59-4        |                                                            | 99                                                        |                                                            | 99                   | N,J,M | P                   |
| Hexatriacontane                 | 630-06-8        | 5.7                                                        |                                                           |                                                            | 5.7                  | N,J,M | P                   |
| Phosphoric acid tributyl ester  | 126-73-8        | 24                                                         |                                                           |                                                            | 24                   | N,J,M | P                   |
| Cyclododecane                   | 294-62-2        | 13                                                         |                                                           |                                                            | 13                   | N,J,M | Р                   |
| Pentadecane                     | 629-62-9        | 4.5                                                        |                                                           |                                                            | 4.5                  | N,J,M | P                   |
| Heneicosane                     | 629-94-7        | 9.1                                                        |                                                           |                                                            | 9.1                  | N,J,M | P                   |
| Tetracosane                     | 646-31-1        | 19                                                         |                                                           |                                                            | 19                   | N,J,M | P                   |
| Pentacosane                     | 629-99-2        | 35                                                         |                                                           |                                                            | 35                   | N,J,M | P                   |
| Hexacosane                      | 630-01-3        | 64                                                         |                                                           |                                                            | 64                   | N,J,M | P                   |
| Heptacosane                     | 593-49-7        | 83                                                         |                                                           |                                                            | 83                   | N,J,M | P                   |
| Pentacosane                     | 629-99-2        |                                                            |                                                           | 2.2                                                        | 2.2                  | N,J,M | Р                   |
| Hexatriacontane                 | 630-06-8        | 100                                                        |                                                           |                                                            | 100                  | N,J,M | Р                   |
| Hexatriacontane                 | 630-06-8        | 67                                                         |                                                           |                                                            | 67                   | N,J,M | Р                   |
| Hexatriacontane                 | 630-06-8        | 32                                                         |                                                           |                                                            | 32                   | N,J,M | Р                   |
| Eicosane                        | 112-95-8        | 19                                                         |                                                           |                                                            | 19                   | N,J,M | P                   |
| Tetracosane                     | 646-31-1        | 7.4                                                        |                                                           |                                                            | 7.4                  | N,J,M | P                   |
|                                 |                 |                                                            |                                                           |                                                            |                      |       |                     |

#### Footnotes:

- The MM-5 Train Front Half Composite consists of the Particulate Filter and the Front Half of the Filter Holder and Probe Solvent Rinses.
- The MM-5 Train Back Half Composite consists of the XAD-2 Resin Tube and the Back Half of the Filter Holder and Coil Condenser Solvent Rinses.
- <sup>3</sup> The MM-5 Train Condensate Composite consists of the Condensate and Impinger Contents and the Glassware Solvent Rinses.
- The total mass for each semivolatile compound found in the MM-5 sampling train consists of the sum of the MM-5 train's Front Half Composite contents, the train's Back Half Composite contents, and the Condensate Composite. The calculation is as follows:

(Total µg in the Front Half) + (Total µg in the Back Half) + (Concentration in the Condensate Composite x Condensate Composite Volume)

= Total µg in the MM-5 Sampling Train.

Therefore:  $(\mu g) + (\mu g) + (\mu g/Liter \times Liter) = Total \mu g$ 

The MM-5 Train Run Total (in Total  $\mu g$ ) is the sum of results for the three (3) MM-5 train sample fractions using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MM-5 Train Total are the cumulative set of flags for each train component included as part of the MM-5 train total. A flag attached to an MM-5 train component is carried through to the "MM-5 Train Total" column when the associated component analytical result is a significant number in comparison to the MM-5 Train Total. That is, if the MM-5 Train Total is affected by an MM-5 train component analytical result, the flag is carried through to the MM-5 Train Total, but if the MM-5 Train Total is not affected by an MM-5 train component, the flag is not carried through to the MM-5 Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
  - A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these values are regarded as estimated values.
  - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
  - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
  - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.
  - An "A" qualifier indicates that this result is an Aldol-condensation product.
  - An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- <sup>8</sup> Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

#### MM-5 Blank Train Summary - Run 2 Train Totals Semivolatile Organic Compounds Analytical Results Summary Table A-5. HLLWE Run ID: 0010-BT-1

Field Sample Name:

MM-5 Blank Train

Sample Description:

MM-5 Blank Train Totals for Semivolatile Organic Compounds Analysis

|                             | CAS<br>Registry | Front H<br>Composi<br>(µg) |                   |             | MM-5 Train Back Half Composite <sup>2</sup> (µg) |             | MM-5 Train Condensate Composite <sup>3</sup> (µg) |                    | Train<br>als <sup>4</sup><br>I μg) | Project Specific Flag <sup>7</sup> |
|-----------------------------|-----------------|----------------------------|-------------------|-------------|--------------------------------------------------|-------------|---------------------------------------------------|--------------------|------------------------------------|------------------------------------|
| Analyte                     | Number          | Risk Result                | Flag <sup>5</sup> | Risk Result | Flag <sup>5</sup>                                | Risk Result | Flag                                              | Total <sup>6</sup> | Flag                               | Flag'                              |
| Target Compound List        |                 |                            |                   |             |                                                  |             |                                                   |                    |                                    |                                    |
| Acenaphthene                | 83-32-9         | 1.3                        | U                 | 1.3         | U                                                | 1.9         | U                                                 | < 4.5              |                                    | N                                  |
| Acenaphthylene              | 208-96-8        | 1.3                        | U                 | 1.3         | U                                                | 1.6         | U                                                 | < 4.2              |                                    | N                                  |
| Acetophenone                | 9[8-86-2        | 2.0                        | U                 | 6.3         | J                                                | 2.6         | U                                                 | < 11               | J                                  | Р                                  |
| Aniline                     | 62-53-3         | 2.5                        | U                 | 19          | U                                                | 18          | U                                                 | < 40               |                                    | N                                  |
| Anthracene                  | 120-12-7        | 1.3                        | U                 | 1.3         | U                                                | 1.6         | U                                                 | < 4.2              |                                    | N                                  |
| Benzidine                   | 92-87-5         | 100                        | U                 | 100         | U                                                | 66          | U                                                 | < 270              |                                    | N                                  |
| Benzoic acid                | 65-85-0         | 100                        | U                 | 100         | U                                                | 9.4         | U                                                 | < 210              |                                    | N                                  |
| Benzo(a)anthracene          | 56-55-3         | 2.2                        | U                 | 1.5         | U                                                | 1.7         | U                                                 | < 5.4              |                                    | N                                  |
| Benzo(a)pyrene              | 50-32-8         | 2.6                        | U                 | 1.3         | U                                                | 1.8         | U                                                 | < 5.7              |                                    | N                                  |
| Benzo(b)fluoranthene        | 205-99-2        | 3.7                        | U                 | 2.9         | U                                                | 4.2         | U                                                 | < 11               |                                    | N                                  |
| Benzo(g,h,i)perylene        | 191-24-2        | 7.3                        | U                 | 1.6         | U                                                | 2.1         | U                                                 | < 11               |                                    | N                                  |
| Benzo(k)fluoranthene        | 207-08-9        | 5.5                        | U                 | 4.2         | U                                                | 2.9         | U                                                 | < 13               |                                    | N                                  |
| Benzyl alcohol              | 100-51-6        | 92                         | U                 | 92          | U                                                | 4.2         | U                                                 | < 190              |                                    | N                                  |
| bis(2-Chloroethoxy)methane  | 111-91-1        | 1.5                        | U                 | 1.3         | U                                                | 2.0         | U                                                 | < 4.8              |                                    | N                                  |
| bis(2-Chloroethyl)ether     | 111-44-4        | 2.0                        | U                 | 1.5         | U                                                | 1.7         | U                                                 | < 5.2              |                                    | N                                  |
| bis(2-Ethylhexyl)phthalate  | 117-81-7        | 15                         |                   | 99          |                                                  | 15          | •                                                 | 130                |                                    | A                                  |
| 4-Bromophenyl-phenylether   | 101-55-3        | 1.4                        | U                 | 1.3         | U                                                | 1.4         | U                                                 | < 4.1              |                                    | N                                  |
| Butylbenzylphthalate        | 85-68-7         | 2.9                        | U                 | 1.6         | U                                                | 2.3         | U                                                 | < 6.8              |                                    | N                                  |
| Carbazole                   | 86-74-8         | 2.0                        | U                 | 1.7         | U                                                | 2.2         | U                                                 | < 5.9              |                                    | N                                  |
| 4-Chloro-3-methylphenol     | 59-50-7         | 2.6                        | U                 | 1.6         | U                                                | 6.6         | U                                                 | < 11               |                                    | N                                  |
| 4-Chloroaniline             | 106-47-8        | 3.1                        | U                 | 16          | U                                                | 7.9         | U                                                 | < 27               |                                    | N                                  |
| 2-Chloronaphthalene         | 91-58-7         | 1.3                        | U                 | 1.3         | U                                                | 1.4         | U                                                 | < 4.0              |                                    | N                                  |
| 2-Chlorophenol              | 95-57-8         | 2.6                        | U                 | 1.3         | U                                                | 1.7         | U                                                 | < 5.6              |                                    | N                                  |
| 4-Chlorophenyl phenyl ether | 7005-72-36      | 1.3                        | U                 | 1.3         | U                                                | 3.1         | U                                                 | < 5.7              |                                    | N                                  |
| Chrysene                    | 218-01-9        | 2.3                        | U                 | 1.7         | U                                                | 1.3         | U                                                 | < 5.3              | <u> </u>                           | N                                  |

## MM-5 Blank Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-5. HLLWE Run ID: 0010-BT-1

|                                                                                                                | CAS<br>Registry | MM-5 Ti<br>Front H<br>Composi<br>(μg) | alf<br>ite <sup>1</sup> | MM-5 Train<br>Back Half<br>Composite <sup>2</sup><br>(μg) |                   | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) |                   | MM-5 Train Totals <sup>4</sup> (Total µg) |         | Project Specific  |
|----------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|-------------------------|-----------------------------------------------------------|-------------------|------------------------------------------------------------|-------------------|-------------------------------------------|---------|-------------------|
| Analyte                                                                                                        | Number          | Risk Result                           | Flag <sup>5</sup>       | Risk Result                                               | Flag <sup>5</sup> | Risk Result                                                | Flag <sup>5</sup> | Total <sup>6</sup>                        | Flag    | Flag <sup>7</sup> |
| ngmunooraningooraningooraningooraningooraningooraningooraningooraningooraningooraningooraningooraningooraningo |                 |                                       |                         |                                                           |                   |                                                            |                   |                                           | <b></b> |                   |
| Di-n-butylphthalate                                                                                            | 84-74-2         | 1.9                                   | J                       | 20                                                        | U                 | 2.3                                                        | J                 | < 24                                      | J       | P                 |
| Di-n-octylphthalate                                                                                            | 117-84-0        | 5.5                                   | J                       | 10                                                        |                   | 3.3                                                        | J                 | < 19                                      | J       | A                 |
| Dibenz(a,h)anthracene                                                                                          | 53-70-3         | 5.2                                   | U                       | 1.6                                                       | U                 | 2.9                                                        | U                 | < 9.7                                     |         | N                 |
| Dibenzofuran                                                                                                   | 132-64-9        | 1.4                                   | U                       | 1.3                                                       | U                 | 2.9                                                        | U                 | < 5.6                                     |         | N                 |
| 1,2-Dichlorobenzene                                                                                            | 95-50-1         | 2.2                                   | U                       | 1.3                                                       | U                 | 1.7                                                        | U                 | < 5.2                                     |         | N                 |
| 1,3-Dichlorobenzene                                                                                            | 541-73-1        | 3.1                                   | U                       | 1.5                                                       | U                 | 1.4                                                        | U                 | < 6.0                                     |         | N                 |
| 1,4-Dichlorobenzene                                                                                            | 106-46-7        | 2.9                                   | U                       | 12                                                        |                   | 2.0                                                        | U                 | < 17                                      |         | Р                 |
| 3,3'-Dichlorobenzidine                                                                                         | 91-94-1         | 7.1                                   | U                       | 19                                                        | U                 | 7.9                                                        | U                 | < 34                                      |         | N                 |
| 2,4-Dichlorophenol                                                                                             | 120-83-2        | 3.9                                   | U                       | 1.3                                                       | U                 | 2.3                                                        | U                 | < 7.5                                     |         | N                 |
| Diethylphthalate                                                                                               | 84-66-2         | 3.9                                   | U                       | 1.9                                                       | U                 | 1.4                                                        | U                 | < 7.2                                     |         | N                 |
| Dimethyl phthalate                                                                                             | 131-11-3        | 1.7                                   | U                       | 1.3                                                       | U                 | 1.3                                                        | U                 | < 4.3                                     |         | N                 |
| 2,4-Dimethylphenol                                                                                             | 105-67-9        | 7.6                                   | U                       | 10                                                        | U                 | 1.5                                                        | U                 | < 19                                      |         | N                 |
| 4,6-Dinitro-2-methylphenol                                                                                     | 534-52-1        | 13                                    | U                       | 23                                                        | U                 | 1.5                                                        | U                 | < 38                                      |         | N                 |
| 2,4-Dinitrophenol                                                                                              | 51-28-5         | 15                                    | U                       | 50                                                        | U                 | 3.9                                                        | U                 | < 69                                      |         | N                 |
| 2,4-Dinitrotoluene                                                                                             | 121-14-2        | 4.2                                   | U                       | 1.3                                                       | U                 | 2.6                                                        | U                 | < 8.1                                     |         | N                 |
| 2,6-Dinitrotoluene                                                                                             | 606-20-2        | 3.4                                   | U                       | 1.3                                                       | U                 | 2.1                                                        | U                 | < 6.8                                     |         | Ν                 |
| 1,2-Diphenylhydrazine                                                                                          | 122-66-7        | 1.7                                   | U                       | 1.3                                                       | U                 | 1.5                                                        | U                 | < 4.5                                     |         | N                 |
| Fluoranthene                                                                                                   | 206-44-0        | 1.3                                   | U                       | 1.4                                                       | U                 | 1.8                                                        | U                 | < 4.5                                     |         | N                 |
| Fluorene                                                                                                       | 86-73-7         | 1.3                                   | U                       | 1.3                                                       | U                 | 2.6                                                        | U                 | < 5.2                                     |         | N                 |
| Hexachlorocyclopentadiene                                                                                      | 77-47-4         | 26                                    | U                       | 26                                                        | U                 | 6.6                                                        | U                 | < 59                                      |         | N                 |
| Hexachlorobenzene                                                                                              | 118-74-1        | 1.5                                   | U                       | 1.3                                                       | U                 | 2.6                                                        | U                 | < 5.4                                     |         | N                 |
| Hexachlorobutadiene                                                                                            | 87-68-3         | 3.7                                   | U                       | 1.9                                                       | U                 | 1.9                                                        | U                 | < 7.5                                     |         | N                 |
| Hexachloroethane                                                                                               | 67-72-1         | 6.6                                   | U                       | 1.4                                                       | U                 | 1.9                                                        | U                 | < 9.9                                     |         | N                 |
| Indeno(1,2,3-cd)pyrene                                                                                         | 193-39-5        | 5.5                                   | U                       | 1.4                                                       | U                 | 2.3                                                        | U                 | < 9.2                                     |         | N                 |
| Isophorone                                                                                                     | 78-59-1         | 1.7                                   | U                       | 1.3                                                       | U                 | 1.8                                                        | U                 | < 4.8                                     |         | N                 |
| 2-Methylnaphthalene                                                                                            | 91-57-6         | 1.5                                   | U                       | 1.3                                                       | U                 | 2.3                                                        | U                 | < 5.1                                     |         | N                 |
| 2-Methylphenol                                                                                                 | 95-48-7         | 6.0                                   | U                       | 7.9                                                       | U                 | 2.1                                                        | U                 | < 16                                      |         | N                 |
| 3-Methylphenol & 4-Methylphenol                                                                                | 65794-96-9      | 6.0                                   | U                       | 5.2                                                       | U                 | 2.2                                                        | U                 | < 13                                      |         | N                 |

### MM-5 Blank Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-5. HLLWE Run ID: 0010-BT-1

|                                | CAS<br>Registry | Front H<br>Compos | Front Half<br>Composite <sup>1</sup><br>(µg) |                     | rain<br>alf<br>ite <sup>2</sup> | MM-5 Train<br>Condensate<br>Composite <sup>3</sup><br>(μg) |                   | MM-5 Train<br>Totals <sup>4</sup><br>(Total μg) |      | Project Specific  |
|--------------------------------|-----------------|-------------------|----------------------------------------------|---------------------|---------------------------------|------------------------------------------------------------|-------------------|-------------------------------------------------|------|-------------------|
| Analyte                        | Number          | Risk Result       | Flag <sup>5</sup>                            | (μg)<br>Risk Result | Flag <sup>5</sup>               |                                                            | Flag <sup>5</sup> | Total <sup>6</sup>                              | Flag | Flag <sup>7</sup> |
| N-Nitroso-di-n-propylamine     | 621-64-7        | 1.9               | U                                            | 1.3                 | U                               | 2.3                                                        | U                 | < 5.5                                           |      | N                 |
| N-Nitrosodimethylamine         | 62-75-9         | 1.9               | U                                            | 1.3                 | U                               | 2.2                                                        | U                 | < 5.4                                           |      | N                 |
| N-Nitrosodiphenylamine         | 86-30-6         | 1.6               | U                                            | 2.3                 | U                               | 1.4                                                        | U                 | < 5.3                                           |      | N                 |
| Naphthalene                    | 91-20-3         | 1.3               | U                                            | 1.6                 | J                               | 1.8                                                        | U                 | < 4.7                                           | J    | Р                 |
| 2-Nitroaniline                 | 88-74-4         | 1.5               | U                                            | 1.3                 | U                               | 2.9                                                        | U                 | < 5.7                                           |      | N                 |
| 3-Nitroaniline                 | 99-09-2         | 10                | U                                            | 5.2                 | U                               | 4.7                                                        | U                 | < 20                                            |      | N                 |
| 4-Nitroaniline                 | 100-01-6        | 6.0               | U                                            | 5.2                 | U                               | 3.9                                                        | U                 | < 15                                            |      | N                 |
| Nitrobenzene                   | 98-95-1         | 1.9               | U                                            | 1.5                 | U                               | 1.7                                                        | U                 | < 5.1                                           |      | N                 |
| 2-Nitrophenol                  | 88-75-5         | 8.4               | U                                            | 1.3                 | U                               | 2.6                                                        | U                 | < 12                                            |      | N                 |
| 4-Nitrophenol                  | 100-02-7        | 8.7               | U                                            | 8.7                 | U                               | 3.9                                                        | U                 | < 21                                            |      | N                 |
| 2,2'-Oxybis(1-chloropropane) 8 | 108-60-1        | 2.6               | U                                            | 2.0                 | U                               | 1.8                                                        | U                 | < 6.4                                           |      | N                 |
| Pentachlorobenzene             | 608-93-5        | 1.4               | U                                            | 1.3                 | U                               | 2.3                                                        | U                 | < 5.0                                           | ·    | N                 |
| Pentachloronitrobenzene        | 82-68-8         | 2.0               | U                                            | 1.3                 | U                               | 2.6                                                        | U                 | < 5.9                                           |      | N                 |
| Pentachlorophenol              | 87-86-5         | 50                | U                                            | 50                  | U                               | 3.4                                                        | U                 | < 100                                           |      | N                 |
| Phenanthrene                   | 85-01-8         | 1.3               | U                                            | 1.3                 | U                               | 1.9                                                        | U                 | < 4.5                                           |      | N                 |
| Phenol                         | 108-95-2        | 2.9               | U                                            | 2.4                 | U                               | 2.2                                                        | U                 | < 7.5                                           | ·    | N                 |
| Pyrene                         | 129-00-0        | 1.9               | U                                            | 1.4                 | U                               | 1.4                                                        | U                 | < 4.7                                           |      | N                 |
| Pyridine                       | 110-86-1        | 2.3               | U                                            | 1.9                 | U                               | 5.2                                                        | U                 | < 9.4                                           |      | N                 |
| 1,2,4,5-Tetrachlorobenzene     | 95-94-3         | 2.3               | U                                            | 1.3                 | U                               | 2.2                                                        | U                 | < 5.8                                           |      | N                 |
| 1,2,4-Trichlorobenzene         | 120-82-1        | 1.9               | U                                            | 1.5                 | U                               | 2.2                                                        | U                 | < 5.6                                           |      | N                 |
| 2,4,5-Trichlorophenol          | 95-95-4         | 6.0               | U                                            | 3.4                 | U                               | 2.1                                                        | U                 | < 12                                            | -    | N                 |
| 2,4,6-Trichlorophenol          | 88-06-2         | 3.7               | U                                            | 2.0                 | U                               | 2.5                                                        | U                 | < 8.2                                           |      | N                 |

### MM-5 Blank Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-5. HLLWE Run ID: 0010-BT-1

|                             | CAS<br>Registry | MM-5 Train<br>Front Half<br>Composite <sup>1</sup><br>(µg) | Front Half Composite Composite (µg)  Front Half Composite (µg) |                               | MM-5 Train<br>Totals <sup>4</sup><br>(Total μg) |       | Project Specific Flag <sup>7</sup> |
|-----------------------------|-----------------|------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|-------------------------------------------------|-------|------------------------------------|
| Analyte                     | Number          | Risk Result Flag <sup>5</sup>                              | Risk Result Flag <sup>5</sup>                                  | Risk Result Flag <sup>5</sup> | Total <sup>6</sup>                              | Flag  | Flag <sup>7</sup>                  |
| TICs9                       |                 |                                                            |                                                                |                               |                                                 |       |                                    |
| Furan, 2,5-dimethyl-        | 625-86-5        | 12                                                         |                                                                |                               | 12                                              | N,J,M | P                                  |
| Heptane, 2,5-dimethyl-      | 2216-30-0       | 9.0                                                        |                                                                |                               | 9.0                                             | N,J,M | P                                  |
| Heptane, 2,3-dimethyl-      | 3074-71-3       | 11                                                         |                                                                |                               | 11                                              | N,J,M | Р                                  |
| Benzaldehyde                | 100-52-7        |                                                            | 7.3                                                            |                               | 7.3                                             | N,J,M | P                                  |
| Benzoic acid, methyl ester  | 93-58-3         |                                                            | 8.4                                                            |                               | 8.4                                             | N,J,M | P                                  |
| Benzaldehyde, ethyl-        | 53951-50-1      |                                                            | 14                                                             |                               | 14                                              | N,J,M | P                                  |
| Pentadecane                 | 629-62-9        | 4.4                                                        |                                                                |                               | 4.4                                             | N,J,M | Р                                  |
| Cyclododecane               | 294-62-2        | 11                                                         | 8.7                                                            | 10                            | 30                                              | N,J,M | P                                  |
| Heptadecane                 | 629-78-7        | 3.0                                                        |                                                                |                               | 3.0                                             | N,J,M | P                                  |
| Eicosane                    | 112-95-8        |                                                            |                                                                | 3.7                           | 3.7                                             | N,J,M | P                                  |
| Heneicosane                 | 629-94-7        |                                                            | 4.5                                                            |                               | 4.5                                             | N,J,M | P                                  |
| Octodecane                  | 593-45-3        |                                                            | 10                                                             |                               | 10                                              | N,J,M | Р                                  |
| Phosphine oxide, triphenyl- | 791-28-6        |                                                            |                                                                | 26                            | 26                                              | N,J,M | P                                  |
| Nonacosane                  | 630-03-5        |                                                            | 10                                                             |                               | 10                                              | N,J,M | Р                                  |
| Eicosane                    | 112-95-8        |                                                            | 14                                                             |                               | 14                                              | N,J,M | P                                  |
| Hexatriacontane             | 630-06-8        |                                                            | 23                                                             |                               | 23                                              | N,J,M | P                                  |
| Tetracosane                 | 646-31-1        |                                                            | 18                                                             |                               | 18                                              | N,J,M | Р                                  |
| Heneicosane                 | 629-94-7        |                                                            |                                                                | 3.6                           | 3.6                                             | N,J,M | Р                                  |
| Tetratriacontane            | 14167-59-0      |                                                            | 11                                                             |                               | 11                                              | N,J,M | Р                                  |
| Eicosane                    | 112-95-8        |                                                            | 9.2                                                            |                               | 9.2                                             | N,J,M | Р                                  |
|                             |                 |                                                            |                                                                |                               |                                                 |       |                                    |

#### Footnotes:

- The MM-5 Train Front Half Composite consists of the Particulate Filter and the Front Half of the Filter Holder and Probe Solvent Rinses.
- The MM-5 Train Back Half Composite consists of the XAD-2 Resin Tube and the Back Half of the Filter Holder and Coil Condenser Solvent Rinses.
- <sup>3</sup> The MM-5 Train Condensate Composite consists of the Condensate and Impinger Contents and the Glassware Solvent Rinses.
- The total mass for each semivolatile compound found in the MM-5 sampling train consists of the sum of the MM-5 train's Front Half Composite contents, the train's Back Half Composite contents, and the Condensate Composite. The calculation is as follows:

(Total µg in the Front Half) + (Total µg in the Back Half) + (Concentration in the Condensate Composite x Condensate Composite Volume)

= Total  $\mu g$  in the MM-5 Sampling Train.

Therefore:  $(\mu g) + (\mu g) + (\mu g/Liter \times Liter) = Total \mu g$ 

The MM-5 Train Run Total (in Total  $\mu g$ ) is the sum of results for the three (3) MM-5 train sample fractions using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MM-5 Train Total are the cumulative set of flags for each train component included as part of the MM-5 train total. A flag attached to an MM-5 train component is carried through to the "MM-5 Train Total" column when the associated component analytical result is a significant number in comparison to the MM-5 Train Total. That is, if the MM-5 Train Total is affected by an MM-5 train component analytical result, the flag is carried through to the MM-5 Train Total, but if the MM-5 Train Total is not affected by an MM-5 train component, the flag is not carried through to the MM-5 Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- 5 This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
  - A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these values are regarded as estimated values.
  - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
  - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
  - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.
  - ♦ An "A" qualifier indicates that this result is an Aldol-condensation product.
  - An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- <sup>8</sup> Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

### MM-5 Train Analytical Results Summary Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank

Field Sample Name:

MM-5 Train XAD-2 Resin Tube Trip Blank/Reagent Blank

Sample Description:

MM-5 Train XAD-2 Resin Tube Trip Blank/Reagent Blank for Semivolatile Organic Compounds Analysis

Field Sample ID:

A-3378

STL Sample No.

H1F250162-007

|                             | CAS<br>Registry |                         | XAD-2 R          | MM-5<br>esin Tube Tri<br>(με | p Blank/Re      | agent Blank |                                         |
|-----------------------------|-----------------|-------------------------|------------------|------------------------------|-----------------|-------------|-----------------------------------------|
| Analyte                     | Number          | Lab Result <sup>2</sup> | MDL <sup>3</sup> | RDL⁴                         | RL <sup>5</sup> | Risk Result | Flag <sup>6</sup>                       |
| Acenaphthene                | 83-32-9         | ND                      | 0.50             | 1.3                          | 10              | < 1.3       |                                         |
| Acenaphthylene              | 208-96-8        | ND                      | 0.50             | 1.3                          | 10              | < 1.3       |                                         |
| Acetophenone                | 98-86-2         | 2.7                     | 2.4              | 6.3                          | 10              | 6.3         | J                                       |
| Aniline                     | 62-53-3         | ND                      | 7.3              | 19                           | 20              | < 19        |                                         |
| Anthracene                  | 120-12-7        | ND                      | 0.50             | 1.3                          | 10              | < 1.3       |                                         |
| Benzidine                   | 92-87-5         | ND                      | 51               | 130                          | 100             | < 100       |                                         |
| Benzoic acid                | 65-85-0         | ND                      | 46               | 120                          | 100             | < 100       |                                         |
| Benzo(a)anthracene          | 56-55-3         | ND                      | 0.58             | 1.5                          | 10              | < 1.5       |                                         |
| Benzo(a)pyrene              | 50-32-8         | ND                      | 0.50             | 1.3                          | 10              | < 1.3       |                                         |
| Benzo(b)fluoranthene        | 205-99-2        | ND                      | 1.1              | 2.9                          | 10              | < 2.9       |                                         |
| Benzo(g,h,i)perylene        | 191-24-2        | ND                      | 0.62             | 1.6                          | 10              | < 1.6       |                                         |
| Benzo(k)fluoranthene        | 207-08-9        | ND                      | 1.6              | 4.2                          | 10              | < 4.2       |                                         |
| Benzyl alcohol              | 100-51-6        | ND                      | 35               | 92                           | 100             | < 92        |                                         |
| bis(2-Chloroethoxy)methane  | 111-91-1        | ND                      | 0.50             | 1.3                          | 10              | < 1.3       |                                         |
| bis(2-Chloroethyl)ether     | 111-44-4        | ND                      | 0.56             | 1.5                          | 10              | < 1.5       | **************************************  |
| bis(2-Ethylhexyl)phthalate  | 117-81-7        | ND                      | 10               | 26                           | 20              | < 20        |                                         |
| 4-Bromophenyl-phenylether   | 101-55-3        | ND                      | 0.50             | 1.3                          | 10              | < 1.3       |                                         |
| Butylbenzylphthalate        | 85-68-7         | ND                      | 0.61             | 1.6                          | 10              | < 1.6       |                                         |
| Carbazole                   | 86-74-8         | ND                      | 0.64             | 1.7                          | 10              | < 1.7       |                                         |
| 4-Chloro-3-methylphenol     | 59-50-7         | ND                      | 0.62             | 1.6                          | 10              | < 1.6       |                                         |
| 4-Chloroaniline             | 106-47-8        | ND                      | 6.0              | 16                           | 20              | < 16        |                                         |
| 2-Chloronaphthalene         | 91-58-7         | ND                      | 0.50             | 1.3                          | 10              | < 1.3       | *************************************** |
| 2-Chlorophenol              | 95-57-8         | ND                      | 0.50             | 1.3                          | 10              | < 1.3       |                                         |
| 4-Chlorophenyl phenyl ether | 7005-72-36      | ND                      | 0.50             | 1.3                          | 10              | < 1.3       |                                         |
| Chrysene                    | 218-01-9        | ND                      | 0.64             | 1.7                          | 10              | < 1.7       |                                         |

### MM-5 Train Analytical Results Summary (Continued) Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank

|                                 | CAS<br>Registry | stry (µg) <sup>1</sup>  |                  |                  |                 |             |                                         |  |  |  |  |  |  |
|---------------------------------|-----------------|-------------------------|------------------|------------------|-----------------|-------------|-----------------------------------------|--|--|--|--|--|--|
| Analyte                         | Number          | Lab Result <sup>2</sup> | MDL <sup>3</sup> | RDL <sup>4</sup> | RL <sup>5</sup> | Risk Result | Flag <sup>6</sup>                       |  |  |  |  |  |  |
| Di-n-butylphthalate             | 84-74-2         | ND                      | 10               | 26               | 20              | < 20        |                                         |  |  |  |  |  |  |
| Di-n-octylphthalate             | 117-84-0        | ND                      | 0.56             | 1.5              | 10              | < 1.5       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |  |  |  |  |  |
| Dibenz(a,h)anthracene           | 53-70-3         | ND                      | 0.60             | 1.6              | 10              | < 1.6       |                                         |  |  |  |  |  |  |
| Dibenzofuran                    | 132-64-9        | ND                      | 0.50             | 1.3              | 10              | < 1.3       |                                         |  |  |  |  |  |  |
| 1,2-Dichlorobenzene             | 95-50-1         | ND                      | 0.51             | 1.3              | 10              | < 1.3       |                                         |  |  |  |  |  |  |
| 1,3-Dichlorobenzene             | 541-73-1        | ND                      | 0.57             | 1.5              | 10              | < 1.5       |                                         |  |  |  |  |  |  |
| 1,4-Dichlorobenzene             | 106-46-7        | 9.0                     | 0.53             | 1.4              | 10              | 9.0         | J                                       |  |  |  |  |  |  |
| 3,3'-Dichlorobenzidine          | 91-94-1         | ND                      | 7.4              | 19               | 50              | < 19        |                                         |  |  |  |  |  |  |
| 2,4-Dichlorophenol              | 120-83-2        | ND                      | 0.50             | 1.3              | 10              | < 1.3       |                                         |  |  |  |  |  |  |
| Diethylphthalate                | 84-66-2         | ND                      | 0.73             | 1.9              | 10              | < 1.9       |                                         |  |  |  |  |  |  |
| Dimethyl phthalate              | 131-11-3        | ND                      | 0.50             | 1.3              | 10              | < 1.3       |                                         |  |  |  |  |  |  |
| 2,4-Dimethylphenol              | 105-67-9        | ND                      | 6.3              | 16               | 10              | < 10        |                                         |  |  |  |  |  |  |
| 4,6-Dinitro-2-methylphenol      | 534-52-1        | ND                      | 8.7              | 23               | 50              | < 23        |                                         |  |  |  |  |  |  |
| 2,4-Dinitrophenol               | 51-28-5         | ND                      | 22               | 58               | 50              | < 50        |                                         |  |  |  |  |  |  |
| 2,4-Dinitrotoluene              | 121-14-2        | ND                      | 0.50             | 1.3              | 10              | < 1.3       | ,,                                      |  |  |  |  |  |  |
| 2,6-Dinitrotoluene              | 606-20-2        | ND                      | 0.50             | 1.3              | 10              | < 1.3       |                                         |  |  |  |  |  |  |
| 1,2-Diphenylhydrazine           | 122-66-7        | ND                      | 0.50             | 1.3              | 10              | < 1.3       |                                         |  |  |  |  |  |  |
| Fluoranthene                    | 206-44-0        | ND                      | 0.54             | 1.4              | 10              | < 1.4       |                                         |  |  |  |  |  |  |
| Fluorene                        | 86-73-7         | ND                      | 0.50             | 1.3              | 10              | < 1.3       |                                         |  |  |  |  |  |  |
| Hexachlorocyclopentadiene       | 77-47-4         | ND                      | 10               | 26               | 50              | < 26        |                                         |  |  |  |  |  |  |
| Hexachlorobenzene               | 118-74-1        | ND                      | 0.50             | 1.3              | 10              | < 1.3       |                                         |  |  |  |  |  |  |
| Hexachlorobutadiene             | 87-68-3         | ND                      | 0.74             | 1.9              | 10              | < 1.9       |                                         |  |  |  |  |  |  |
| Hexachloroethane                | 67-72-1         | ND                      | 0.54             | 1.4              | 10              | < 1.4       |                                         |  |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene          | 193-39-5        | ND                      | 0.54             | 1.4              | 10              | < 1.4       |                                         |  |  |  |  |  |  |
| Isophorone                      | 78-59-1         | ND                      | 0.50             | 1.3              | 10              | < 1.3       |                                         |  |  |  |  |  |  |
| 2-Methylnaphthalene             | 91-57-6         | ND                      | 0.50             | 1.3              | 10              | < 1.3       |                                         |  |  |  |  |  |  |
| 2-Methylphenol                  | 95-48-7         | ND                      | 3.0              | 7.9              | 10              | < 7.9       |                                         |  |  |  |  |  |  |
| 3-Methylphenol & 4-Methylphenol | 65794-96-9      | ND                      | 2.0              | 5.2              | 10              | < 5.2       |                                         |  |  |  |  |  |  |

### MM-5 Train Analytical Results Summary (Continued) Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank

|                                | CAS<br>Registry | MM-5 Train<br>XAD-2 Resin Tube Trip Blank/Reagent Blank<br>(μg) <sup>1</sup> |                  |                  |                 |             |                   |  |  |  |  |  |  |
|--------------------------------|-----------------|------------------------------------------------------------------------------|------------------|------------------|-----------------|-------------|-------------------|--|--|--|--|--|--|
| Analyte                        | Number          | Lab Result <sup>2</sup>                                                      | MDL <sup>3</sup> | RDL <sup>4</sup> | RL <sup>5</sup> | Risk Result | Flag <sup>6</sup> |  |  |  |  |  |  |
| N-Nitroso-di-n-propylamine     | 621-64-7        | ND                                                                           | 0.50             | 1.3              | 10              | < 1.3       |                   |  |  |  |  |  |  |
| N-Nitrosodimethylamine         | 62-75-9         | ND                                                                           | 0.50             | 1.3              | 10              | < 1.3       |                   |  |  |  |  |  |  |
| N-Nitrosodiphenylamine         | 86-30-6         | ND                                                                           | 0.87             | 2.3              | 10              | < 2.3       |                   |  |  |  |  |  |  |
| Naphthalene                    | 91-20-3         | ND                                                                           | 0.60             | 1.6              | 10              | < 1.6       |                   |  |  |  |  |  |  |
| 2-Nitroaniline                 | 88-74-4         | ND                                                                           | 0.50             | 1.3              | 50              | < 1.3       |                   |  |  |  |  |  |  |
| 3-Nitroaniline                 | 99-09-2         | ND                                                                           | 2.0              | 5.2              | 50              | < 5.2       |                   |  |  |  |  |  |  |
| 4-Nitroaniline                 | 100-01-6        | ND                                                                           | 2.0              | 5.2              | 50              | < 5.2       |                   |  |  |  |  |  |  |
| Nitrobenzene                   | 98-95-1         | ND                                                                           | 0.57             | 1.5              | 10              | < 1.5       |                   |  |  |  |  |  |  |
| 2-Nitrophenol                  | 88-75-5         | ND                                                                           | 0.50             | 1.3              | 10              | < 1.3       |                   |  |  |  |  |  |  |
| 4-Nitrophenol                  | 100-02-7        | ND                                                                           | 3.3              | 8.7              | 50              | < 8.7       |                   |  |  |  |  |  |  |
| 2,2'-Oxybis(1-chloropropane) 7 | 108-60-1        | ND                                                                           | 0.76             | 2.0              | 10              | < 2.0       |                   |  |  |  |  |  |  |
| Pentachlorobenzene             | 608-93-5        | ND                                                                           | 0.50             | 1.3              | 10              | < 1.3       |                   |  |  |  |  |  |  |
| Pentachloronitrobenzene        | 82-68-8         | ND                                                                           | 0.50             | 1.3              | 50              | < 1.3       |                   |  |  |  |  |  |  |
| Pentachlorophenol              | 87-86-5         | ND                                                                           | 25               | 66               | 50              | < 50        |                   |  |  |  |  |  |  |
| Phenanthrene                   | 85-01-8         | ND                                                                           | 0.50             | 1.3              | 10              | < 1.3       |                   |  |  |  |  |  |  |
| Phenol                         | 108-95-2        | ND                                                                           | 0.90             | 2.4              | 10              | < 2.4       |                   |  |  |  |  |  |  |
| Pyrene                         | 129-00-0        | ND                                                                           | 0.53             | 1.4              | 10              | < 1.4       |                   |  |  |  |  |  |  |
| Pyridine                       | 110-86-1        | ND                                                                           | 0.74             | 1.9              | 20              | < 1.9       |                   |  |  |  |  |  |  |
| 1,2,4,5-Tetrachlorobenzene     | 95-94-3         | ND                                                                           | 0.50             | 1.3              | 10              | < 1.3       |                   |  |  |  |  |  |  |
| 1,2,4-Trichlorobenzene         | 120-82-1        | ND                                                                           | 0.59             | 1.5              | 10              | < 1.5       |                   |  |  |  |  |  |  |
| 2,4,5-Trichlorophenol          | 95-95-4         | ND                                                                           | 1.3              | 3.4              | 10              | < 3.4       |                   |  |  |  |  |  |  |
| 2,4,6-Trichlorophenol          | 88-06-2         | ND                                                                           | 0.75             | 2.0              | 10              | < 2.0       |                   |  |  |  |  |  |  |

### BECHTEL BWXT IDAHO, LLC (BBWI)

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### MM-5 Train Analytical Results Summary (Continued) Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank

#### Sampling Surrogate Recoveries:

| Sampling Surrogate Compound <sup>8</sup>  | Percent Recovery (%) | Project Target<br>Recovery Limits<br>(%) |
|-------------------------------------------|----------------------|------------------------------------------|
| <sup>13</sup> C <sub>6</sub> -Naphthalene | 66%                  | 50-150%                                  |

#### Surrogate Standard Recoveries:

| Surrogate Standard Compound | Percent Recovery<br>(%) | Laboratory<br>Recovery<br>Limits<br>(%) |
|-----------------------------|-------------------------|-----------------------------------------|
|                             | 55%                     | 19-100%                                 |
| 2-Fluorophenol              | 3370                    |                                         |
| Phenol- d₅                  | 61%                     | 15-124%                                 |
| Nitrobenzene-d₅             | 63%                     | 35-122%                                 |
| 2-Fluorobiphenyl            | 67%                     | 34-115%                                 |
| 2,4,6-Tribromophenol        | 0.0%9                   | 33-130%                                 |
| Terphenyl-d <sub>14</sub>   | 84%                     | 28-132%                                 |
|                             |                         |                                         |

#### Sample Collection and Analysis Dates:

Date(s) Collected:

June 21, 2001

Date(s) of Extraction:

June 26, 2001

Date(s) of Analysis:

July 02, 2001

#### Preparation and Analysis Methods:

SW-846 Method 0010:

"Modified Method 5 Sampling Train"

SW-846 Method 3542:

"Extraction of Semivolatile Analytes Collected Using Method 0010 (Modified Method 5 Sampling Train)"

SW-846 Method 8270C:

"Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Capillary Column Technique"

### MM-5 Train Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank Tentatively Identified Compound (TIC) Summary

| TICs <sup>10</sup>         | CAS<br>Registry<br>Number | Approximate<br>Retention<br>Time<br>(min.) | Sample<br>Result<br>(µg) | TIC<br>Flag |
|----------------------------|---------------------------|--------------------------------------------|--------------------------|-------------|
| Benzaldehyde               | 100-52-7                  | 3.60                                       | 5.3                      | N,J,M       |
| Benzoic acid, methyl ester | 93-58-3                   | 4.72                                       | 6.5                      | N,J,M       |
| Benzaldehyde, ethyl-       | 53951-50-1                | 5.40                                       | 4.6                      | N,J,M       |
| Heptacosane                | 593-49-7                  | 11.48                                      | 3.1                      | N,J,M       |
| Heneicosane                | 629-94-7                  | 11.73                                      | 5.8                      | N,J,M       |
| Tetratracontane            | 7098-22-8                 | 11.96                                      | 8.5                      | N,J,M       |
| Hexatriacontane            | 630-06-8                  | 12.19                                      | 8.9                      | N,J,M       |
| Hexatriacontane            | 630-06-8                  | 12.41                                      | 8.2                      | N,J,M       |
| Heneicosane                | 629-94-7                  | 12.64                                      | 14                       | N,J,M       |
| Heptacosane                | 593-49-7                  | 12.90                                      | 9.1                      | N,J,M       |

### MM-5 Train Analytical Results Summary Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank (Continued)

#### Footnotes:

- Based on the selection rules, the **bolded** value is the value or default value assigned to the analyte using the following guidelines:
  - When the analytical result is greater than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
  - When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
  - When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the result selected by boldface type is the RDL.
  - When the analytical result is not detected down to the MDL, the result selected by boldface type is the RDL.
  - ♦ It should be noted that when the RDL is selected using the guidelines above, but the RL is less than the RDL, the RL is included as the "Risk Result".
- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- <sup>5</sup> The RL is the laboratory Reporting Limit (RL).
- <sup>6</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
  - A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these values are regarded as estimated values.
  - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
  - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
  - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.

### MM-5 Train Analytical Results Summary Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank (Continued)

- An "A" qualifier indicates that this result is an Aldol-condensation product.
- An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- This material is a sampling surrogate and is an isotopically-labeled compound spiked on the XAD-2 Resin Tube prior to the collection of sample on the MM-5 sampling train.
- <sup>9</sup> This percent recovery is outside of the laboratory target recovery range.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

|  |  | • |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |

### BECHTEL BWXT IDAHO, LLC (BBWI) INTEC HLLWE Effluent Gas Emissions Inventory Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### **VOST Summary - Run 1 Train Totals** Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-7. HLLWE Run ID: 0031-STRT-1

Field Sample Name: Sample Description: Volatile Organic Sampling Train (VOST) Totals
Sample Description: Tenax® and Anasorb 747® Tube Sets (Sets #1, #2, #3, and #4) and the VOST Condensate for Volatile Organic Compounds (VOC) Analysis

|                             |                                         | VOS<br>Tube So<br>(Total pa | et #1                                   | VOS<br>Tube Se<br>(Total µ  | et #2             | VOS<br>Tube Se<br>(Total με | et #3                                  | VOS<br>Tube S<br>(Total μ   | et #4             | VOS<br>Conde<br>(Tota       | nsate                                   | VOS<br>Tota<br>(Total | l¹              |                                          |
|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-------------------|-----------------------------|----------------------------------------|-----------------------------|-------------------|-----------------------------|-----------------------------------------|-----------------------|-----------------|------------------------------------------|
| Analyte                     | CAS<br>Registry<br>Number               | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                      | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>4</sup> | Flag <sup>5</sup>                       | Total                 | Flag            | Project<br>Specific<br>Flag <sup>6</sup> |
| Target Compound List        |                                         |                             |                                         |                             | .,,,,,,           |                             |                                        |                             |                   |                             |                                         |                       |                 |                                          |
| Acetone                     | 67 <b>-</b> 64-1                        | 2.4                         | В                                       | 1.1                         | В                 | 1.0                         | В                                      | 1.3                         | В                 | 1.4                         | В                                       | 7.2                   | В               | A                                        |
| Acrylonitrile               | 107-13-1                                | < 0.58                      |                                         | < 0.58                      |                   | < 0.58                      |                                        | < 0.58                      |                   | < 0.51                      |                                         | < 2.8                 | *************** | N                                        |
| Benzene                     | 71-43-2                                 | < 0.17                      |                                         | < 0.11                      |                   | < 0.046                     |                                        | < 0.043                     |                   | < 0.027                     |                                         | < 0.40                |                 | Р                                        |
| Bromobenzene                | 108-86-1                                | < 0.020                     |                                         | < 0.020                     |                   | < 0.020                     |                                        | < 0.020                     |                   | < 0.036                     |                                         | < 0.12                |                 | N                                        |
| Bromochloromethane          | 74-97-5                                 | < 0.030                     |                                         | < 0.030                     |                   | < 0.030                     |                                        | < 0.030                     |                   | < 0.028                     |                                         | < 0.15                |                 | N                                        |
| Bromodichloromethane        | 75-27-4                                 | < 0.022                     |                                         | < 0.022                     |                   | < 0.022                     |                                        | < 0.022                     |                   | < 0.033                     |                                         | < 0.12                |                 | N                                        |
| Bromoform                   | 75-25-2                                 | < 0.038                     |                                         | < 0.038                     |                   | < 0.038                     |                                        | < 0.038                     |                   | < 0.025                     |                                         | < 0.18                |                 | N                                        |
| Bromomethane                | 74-83-9                                 | < 0.030                     | J                                       | < 0.038                     | J                 | < 0.030                     | J                                      | < 0.054                     | J                 | < 0.020                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.17                | J               | P                                        |
| 2-Butanone                  | 78-93-3                                 | < 0.20                      | J                                       | < 0.20                      |                   | < 0.20                      |                                        | < 0.20                      |                   | < 0.093                     |                                         | < 0.89                | J               | Р                                        |
| n-Butylbenzene              | 104-51-8                                | < 0.032                     |                                         | < 0.032                     |                   | < 0.032                     |                                        | < 0.032                     |                   | < 0.025                     |                                         | < 0.15                |                 | N                                        |
| sec-Butylbenzene            | 135-98-8                                | < 0.017                     |                                         | < 0.017                     |                   | < 0.017                     |                                        | < 0.017                     |                   | < 0.017                     |                                         | < 0.085               |                 | N                                        |
| tert-Butylbenzene           | 98-06-6                                 | < 0.032                     |                                         | < 0.032                     |                   | < 0.032                     |                                        | < 0.032                     |                   | < 0.014                     |                                         | < 0.14                |                 | N                                        |
| Carbon disulfide            | 75-15-0                                 | < 0.37                      |                                         | < 0.24                      |                   | < 0.16                      |                                        | < 0.19                      |                   | < 0.011                     |                                         | < 0.97                |                 | Р                                        |
| Carbon tetrachloride        | 56-23-5                                 | < 0.036                     |                                         | < 0.036                     |                   | < 0.036                     |                                        | < 0.036                     |                   | < 0.020                     |                                         | < 0.16                |                 | N                                        |
| Chlorobenzene               | 108-90-7                                | < 0.017                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.017                     |                   | < 0.017                     |                                        | < 0.017                     |                   | < 0.027                     |                                         | < 0.095               |                 | N                                        |
| Chlorodibromomethane        | 124-48-1                                | < 0.030                     |                                         | < 0.030                     |                   | < 0.030                     |                                        | < 0.030                     |                   | < 0.029                     |                                         | < 0.15                |                 | N                                        |
| Chloroethane                | 75-00-3                                 | < 0.036                     |                                         | < 0.036                     | J                 | < 0.036                     | J                                      | < 0.043                     | J                 | < 0.014                     |                                         | < 0.16                | J               | P                                        |
| Chloroform                  | 67-66-3                                 | < 0.036                     | ,                                       | < 0.036                     |                   | < 0.036                     | J                                      | < 0.10                      |                   | < 0.031                     |                                         | < 0.24                | J               | P                                        |
| Chloromethane               | 74-87-3                                 | 0.15                        | J                                       | 0.28                        | . J               | 0.14                        | J                                      | 0.61                        | •,,,•,,           | < 0.011                     |                                         | 1.2                   | J               | P                                        |
| 2-Chlorotoluene             | 95-49-8                                 | < 0.0094                    |                                         | < 0.0094                    |                   | < 0.0094                    |                                        | < 0.0094                    |                   | < 0.021                     |                                         | < 0.059               |                 | N                                        |
| 4-Chlorotoluene             | 106-43-4                                | < 0.0094                    |                                         | < 0.0094                    |                   | < 0.0094                    |                                        | < 0.0094                    |                   | < 0.021                     |                                         | < 0.059               |                 | N                                        |
| 1,2-Dibromo-3-chloropropane | 96-12-8                                 | < 0.058                     |                                         | < 0.058                     |                   | < 0.058                     |                                        | < 0.058                     |                   | < 0.042                     |                                         | < 0.27                |                 | N                                        |
| 1,2-Dibromoethane           | 106-93-4                                | < 0.040                     |                                         | < 0.040                     |                   | < 0.040                     |                                        | < 0.040                     |                   | < 0.042                     |                                         | < 0.20                |                 | N                                        |
| Dibromomethane              | 74-95-3                                 | < 0.034                     |                                         | < 0.034                     |                   | < 0.034                     |                                        | < 0.034                     |                   | < 0.030                     |                                         | < 0.17                |                 | N                                        |
| 1,2-Dichlorobenzene         | 95-50-1                                 | < 0.040                     |                                         | < 0.040                     |                   | < 0.040                     | ······································ | < 0.040                     |                   | < 0.019                     |                                         | < 0.18                |                 | N                                        |
| 1,3-Dichlorobenzene         | 541-73-1                                | < 0.020                     |                                         | < 0.020                     |                   | < 0.020                     |                                        | < 0.020                     |                   | < 0.022                     |                                         | < 0.10                |                 | N                                        |
| 1,4-Dichlorobenzene         | 106-46-7                                | < 0.028                     |                                         | < 0.028                     |                   | < 0.028                     |                                        | < 0.028                     |                   | < 0.023                     |                                         | < 0.14                |                 | N                                        |
| L                           | *************************************** |                             |                                         | ·····                       |                   |                             |                                        |                             |                   |                             |                                         |                       |                 |                                          |

Last saved by Patti Carswell on 02/05/02 at 7:24 AM

E.\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-7. 0031-STRT-1.doc

Created on 2/5/2002 7:13 AM

## VOST Summary - Run 1 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-7. HLLWE Run ID: 0031-STRT-1

|                           |                           | VOST<br>Tube Set #1<br>(Total μg/Set) |   | VOS<br>Tube S<br>(Total μ   | et #2             | VOS<br>Tube Se<br>(Total με | et #3                                   | VOS<br>Tube S<br>(Total µ   | et #4                                   | VOS<br>Conde<br>(Total      | nsate                                   | VOST<br>Total <sup>1</sup><br>(Total μg) |      |                                          |
|---------------------------|---------------------------|---------------------------------------|---|-----------------------------|-------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|------------------------------------------|------|------------------------------------------|
| Analyte                   | CAS<br>Registry<br>Number | Risk<br>Result <sup>2</sup>           |   | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>4</sup> | Flag <sup>5</sup>                       | Total                                    | Flag | Project<br>Specific<br>Flag <sup>6</sup> |
| Dichlorodifluoromethane   | 75-71-8                   | < 0.064                               |   | < 0.061                     |                   | < 0.057                     |                                         | < 0.062                     |                                         | < 0.011                     |                                         | < 0.26                                   |      | P                                        |
| 1,1-Dichloroethane        | 75-34-3                   | < 0.034                               |   | < 0.034                     | ***               | < 0.034                     |                                         | < 0.034                     |                                         | < 0.017                     |                                         | < 0.15                                   |      | N                                        |
| 1,2-Dichloroethane        | 107-06-2                  | < 0.034                               | J | < 0.034                     |                   | < 0.034                     |                                         | < 0.034                     | *************************************** | < 0.020                     |                                         | < 0.16                                   | J    | Р                                        |
| 1,1-Dichloroethene        | 75-35-4                   | < 0.036                               |   | < 0.036                     | J                 | < 0.036                     | J                                       | < 0.036                     | J                                       | < 0.016                     |                                         | < 0.16                                   | J    | Р                                        |
| cis-1,2-Dichloroethene    | 156-59-2                  | < 0.032                               |   | < 0.032                     |                   | < 0.032                     | *************************************** | < 0.032                     |                                         | < 0.021                     |                                         | < 0.15                                   |      | N                                        |
| trans-1,2-Dichloroethene  | 156-60-5                  | < 0.038                               |   | < 0.038                     | ······            | < 0.038                     |                                         | < 0.038                     |                                         | < 0.014                     |                                         | < 0.17                                   |      | N                                        |
| 1,2-Dichloropropane       | 78-87-5                   | < 0.026                               |   | < 0.026                     |                   | < 0.026                     |                                         | < 0.026                     |                                         | < 0.023                     |                                         | < 0.13                                   |      | N                                        |
| 1,3-Dichloropropane       | 142-28-9                  | < 0.038                               |   | < 0.038                     |                   | < 0.038                     | *************************************** | < 0.038                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.022                     |                                         | < 0.17                                   |      | N                                        |
| 2.2-Dichloropropane       | 594-20-7                  | < 0.036                               |   | < 0.036                     |                   | < 0.036                     |                                         | < 0.036                     |                                         | < 0.011                     |                                         | < 0.16                                   |      | N                                        |
| 1,1-Dichloropropene       | 563-58-6                  | < 0.040                               |   | < 0.040                     |                   | < 0.040                     |                                         | < 0.040                     |                                         | < 0.016                     |                                         | < 0.18                                   |      | N                                        |
| cis-1,3-Dichloropropene   | 10061-01-5                | < 0.024                               |   | < 0.024                     |                   | < 0.024                     |                                         | < 0.024                     |                                         | < 0.030                     | *************************************** | < 0.13                                   |      | N                                        |
| trans-1,3-Dichloropropene | 10061-02-6                | < 0.030                               |   | < 0.030                     |                   | < 0.030                     |                                         | < 0.030                     |                                         | < 0.028                     |                                         | < 0.15                                   |      | N                                        |
| Ethylbenzene              | 100-41-4                  | < 0.018                               |   | < 0.018                     |                   | < 0.018                     |                                         | < 0.018                     |                                         | < 0.021                     |                                         | < 0.093                                  |      | N                                        |
| Hexachlorobutadiene       | 87-68-3                   | < 0.050                               |   | < 0.050                     |                   | < 0.050                     |                                         | < 0.050                     |                                         | < 0.025                     |                                         | < 0.22                                   |      | N                                        |
| 2-Hexanone                | 591-78-6                  | < 0.13                                |   | < 0.13                      |                   | < 0.13                      |                                         | < 0.13                      | •••••                                   | < 0.036                     |                                         | < 0.56                                   |      | N                                        |
| Isopropylbenzene          | 98-82-8                   | < 0.013                               |   | < 0.013                     |                   | < 0.013                     |                                         | < 0.013                     |                                         | < 0.018                     |                                         | < 0.070                                  |      | N                                        |
| p-Isopropyltoluene        | 99-87-6                   | < 0.024                               |   | < 0.024                     |                   | < 0.024                     |                                         | < 0.024                     |                                         | < 0.018                     |                                         | < 0.11                                   | •    | N                                        |
| Methylene chloride        | 75-09-2                   | 13                                    | E | 3.0                         | E,B               | 1.1                         | В                                       | 0.96                        | В                                       | 0.12                        | В                                       | 18                                       | E,B  | A                                        |
| 4-Methyl-2-pentanone      | 108-10-1                  | < 0.14                                |   | < 0.14                      |                   | < 0.14                      |                                         | < 0.14                      |                                         | < 0.030                     |                                         | < 0.59                                   |      | N                                        |
| Naphthalene               | 91-20-3                   | < 0.050                               |   | < 0.050                     |                   | < 0.050                     |                                         | < 0.050                     |                                         | < 0.011                     |                                         | < 0.21                                   |      | N                                        |
| n-Propylbenzene           | 103-65-1                  | < 0.011                               |   | < 0.011                     |                   | < 0.011                     |                                         | < 0.012                     |                                         | < 0.022                     |                                         | < 0.067                                  |      | N                                        |
| Styrene                   | 100-42-5                  | < 0.014                               |   | < 0.014                     |                   | < 0.014                     |                                         | < 0.014                     |                                         | < 0.022                     |                                         | < 0.078                                  |      | N                                        |
| 1,1,1,2-Tetrachloroethane | 630-20-6                  | < 0.019                               |   | < 0.019                     |                   | < 0.019                     |                                         | < 0.019                     |                                         | < 0.023                     |                                         | < 0.099                                  |      | N                                        |
| 1,1,2,2-Tetrachloroethane | 79-34-5                   | < 0.050                               |   | < 0.050                     |                   | < 0.050                     |                                         | < 0.050                     |                                         | < 0.025                     |                                         | < 0.22                                   |      | N                                        |
| Tetrachloroethene         | 127-18-4                  | < 0.032                               |   | < 0.032                     |                   | < 0.032                     |                                         | < 0.032                     |                                         | < 0.021                     |                                         | < 0.15                                   |      | N                                        |
| Toluene                   | 108-88-3                  | < 0.032                               | J | 0.041                       | J                 | < 0.023                     | J                                       | 0.064                       | J                                       | < 0.028                     |                                         | < 0.19                                   | J    | Р                                        |
| 1.2,3-Trichlorobenzene    | 87-61-6                   | < 0.050                               |   | < 0.050                     |                   | < 0.050                     |                                         | < 0.050                     |                                         | < 0.011                     |                                         | < 0.21                                   |      | N                                        |
| 1,2,4-Trichlorobenzene    | 120-82-1                  | < 0.050                               |   | < 0.050                     |                   | < 0.050                     |                                         | < 0.050                     |                                         | < 0.025                     |                                         | < 0.22                                   |      | N                                        |
| 1,1,1-Trichloroethane     | 71-55-6                   | < 0.044                               |   | < 0.044                     |                   | < 0.044                     |                                         | < 0.044                     |                                         | < 0.018                     | ,,                                      | < 0.19                                   |      | N                                        |
| 1,1,2-Trichloroethane     | 79-00-5                   | < 0.036                               |   | < 0.036                     |                   | < 0.036                     |                                         | < 0.036                     |                                         | < 0.022                     |                                         | < 0.17                                   |      | N                                        |

Created by Patti Carswell Created on 2/5/2002 7:13 AM Last saved by Patti Carswell on 02/05/02 at 7:24 AM Last printed 2/5/2002 7:24 AM

Filename and Path: E:\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-7. 0031-STRT-1.doc

### VOST Summary - Run 1 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-7. HLLWE Run ID: 0031-STRT-1

|                         |                           | VOS<br>Tube S<br>(Total μ   | et #1                                   | VOS<br>Tube So<br>(Total μ  | et #2             | VOS<br>Tube Se<br>(Total μ  | et #3                                   | VOS<br>Tube S<br>(Total μ   | et #4             | VOS<br>Conde<br>(Tota       | nsate                                   | VOS<br>Tota<br>(Total | al <sup>1</sup> |                                          |
|-------------------------|---------------------------|-----------------------------|-----------------------------------------|-----------------------------|-------------------|-----------------------------|-----------------------------------------|-----------------------------|-------------------|-----------------------------|-----------------------------------------|-----------------------|-----------------|------------------------------------------|
| Analyte                 | CAS<br>Registry<br>Number | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>4</sup> | Flag <sup>5</sup>                       | Total                 | Flag            | Project<br>Specific<br>Flag <sup>6</sup> |
|                         |                           |                             |                                         |                             |                   |                             |                                         |                             |                   |                             | *************************************** |                       |                 |                                          |
| Trichloroethene         | 79-01-6                   | < 0.034                     |                                         | < 0.034                     |                   | < 0.034                     |                                         | < 0.034                     |                   | < 0.020                     |                                         | < 0.16                |                 | N                                        |
| Trichlorofluoromethane  | 75-69-4                   | < 0.036                     | J                                       | < 0.036                     | J                 | < 0.036                     | J                                       | < 0.036                     | J                 | < 0.011                     |                                         | < 0.16                | J               | P                                        |
| 1,2,3-Trichloropropane  | 96-18-4                   | < 0.050                     |                                         | < 0.050                     |                   | < 0.050                     |                                         | < 0.050                     |                   | < 0.036                     |                                         | < 0.24                |                 | N                                        |
| 1,2,4-Trimethylbenzene  | 95-63-6                   | < 0.015                     |                                         | < 0.015                     |                   | < 0.015                     |                                         | < 0.015                     |                   | < 0.042                     |                                         | < 0.10                |                 | N                                        |
| 1,3,5-Trimethylbenzene  | 108-67-8                  | < 0.010                     |                                         | < 0.010                     |                   | < 0.010                     |                                         | < 0.010                     |                   | < 0.019                     |                                         | < 0.059               |                 | N                                        |
| Vinyl chloride          | 75-01-4                   | < 0.013                     |                                         | < 0.016                     | J                 | < 0.013                     | J                                       | < 0.022                     | J                 | < 0.068                     |                                         | < 0.13                | J               | P                                        |
| m-Xylene & p-Xylene     | 136777-61-2               | < 0.10                      |                                         | < 0.10                      |                   | < 0.10                      |                                         | < 0.10                      |                   | < 0.042                     |                                         | < 0.44                |                 | N                                        |
| o-Xylene                | 95-47-6                   | < 0.013                     |                                         | < 0.013                     |                   | < 0.013                     |                                         | < 0.013                     |                   | < 0.025                     |                                         | < 0.077               |                 | N                                        |
| TICs <sup>7</sup>       |                           |                             |                                         |                             |                   |                             | *************************************** |                             |                   |                             |                                         |                       |                 |                                          |
| Hexane, 2-methyl-       | 591-76-4                  |                             | *************************************** |                             |                   |                             |                                         | 0.17                        |                   |                             |                                         | 0.17                  | N,J,M           | Р                                        |
| Pentane, 2,3-dimethyl-  | 565-59-3                  |                             |                                         |                             |                   |                             |                                         | 0.18                        |                   |                             |                                         | 0.18                  | N,J,M           | Р                                        |
| Butane, 1-chloro-       | 109-69-3                  |                             |                                         |                             |                   |                             |                                         | 0.057                       |                   |                             |                                         | 0.057                 | N,J,M           | P                                        |
| Hexane, 3-methyl-       | 589-34-4                  |                             |                                         |                             |                   |                             |                                         | 0.38                        |                   |                             |                                         | 0.38                  | N,J,M           | P                                        |
| Cyclohexene             | 110-83-8                  |                             |                                         | 0.044                       |                   | 0.027                       |                                         | 0.033                       |                   |                             |                                         | 0.10                  | N,J,M           | P                                        |
| 1-Heptene               | 592-76-7                  |                             |                                         |                             |                   |                             |                                         | 0.054                       |                   |                             |                                         | 0.054                 | N,J,M           | Р                                        |
| Cyclohexane, methyl-    | 108-87-2                  |                             |                                         |                             |                   |                             |                                         | 0.11                        |                   |                             |                                         | 0.11                  | N,J,M           | Р                                        |
| Hexane, 2,4-dimethyl-   | 589-43-5                  |                             |                                         |                             |                   |                             |                                         | 0.11                        |                   |                             |                                         | 0.11                  | N,J,M           | Р                                        |
| Cyclopentane, ethyl-    | 1640-89-7                 |                             |                                         |                             |                   |                             |                                         | 0.028                       |                   |                             |                                         | 0.028                 | N,J,M           | P                                        |
| Octane                  | 111-65-9                  | 0.027                       |                                         |                             |                   |                             |                                         |                             |                   |                             |                                         | 0.027                 | N,J,M           | Р                                        |
| Decane                  | 124-18-5                  |                             |                                         | 0.055                       |                   | 0.060                       |                                         |                             | 47744444444       |                             |                                         | 0.12                  | N,J,M           | P                                        |
| Undecane                | 1120-21-4                 | 0.44                        |                                         | 0.23                        |                   |                             |                                         | 0.37                        |                   |                             | .,,                                     | 1.0                   | N,J,M           | P                                        |
| Undecane, 5-methyl-     | 1632-70-8                 | 0.13                        |                                         | 0.091                       |                   | 0.14                        |                                         | 0.28                        |                   |                             |                                         | 0.64                  | N,J,M           | P                                        |
| Decane, 2,9-dimethyl-   | 1002-17-1                 | 0.064                       |                                         |                             |                   |                             |                                         |                             |                   |                             |                                         | 0.064                 | N,J,M           | P                                        |
| Dodecane                | 112-40-3                  | 5.3                         |                                         | 4.6                         |                   | 7.2                         |                                         | 14                          |                   |                             | .,,,                                    | 31                    | N,J,M           | Р                                        |
| Undecane, 2,6-dimethyl- | 17301-23-4                |                             |                                         |                             |                   |                             |                                         | 0.11                        |                   |                             |                                         | 0.11                  | N,J,M           | P                                        |
| Cyclohexane, hexyl-     | 4292-75 <b>-</b> 5        |                             |                                         |                             | ,,,,,             | 0.059                       |                                         |                             |                   |                             |                                         | 0.059                 | N,J,M           | Р                                        |
| Tridecane               | 629-50-5                  | 0.39                        |                                         | 0.32                        |                   | 0.51                        |                                         | 1.6                         |                   |                             |                                         | 2.8                   | N,J,M           | P                                        |
| Tetradecane             | 629-59-4                  | 0.15                        |                                         | 0.19                        |                   | 0.22                        |                                         | 0.36                        |                   |                             |                                         | 0.92                  | N,J,M           | P                                        |

Filename and Path: E:\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-7. 0031-STRT-1.doc

#### Footnotes:

- The Method 0031 VOST Run Total (in Total μg) is the sum of results for the four (4) VOST tube sets and the condensate sample collected during the same sampling run using the following guidelines:
  - When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
  - When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
  - When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
  - When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
  - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the VOST Total are the cumulative set of flags contributed by each train tube set included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Total" column when the associated component analytical result is a significant number in comparison to the VOST Total. That is, if the VOST Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Total, but if the VOST Total is not affected by a VOST component, the associated flag is not carried through to the VOST Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

The Method 0031 VOST Tube Set (Total μg/Set) result consists of the sum of the analytical results for the two (2) Tenax<sup>®</sup> resin tube contents (analyzed together) and the analytical result for the Anasorb 747<sup>®</sup> Tube contents. The calculation is as follows:

(Total  $\mu g$  on the Tenax® Tubes #1 and #2) + (Total  $\mu g$  on the Anasorb 747® Tube) = Total  $\mu g$  on the Method 0031 VOST tube set. Therefore:  $(\mu g) + (\mu g) = \text{Total } \mu g/\text{set}$ 

When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value included in the tube set total is the default RDL value and the actual value is known to be less than (<) the displayed result.

- The data flags in this column for the VOST Tube Set are the cumulative set of flags contributed by each individual train component included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Tube Set" column when the associated component analytical result is a significant number in comparison to the VOST tube set total. That is, if the VOST Tube Set Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Tube Set Total, but if the VOST Tube Set Total is not affected by a VOST component analytical result, the associated flag is not carried through to the VOST Tube Set Total.
- <sup>4</sup> The VOST Condensate result was obtained by multiplying the sample's corresponding RDL or "hit" by the VOST condensate volume.
- 5. This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value.

- A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
- A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
- An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral evidence.
- An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

### **VOST Summary - Run 3 Train Totals** Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-8. HLLWE Run ID: 0031-END-1

Field Sample Name:

Volatile Organic Sampling Train (VOST) Totals
Tenax® and Anasorb 747® Tube Sets (Sets #1, #2, #3, and #4) and the VOST Condensate for Volatile Organic Compounds (VOC) Analysis Sample Description:

|                             |                                         | VOS<br>Tube Se<br>(Total με | et #1                                   | VOS<br>Tube S<br>(Total μ   | et #2                                   | VOS<br>Tube Se<br>(Total με | et #3                                   | VOS<br>Tube S<br>(Total μ   | et #4                                   | VOS<br>Conde<br>(Tota       | nsate                                   | VOS<br>Tota<br>(Total | l¹   | Power in our                             |
|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------|------|------------------------------------------|
| Analyte                     | CAS<br>Registry<br>Number               | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>4</sup> | Flag <sup>5</sup>                       | Total                 | Flag | Project<br>Specific<br>Flag <sup>6</sup> |
| Target Compound List        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                             |                                         |                             |                                         |                             |                                         |                             |                                         | .,,                         |                                         |                       |      |                                          |
| Acetone                     | 67-64-1                                 | 0.70                        | В                                       | 2.6                         | В                                       | 1.4                         | В                                       | 1.1                         | В                                       | 1.4                         | В                                       | 7.2                   | В    | A                                        |
| Acrylonitrile               | 107-13-1                                | < 0.58                      |                                         | < 0.58                      |                                         | < 0.58                      |                                         | < 0.58                      |                                         | < 0.51                      |                                         | < 2.8                 |      | N                                        |
| Benzene                     | 71-43-2                                 | < 0.053                     |                                         | < 0.047                     |                                         | < 0.058                     |                                         | < 0.058                     |                                         | < 0.027                     |                                         | < 0.24                |      | Р                                        |
| Bromobenzene                | 108-86-1                                | < 0.020                     |                                         | < 0.020                     | *************************************** | < 0.020                     |                                         | < 0.020                     |                                         | < 0.036                     |                                         | < 0.12                |      | N                                        |
| Bromochloromethane          | 74-97-5                                 | < 0.030                     |                                         | < 0.030                     | *************************************** | < 0.030                     |                                         | < 0.030                     |                                         | < 0.028                     |                                         | < 0.15                |      | N                                        |
| Bromodichloromethane        | 75-27-4                                 | < 0.022                     |                                         | < 0.022                     |                                         | < 0.022                     |                                         | < 0.022                     |                                         | < 0.034                     |                                         | < 0.12                |      | N                                        |
| Bromoform                   | 75-25-2                                 | < 0.038                     |                                         | < 0.038                     |                                         | < 0.038                     |                                         | < 0.038                     | ••••                                    | < 0.026                     |                                         | < 0.18                |      | N                                        |
| Bromomethane                | 74-83-9                                 | 0.035                       | J                                       | 0.045                       | J                                       | 0.054                       | J                                       | 0.075                       | J                                       | < 0.020                     |                                         | < 0.23                | J    | P                                        |
| 2-Butanone                  | 78-93-3                                 | < 0.20                      |                                         | < 0.20                      | J                                       | < 0.20                      | J                                       | < 0.20                      | J                                       | < 0.094                     |                                         | < 0.89                | J    | P                                        |
| n-Butylbenzene              | 104-51-8                                | < 0.032                     | *************************************** | < 0.032                     |                                         | < 0.032                     |                                         | < 0.032                     |                                         | < 0.026                     |                                         | < 0.15                |      | N                                        |
| sec-Butylbenzene            | 135-98-8                                | < 0.017                     |                                         | < 0.017                     |                                         | < 0.017                     |                                         | < 0.017                     |                                         | < 0.017                     |                                         | < 0.085               |      | N                                        |
| tert-Butylbenzene           | 98-06-6                                 | < 0.032                     | *************************************** | < 0.032                     |                                         | < 0.032                     |                                         | < 0.032                     |                                         | < 0.015                     |                                         | < 0.14                |      | N                                        |
| Carbon disulfide            | 75-15-0                                 | < 0.35                      |                                         | < 0.17                      |                                         | < 0.39                      |                                         | < 0.27                      | ••••••••••                              | < 0.011                     |                                         | < 1.2                 |      | P                                        |
| Carbon tetrachloride        | 56-23-5                                 | < 0.036                     |                                         | < 0.036                     |                                         | < 0.036                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.036                     |                                         | < 0.020                     |                                         | < 0.16                |      | N                                        |
| Chlorobenzene               | 108-90-7                                | < 0.017                     |                                         | < 0.017                     |                                         | < 0.017                     | J                                       | < 0.017                     | J                                       | < 0.027                     |                                         | < 0.095               | J    | P                                        |
| Chlorodibromomethane        | 124-48-1                                | < 0.030                     |                                         | < 0.030                     |                                         | < 0.030                     |                                         | < 0.030                     |                                         | < 0.029                     |                                         | < 0.15                |      | N                                        |
| Chloroethane                | 75-00-3                                 | < 0.041                     | J                                       | < 0.043                     | J                                       | < 0.047                     | J                                       | 0.049                       | J                                       | < 0.015                     |                                         | < 0.20                | J    | P                                        |
| Chloroform                  | 67-66-3                                 | < 0.096                     |                                         | < 0.090                     | *************************************** | < 0.090                     |                                         | < 0.090                     |                                         | < 0.031                     |                                         | < 0.40                |      | P                                        |
| Chloromethane               | 74-87-3                                 | 0.52                        |                                         | 0.64                        |                                         | 0.69                        |                                         | 1.0                         |                                         | < 0.011                     | ••••••••••••••••••••••••••••••••••••••• | < 2.9                 |      | P                                        |
| 2-Chlorotoluene             | 95-49-8                                 | < 0.0094                    |                                         | < 0.0094                    |                                         | < 0.0094                    |                                         | < 0.0094                    |                                         | < 0.021                     |                                         | < 0.059               |      | N                                        |
| 4-Chlorotoluene             | 106-43-4                                | < 0.0094                    | *************************************** | < 0.0094                    |                                         | < 0.0094                    |                                         | < 0.0094                    |                                         | < 0.021                     |                                         | < 0.059               |      | N                                        |
| 1,2-Dibromo-3-chloropropane | 96-12-8                                 | < 0.058                     |                                         | < 0.058                     | *************************************** | < 0.058                     |                                         | < 0.058                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.043                     |                                         | < 0.28                |      | N                                        |
| 1,2-Dibromoethane           | 106-93-4                                | < 0.040                     |                                         | < 0.040                     |                                         | < 0.040                     |                                         | < 0.040                     |                                         | < 0.043                     |                                         | < 0.20                |      | N                                        |
| Dibromomethane              | 74-95-3                                 | < 0.034                     | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.034                     |                                         | < 0.034                     |                                         | < 0.034                     |                                         | < 0.030                     |                                         | < 0.17                |      | N                                        |
| 1,2-Dichlorobenzene         | 95-50-1                                 | < 0.040                     |                                         | < 0.040                     |                                         | < 0.040                     |                                         | < 0.040                     |                                         | < 0.019                     |                                         | < 0.18                |      | N                                        |
| 1,3-Dichlorobenzene         | 541-73-1                                | < 0.020                     |                                         | < 0.020                     |                                         | < 0.020                     |                                         | < 0.020                     |                                         | < 0.022                     |                                         | < 0.10                |      | N                                        |
| 1,4-Dichlorobenzene         | 106-46-7                                | < 0.028                     |                                         | < 0.028                     |                                         | < 0.028                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.028                     |                                         | < 0.024                     |                                         | < 0.14                |      | N                                        |

Last saved by Patti Carswell on 02/05/02 at 7:36 AM

E:\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-8. 0031-END-1.doc

Created on 2/5/2002 7:28 AM

### VOST Summary - Run 3 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-8. HLLWE Run ID: 0031-END-1

|                           |                           | VOS<br>Tube Se<br>(Total µg | et #1                                   | VOS<br>Tube S<br>(Total μ   | et #2                                   | VOS<br>Tube Se<br>(Total µg | et #3                                   | VOS<br>Tube S<br>(Total μ   | et #4                                   | VOS<br>Conde<br>(Tota       | nsate             | VOS<br>Tota<br>(Total | l <sup>1</sup> |                                          |
|---------------------------|---------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-------------------|-----------------------|----------------|------------------------------------------|
| Analyte                   | CAS<br>Registry<br>Number | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>4</sup> | Flag <sup>5</sup> | Total                 | Flag           | Project<br>Specific<br>Flag <sup>6</sup> |
| Dichlorodifluoromethane   | 75-71-8                   | < 0.035                     | J                                       | < 0.037                     | J                                       | < 0.034                     | J                                       | < 0.046                     | *************************************** | < 0.011                     |                   | < 0.16                | J              | P                                        |
| 1,1-Dichloroethane        | 75-34-3                   | < 0.034                     |                                         | < 0.034                     |                                         | < 0.034                     |                                         | < 0.034                     |                                         | < 0.017                     |                   | < 0.15                |                | N                                        |
| 1,2-Dichloroethane        | 107-06-2                  | < 0.034                     | J                                       | < 0.020                     |                   | < 0.16                | J              | P                                        |
| 1,1-Dichloroethene        | 75-35-4                   | < 0.036                     | J                                       | < 0.041                     | J                                       | < 0.039                     | J                                       | < 0.044                     | .,,,,,,,,                               | < 0.016                     |                   | < 0.18                | J              | Р                                        |
| cis-1,2-Dichloroethene    | 156-59-2                  | < 0.032                     | *************************************** | < 0.032                     |                                         | < 0.032                     |                                         | < 0.032                     |                                         | < 0.021                     |                   | < 0.15                |                | N                                        |
| trans-1,2-Dichloroethene  | 156-60-5                  | < 0.038                     |                                         | < 0.038                     |                                         | < 0.038                     |                                         | < 0.038                     |                                         | < 0.013                     |                   | < 0.16                |                | N                                        |
| 1,2-Dichloropropane       | 78-87-5                   | < 0.026                     |                                         | < 0.026                     |                                         | < 0.026                     |                                         | < 0.026                     | J                                       | < 0.024                     |                   | < 0.13                | J              | Р                                        |
| 1,3-Dichloropropane       | 142-28-9                  | < 0.038                     | ··········                              | < 0.038                     |                                         | < 0.038                     |                                         | < 0.038                     |                                         | < 0.022                     |                   | < 0.17                |                | N                                        |
| 2,2-Dichloropropane       | 594-20-7                  | < 0.036                     |                                         | < 0.036                     |                                         | < 0.036                     |                                         | < 0.036                     |                                         | < 0.011                     |                   | < 0.16                |                | N                                        |
| 1,1-Dichloropropene       | 563-58-6                  | < 0.040                     |                                         | < 0.040                     |                                         | < 0.040                     |                                         | < 0.040                     | ,,,,,                                   | < 0.016                     |                   | < 0.18                |                | N                                        |
| cis-1,3-Dichloropropene   | 10061-01-5                | < 0.024                     |                                         | < 0.024                     |                                         | < 0.024                     |                                         | < 0.024                     |                                         | < 0.030                     |                   | < 0.13                |                | N                                        |
| trans-1,3-Dichloropropene | 10061-02-6                | < 0.030                     | *************************************** | < 0.030                     | M                                       | < 0.030                     | ······································  | < 0.030                     |                                         | < 0.028                     |                   | < 0.15                | ,,,,           | N                                        |
| Ethylbenzene              | 100-41-4                  | < 0.018                     | *************************************** | < 0.018                     |                                         | < 0.018                     | ······································  | < 0.018                     |                                         | < 0.021                     |                   | < 0.093               |                | N                                        |
| Hexachlorobutadiene       | 87-68-3                   | < 0.050                     | *************************************** | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                                         | < 0.025                     |                   | < 0.22                |                | N                                        |
| 2-Hexanone                | 591-78-6                  | < 0.13                      | *************************************** | < 0.13                      |                                         | < 0.13                      |                                         | < 0.13                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.036                     |                   | < 0.56                |                | N                                        |
| Isopropylbenzene          | 98-82-8                   | < 0.013                     |                                         | < 0.013                     | *************************************** | < 0.013                     |                                         | < 0.013                     |                                         | < 0.018                     |                   | < 0.070               |                | N                                        |
| p-Isopropyltoluene        | 99-87-6                   | < 0.024                     |                                         | < 0.024                     |                                         | < 0.024                     |                                         | < 0.024                     |                                         | < 0.018                     |                   | < 0.11                |                | N                                        |
| Methylene chloride        | 75-09-2                   | 0.59                        |                                         | 0.26                        |                                         | 0.42                        |                                         | 0.28                        |                                         | 0.13                        | В                 | 1.7                   | В              | A                                        |
| 4-Methyl-2-pentanone      | 108-10-1                  | < 0.14                      |                                         | < 0.14                      |                                         | < 0.14                      | ,,,,,,                                  | < 0.14                      |                                         | < 0.030                     |                   | < 0.59                |                | N                                        |
| Naphthalene               | 91-20-3                   | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.050                     |                                         | < 0.011                     |                   | < 0.21                |                | N                                        |
| n-Propylbenzene           | 103-65-1                  | < 0.011                     |                                         | < 0.011                     |                                         | < 0.011                     |                                         | < 0.011                     |                                         | < 0.022                     |                   | < 0.066               |                | N                                        |
| Styrene                   | 100-42-5                  | < 0.014                     |                                         | < 0.014                     |                                         | < 0.014                     |                                         | < 0.014                     | *************************************** | < 0.022                     |                   | < 0.078               |                | N                                        |
| 1,1,1,2-Tetrachloroethane | 630-20-6                  | < 0.019                     |                                         | < 0.019                     |                                         | < 0.019                     |                                         | < 0.019                     |                                         | < 0.024                     |                   | < 0.10                |                | N                                        |
| 1,1,2,2-Tetrachloroethane | 79-34-5                   | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                                         | < 0.025                     |                   | < 0.22                |                | N                                        |
| Tetrachloroethene         | 127-18-4                  | < 0.032                     |                                         | < 0.032                     |                                         | < 0.032                     |                                         | < 0.032                     |                                         | < 0.021                     |                   | < 0.15                |                | N                                        |
| Toluene                   | 108-88-3                  | 0.14                        |                                         | 0.051                       | J                                       | < 0.032                     | J                                       | < 0.031                     | J                                       | < 0.028                     |                   | < 0.28                | J              | Р                                        |
| 1,2,3-Trichlorobenzene    | 87-61-6                   | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                                         | < 0.011                     |                   | < 0.21                |                | N                                        |
| 1,2,4-Trichlorobenzene    | 120-82-1                  | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                                         | < 0.025                     |                   | < 0.22                |                | N                                        |
| 1,1,1-Trichloroethane     | 71-55-6                   | < 0.044                     |                                         | < 0.044                     | рич                                     | < 0.044                     |                                         | < 0.044                     |                                         | < 0.018                     |                   | < 0.19                |                | N                                        |

Created by Patti Carswell Created on 2/5/2002 7:28 AM Last saved by Patti Carswell on 02/05/02 at 7:36 AM Last printed 2/5/2002 7:36 AM

Filename and Path: E:\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-8. 0031-END-1.doc

## VOST Summary - Run 3 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-8. HLLWE Run ID: 0031-END-1

|                                | CAS                | VOS<br>Tube S<br>(Total μ   | et #1                                   | VOS<br>Tube S<br>(Total μ   | et #2                                   | VOS<br>Tube So<br>(Total µ) | et #3             | VOS<br>Tube S<br>(Total µ   | et #4                                  | VO<br>Conde<br>(Tota        | nsate                                   | VO<br>Tot<br>(Tota | al <sup>1</sup> | Project                       |
|--------------------------------|--------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-------------------|-----------------------------|----------------------------------------|-----------------------------|-----------------------------------------|--------------------|-----------------|-------------------------------|
| Analyte                        | Registry<br>Number | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                      | Risk<br>Result <sup>4</sup> | Flag <sup>5</sup>                       | Total              | Flag            | Specific<br>Flag <sup>6</sup> |
|                                |                    |                             |                                         |                             |                                         |                             |                   |                             |                                        |                             |                                         |                    |                 |                               |
| 1,1,2-Trichloroethane          | 79-00-5            | < 0.036                     |                                         | < 0.036                     | ······································  | < 0.036                     |                   | < 0.036                     |                                        | < 0.022                     |                                         | < 0.17             |                 | N                             |
| Trichloroethene                | 79-01-6            | < 0.034                     |                                         | < 0.034                     |                                         | < 0.034                     |                   | < 0.034                     |                                        | < 0.020                     |                                         | < 0.16             |                 | N                             |
| Trichlorofluoromethane         | 75-69-4            | < 0.036                     |                                         | < 0.036                     |                                         | < 0.036                     | J                 | < 0.036                     |                                        | < 0.011                     |                                         | < 0.16             | J               | P                             |
| 1,2,3-Trichloropropane         | 96-18-4            | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                   | < 0.050                     |                                        | < 0.036                     |                                         | < 0.24             |                 | N                             |
| 1,2,4-Trimethylbenzene         | 95-63-6            | < 0.015                     |                                         | < 0.015                     |                                         | < 0.015                     |                   | < 0.015                     |                                        | < 0.043                     |                                         | < 0.10             |                 | N                             |
| 1,3,5-Trimethylbenzene         | 108-67-8           | < 0.010                     |                                         | < 0.010                     |                                         | < 0.010                     |                   | < 0.010                     | «·····                                 | < 0.019                     | •                                       | < 0.059            |                 | N                             |
| Vinyl chloride                 | 75-01-4            | < 0.020                     | J                                       | < 0.025                     | J                                       | 0.023                       | J                 | 0.039                       | J                                      | < 0.068                     | *************************************** | < 0.18             | J               | Р                             |
| m-Xylene & p-Xylene            | 136777-61-2        | < 0.10                      |                                         | < 0.10                      |                                         | < 0.10                      |                   | < 0.10                      | •••••                                  | < 0.043                     |                                         | < 0.44             |                 | N                             |
| o-Xylene                       | 95-47-6            | < 0.013                     | J                                       | < 0.013                     |                                         | < 0.013                     |                   | < 0.013                     |                                        | < 0.026                     |                                         | < 0.078            | J               | Р                             |
| TIC <sup>7</sup>               |                    |                             |                                         |                             |                                         | •••••••••••                 |                   | ••••                        |                                        |                             |                                         |                    |                 |                               |
| Pentane, 3,3-dimethyl-         | 562-49-2           | 0.059                       |                                         |                             |                                         |                             |                   |                             |                                        |                             |                                         | 0.059              | N,J,M           | P                             |
| Hexane, 2-methyl-              | 591-76-4           | 0.27                        | *************************************** | 0.037                       |                                         |                             |                   |                             |                                        |                             |                                         | 0.31               | N,J,M           | P                             |
| Pentane, 2,3-dimethyl-         | 565-59-3           |                             |                                         | 0.031                       |                                         |                             |                   |                             |                                        |                             |                                         | 0.031              | N,J,M           | P                             |
| Hexane, 3-methyl-              | 589-34-4           | 0.65                        |                                         | 0.076                       | ••••••••••••••••••••••••••••••••••••••• | 0.031                       |                   |                             |                                        |                             |                                         | 0.76               | N,J,M           | Р                             |
| Cyclohexene                    | 110-83-8           | 0.036                       |                                         |                             |                                         |                             |                   |                             |                                        |                             |                                         | 0.036              | N,J,M           | Р                             |
| Cyclobutane, ethenyl-          | 2597-49-1          |                             |                                         | 0.029                       |                                         | 0.044                       |                   | 0.047                       |                                        |                             |                                         | 0.12               | N,J,M           | P                             |
| Cyclopentane, 1,2-dimethyl-, t | 822-50-4           | 0.079                       |                                         |                             |                                         |                             |                   |                             |                                        |                             |                                         | 0.079              | N,J,M           | P                             |
| Cyclohexane, methyl-           | 108-87-2           | 0.20                        |                                         |                             |                                         |                             |                   |                             |                                        |                             |                                         | 0.20               | N,J,M           | P                             |
| Hexane, 2,4-dimethyl-          | 589-43-5           | 0.16                        |                                         | 0.025                       |                                         |                             |                   |                             |                                        |                             |                                         | 0.18               | N,J,M           | P                             |
| Cyclopentane, ethyl-           | 1640-89-7          | 0.041                       |                                         |                             |                                         |                             |                   |                             |                                        |                             |                                         | 0.041              | N,J,M           | P                             |
| Methane, trichloronitro-       | 76-06-2            |                             |                                         |                             |                                         |                             |                   | 0.36                        |                                        |                             |                                         | 0.36               | N,J,M           | P                             |
| Benzonitrile                   | 100-47-0           |                             |                                         | 0.074                       |                                         | 0.058                       |                   | 0.059                       |                                        |                             |                                         | 0.19               | N,J,M           | P                             |
| Undecane                       | 1120-21-4          | 0.21                        |                                         |                             |                                         | 0.14                        |                   | 0.15                        |                                        |                             |                                         | 0.50               | N,J,M           | P                             |
| Undecane, 5-methyl-            | 1632-70-8          |                             |                                         |                             |                                         | 0.076                       |                   | 0.10                        |                                        |                             |                                         | 0.18               | N,J,M           | Р                             |
| Dodecane                       | 112-40-3           | 8.4                         |                                         | 5.7                         |                                         | 5.2                         |                   | 6.8                         |                                        |                             |                                         | 26                 | N,J,M           | P                             |
| Tridecane                      | 629-50-5           | 0.98                        |                                         | 0.64                        |                                         | 0.58                        |                   | 0.89                        | DH1D1111111111111111111111111111111111 |                             |                                         | 3.1                | N,J,M           | Р                             |
| Tetradecane                    | 629-59-4           | 0.40                        |                                         | 0.24                        |                                         |                             |                   | 0.37                        |                                        |                             |                                         | 1.0                | N,J,M           | Р                             |
| Hexadecane                     | 544-76-3           |                             |                                         |                             |                                         | 0.21                        |                   |                             |                                        |                             |                                         | 0.21               | N,J,M           | Р                             |
|                                |                    |                             |                                         |                             |                                         |                             |                   |                             |                                        |                             |                                         |                    | 1               | 1                             |

#### Footnotes:

- The Method 0031 VOST Run Total (in Total μg) is the sum of results for the four (4) VOST tube sets and the condensate sample collected during the same sampling run using the following guidelines:
  - When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
  - ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
  - When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
  - When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
  - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the VOST Total are the cumulative set of flags contributed by each train tube set included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Total" column when the associated component analytical result is a significant number in comparison to the VOST Total. That is, if the VOST Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Total, but if the VOST Total is not affected by a VOST component, the associated flag is not carried through to the VOST Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

The Method 0031 VOST Tube Set (Total μg/Set) result consists of the sum of the analytical results for the two (2) Tenax<sup>®</sup> resin tube contents (analyzed together) and the analytical result for the Anasorb 747<sup>®</sup> Tube contents. The calculation is as follows:

(Total  $\mu g$  on the Tenax® Tubes #1 and #2) + (Total  $\mu g$  on the Anasorb 747® Tube) = Total  $\mu g$  on the Method 0031 VOST tube set. Therefore:  $(\mu g) + (\mu g) = \text{Total } \mu g/\text{set}$ 

When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value included in the tube set total is the default RDL value and the actual value is known to be less than (<) the displayed result.

- The data flags in this column for the VOST Tube Set are the cumulative set of flags contributed by each individual train component included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Tube Set" column when the associated component analytical result is a significant number in comparison to the VOST tube set total. That is, if the VOST Tube Set Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Tube Set Total, but if the VOST Tube Set Total is not affected by a VOST component analytical result, the associated flag is not carried through to the VOST Tube Set Total.
- <sup>4</sup> The VOST Condensate result was obtained by multiplying the sample's corresponding RDL or "hit" by the VOST condensate volume.
- <sup>5</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value.

- A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
- ♦ A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
- An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral evidence.
- An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- ♦ A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- 7. The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

### VOST Summary - Run 2 Train Totals Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-9. HLLWE Run ID: 0031-STRT-2

Field Sample Name: Volatile Organic Sampling Train (VOST) Totals

Sample Description: Tenax® and Anasorb 747® Tube Sets (Sets #1, #2, #3, and #4) and the VOST Condensate for Volatile Organic Compounds (VOC) Analysis

|                             |                           | VOS<br>Tube S<br>(Total μ   | et#1              | VOS<br>Tube S<br>(Total μ   | et #2                                   | VOS<br>Tube Se<br>(Total μ  | et #3             | VOS<br>Tube S<br>(Total μ   | et #4                                  | VOS<br>Conde<br>(Total      | nsate             | VOS<br>Tota<br>(Total | al¹    |                                          |
|-----------------------------|---------------------------|-----------------------------|-------------------|-----------------------------|-----------------------------------------|-----------------------------|-------------------|-----------------------------|----------------------------------------|-----------------------------|-------------------|-----------------------|--------|------------------------------------------|
| Analyte                     | CAS<br>Registry<br>Number | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                      | Risk<br>Result <sup>4</sup> | Flag <sup>5</sup> | Total                 | Flag   | Project<br>Specific<br>Flag <sup>6</sup> |
| Target Compound List        |                           |                             |                   |                             |                                         |                             |                   |                             |                                        |                             |                   |                       | •••••• |                                          |
| Acetone                     | 67-64-1                   | 1.2                         | В                 | 0.81                        | J,B                                     | 1.2                         | В                 | < 0.26                      | J,B                                    | 1.5                         | В                 | 5.0                   | J,B    | A                                        |
| Acrylonitrile               | 107-13-1                  | < 0.58                      |                   | < 0.58                      |                                         | < 0.58                      |                   | < 0.58                      |                                        | < 0.51                      |                   | < 2.8                 |        | N                                        |
| Benzene                     | 71-43-2                   | < 0.063                     |                   | < 0.053                     |                                         | < 0.040                     | J                 | < 0.038                     | J                                      | < 0.027                     |                   | < 0.22                | J      | Р                                        |
| Bromobenzene                | 108-86-1                  | < 0.020                     |                   | < 0.020                     |                                         | < 0.020                     |                   | < 0.020                     |                                        | < 0.036                     |                   | < 0.12                |        | N                                        |
| Bromochloromethane          | 74-97-5                   | < 0.030                     |                   | < 0.030                     |                                         | < 0.030                     |                   | < 0.030                     |                                        | < 0.028                     |                   | < 0.15                |        | N                                        |
| Bromodichloromethane        | 75-27-4                   | < 0.022                     |                   | < 0.022                     |                                         | < 0.022                     |                   | < 0.022                     |                                        | < 0.034                     |                   | < 0.12                |        | N                                        |
| Bromoform                   | 75-25-2                   | < 0.038                     |                   | < 0.038                     |                                         | < 0.038                     |                   | < 0.038                     |                                        | < 0.026                     |                   | < 0.18                |        | N                                        |
| Bromomethane                | 74-83-9                   | < 0.030                     | J                 | < 0.030                     | J                                       | < 0.033                     | J                 | < 0.039                     | J                                      | < 0.020                     |                   | < 0.15                | J      | P                                        |
| 2-Butanone                  | 78-93-3                   | < 0.20                      |                   | < 0.20                      | ••••••                                  | < 0.20                      | J                 | < 0.20                      |                                        | < 0.094                     |                   | < 0.89                | J      | Р                                        |
| n-Butylbenzene              | 104-51-8                  | < 0.032                     |                   | < 0.032                     |                                         | < 0.032                     |                   | < 0.032                     |                                        | < 0.026                     |                   | < 0.15                |        | N                                        |
| sec-Butylbenzene            | 135-98-8                  | < 0.017                     |                   | < 0.017                     |                                         | < 0.017                     |                   | < 0.017                     |                                        | < 0.017                     |                   | < 0.085               |        | N                                        |
| tert-Butylbenzene           | 98-06-6                   | < 0.032                     |                   | < 0.032                     | *************************************** | < 0.032                     |                   | < 0.032                     |                                        | < 0.015                     |                   | < 0.14                |        | N                                        |
| Carbon disulfide            | 75-15-0                   | < 0.46                      |                   | < 0.31                      |                                         | < 0.29                      |                   | < 0.26                      |                                        | < 0.011                     |                   | < 1.3                 |        | P                                        |
| Carbon tetrachloride        | 56-23-5                   | < 0.036                     |                   | < 0.036                     |                                         | < 0.036                     |                   | < 0.036                     |                                        | < 0.020                     |                   | < 0.16                |        | N                                        |
| Chlorobenzene               | 108-90-7                  | < 0.017                     |                   | < 0.017                     |                                         | < 0.017                     |                   | < 0.017                     |                                        | < 0.027                     |                   | < 0.095               |        | N                                        |
| Chlorodibromomethane        | 124-48-1                  | < 0.030                     |                   | < 0.030                     |                                         | < 0.030                     |                   | < 0.030                     |                                        | < 0.029                     |                   | < 0.15                |        | N                                        |
| Chloroethane                | 75-00-3                   | < 0.036                     |                   | < 0.036                     |                                         | < 0.042                     | J                 | < 0.038                     | J                                      | < 0.015                     |                   | < 0.17                | J      | Р                                        |
| Chloroform                  | 67-66-3                   | < 0.036                     |                   | < 0.036                     |                                         | < 0.094                     |                   | < 0.13                      |                                        | < 0.031                     |                   | < 0.33                |        | Р                                        |
| Chloromethane               | 74-87-3                   | < 0.061                     | J                 | 0.16                        | J                                       | 0.47                        |                   | 0.48                        |                                        | < 0.011                     |                   | < 1.2                 | J      | P                                        |
| 2-Chlorotoluene             | 95 <b>-</b> 49-8          | < 0.0094                    |                   | < 0.0094                    |                                         | < 0.0094                    |                   | < 0.0094                    |                                        | < 0.021                     |                   | < 0.059               |        | N                                        |
| 4-Chlorotoluene             | 106-43-4                  | < 0.0094                    |                   | < 0.0094                    |                                         | < 0.0094                    |                   | < 0.0094                    |                                        | < 0.021                     |                   | < 0.059               |        | N                                        |
| 1,2-Dibromo-3-chloropropane | 96-12-8                   | < 0.058                     |                   | < 0.058                     |                                         | < 0.058                     |                   | < 0.058                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.043                     |                   | < 0.28                |        | N                                        |
| 1,2-Dibromoethane           | 106-93-4                  | < 0.040                     |                   | < 0.040                     |                                         | < 0.040                     |                   | < 0.040                     |                                        | < 0.043                     |                   | < 0.20                |        | N                                        |
| Dibromomethane              | 74-95-3                   | < 0.034                     |                   | < 0.034                     |                                         | < 0.034                     |                   | < 0.034                     |                                        | < 0.030                     |                   | < 0.17                |        | N                                        |
| 1,2-Dichlorobenzene         | 95-50-1                   | < 0.040                     |                   | < 0.040                     |                                         | < 0.040                     |                   | < 0.040                     |                                        | < 0.019                     |                   | < 0.18                |        | N                                        |
| 1,3-Dichlorobenzene         | 541-73-1                  | < 0.020                     |                   | < 0.020                     |                                         | < 0.020                     |                   | < 0.020                     |                                        | < 0.022                     |                   | < 0.10                |        | N                                        |

### VOST Summary - Run 2 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-9. HLLWE Run ID: 0031-STRT-2

|                           |                           | VOST<br>Tube Set #1<br>(Total µg/Set)         | VOST<br>Tube Set #2<br>(Total µg/Set)         | VOST<br>Tube Set #3<br>(Total µg/Set)         | VOST<br>Tube Set #4<br>(Total µg/Set)         | VOST<br>Condensate<br>(Total µg)              | VOST<br>Total¹<br>(Total μg) |                                          |
|---------------------------|---------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------|------------------------------------------|
| Analyte                   | CAS<br>Registry<br>Number | Risk<br>Result <sup>2</sup> Flag <sup>3</sup> | Risk<br>Result <sup>4</sup> Flag <sup>5</sup> | Total Flag                   | Project<br>Specific<br>Flag <sup>6</sup> |
| 1,4-Dichlorobenzene       | 106-46-7                  | < 0.028                                       | < 0.028                                       | < 0.028                                       | < 0.028                                       | < 0.024                                       | < 0.14                       | N                                        |
| Dichlorodifluoromethane   | 75-71-8                   | < 0.047                                       | < 0.054                                       | < 0.048                                       | < 0.039                                       | < 0.011                                       | < 0.20                       | P                                        |
| 1,1-Dichloroethane        | 75-34-3                   | < 0.034                                       | < 0.034                                       | < 0.034                                       | < 0.034                                       | < 0.017                                       | < 0.15                       | N                                        |
| 1,2-Dichloroethane        | 107-06-2                  | < 0.034                                       | < 0.034                                       | < 0.034                                       | < 0.034                                       | < 0.020                                       | < 0.16                       | N                                        |
| 1,1-Dichloroethene        | 75-35-4                   | < 0.036                                       | < 0.036                                       | < 0.036 J                                     | < 0.036 J                                     | < 0.016                                       | < 0.16 J                     | Р                                        |
| cis-1,2-Dichloroethene    | 156-59-2                  | < 0.032                                       | < 0.032                                       | < 0.032                                       | < 0.032                                       | < 0.021                                       | < 0.15                       | N                                        |
| trans-1,2-Dichloroethene  | 156-60-5                  | < 0.038                                       | < 0.038                                       | < 0.038                                       | < 0.038                                       | < 0.013                                       | < 0.16                       | N                                        |
| 1,2-Dichloropropane       | 78-87-5                   | < 0.026                                       | < 0.026                                       | < 0.026                                       | < 0.026                                       | < 0.024                                       | < 0.13                       | N                                        |
| 1,3-Dichloropropane       | 142-28-9                  | < 0.038                                       | < 0.038                                       | < 0.038                                       | < 0.038                                       | < 0.022                                       | < 0.17                       | N                                        |
| 2,2-Dichloropropane       | 594-20-7                  | < 0.036                                       | < 0.036                                       | < 0.036                                       | < 0.036                                       | < 0.011                                       | < 0.16                       | N                                        |
| I,l-Dichloropropene       | 563-58-6                  | < 0.040                                       | < 0.040                                       | < 0.040                                       | < 0.040                                       | < 0.016                                       | < 0.18                       | N                                        |
| cis-1,3-Dichloropropene   | 10061-01-5                | < 0.024                                       | < 0.024                                       | < 0.024                                       | < 0.024                                       | < 0.030                                       | < 0.13                       | N                                        |
| trans-1,3-Dichloropropene | 10061-02-6                | < 0.030                                       | < 0.030                                       | < 0.030                                       | < 0.030                                       | < 0.028                                       | < 0.15                       | N                                        |
| Ethylbenzene              | 100-41-4                  | < 0.018                                       | < 0.018                                       | < 0.018                                       | < 0.018                                       | < 0.021                                       | < 0.093                      | N                                        |
| Hexachlorobutadiene       | 87-68-3                   | < 0.050                                       | < 0.050                                       | < 0.050                                       | < 0.050                                       | < 0.025                                       | < 0.22                       | N                                        |
| 2-Hexanone                | 591-78-6                  | < 0.13                                        | < 0.13                                        | < 0.13                                        | < 0.13                                        | < 0.036                                       | < 0.56                       | N                                        |
| Isopropylbenzene          | 98-82-8                   | < 0.013                                       | < 0.013                                       | < 0.013                                       | < 0.013                                       | < 0.018                                       | < 0.070                      | N                                        |
| p-Isopropyltoluene        | 99-87-6                   | < 0.024                                       | < 0.024                                       | < 0.024                                       | < 0.024                                       | < 0.018                                       | < 0.11                       | N                                        |
| Methylene chloride        | 75-09-2                   | 0.55 B                                        | 0.15 B                                        | 0.13 B                                        | 0.12 B                                        | 0.13 B                                        | 1.1 B                        | А                                        |
| 4-Methyl-2-pentanone      | 108-10-1                  | < 0.14                                        | < 0.14                                        | < 0.14                                        | < 0.14                                        | < 0.030                                       | < 0.59                       | N                                        |
| Naphthalene               | 91-20-3                   | < 0.050                                       | < 0.050                                       | < 0.050                                       | < 0.050                                       | < 0.011                                       | < 0.21                       | N                                        |
| n-Propylbenzene           | 103-65-1                  | < 0.011                                       | < 0.011                                       | < 0.011                                       | < 0.011                                       | < 0.022                                       | < 0.066                      | N                                        |
| Styrene                   | 100-42-5                  | < 0.014                                       | < 0.014                                       | < 0.014                                       | < 0.014                                       | < 0.022                                       | < 0.078                      | N                                        |
| 1,1,1,2-Tetrachloroethane | 630-20-6                  | < 0.019                                       | < 0.019                                       | < 0.019                                       | < 0.019                                       | < 0.024                                       | < 0.10                       | N                                        |
| 1,1,2,2-Tetrachloroethane | 79-34-5                   | < 0.050                                       | < 0.050                                       | < 0.050                                       | < 0.050                                       | < 0.025                                       | < 0.22                       | N                                        |
| Tetrachloroethene         | 127-18-4                  | < 0.032                                       | < 0.032                                       | < 0.032                                       | < 0.032                                       | < 0.021                                       | < 0.15                       | N                                        |
| Toluene                   | 108-88-3                  | < 0.027 J                                     | 0.17 J                                        | 0.031 J                                       | · 0.045 J                                     | < 0.028                                       | < 0.30 J                     | Р                                        |
| 1,2,3-Trichlorobenzene    | 87-61-6                   | < 0.050                                       | < 0.050                                       | < 0.050                                       | < 0.050                                       | < 0.011                                       | < 0.21                       | N                                        |
| 1,2,4-Trichlorobenzene    | 120-82-1                  | < 0.050                                       | < 0.050                                       | < 0.050                                       | < 0.050                                       | < 0.025                                       | < 0.22                       | N                                        |

## VOST Summary - Run 2 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-9. HLLWE Run ID: 0031-STRT-2

|                        |                           | VOST<br>Tube Se<br>(Total μg | t #1                                    | VOS<br>Tube S<br>(Total μ   | et #2                                   | VOS<br>Tube So<br>(Total με | et #3             | VOS<br>Tube S<br>(Total μ   | et #4                                   | VOS<br>Conde<br>(Tota       | nsate                                  | VOS<br>Tota<br>(Total | al <sup>i</sup> |                                          |
|------------------------|---------------------------|------------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-------------------|-----------------------------|-----------------------------------------|-----------------------------|----------------------------------------|-----------------------|-----------------|------------------------------------------|
| Analyte                | CAS<br>Registry<br>Number | Risk<br>Result²              | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>4</sup> | Flag <sup>5</sup>                      | Total                 | Flag            | Project<br>Specific<br>Flag <sup>6</sup> |
| 1,1,1-Trichloroethane  | 71-55-6                   | < 0.044                      |                                         | < 0.044                     |                                         | < 0.044                     |                   | < 0.044                     |                                         | < 0.018                     | ······································ | < 0.19                |                 | N                                        |
| 1,1,2-Trichloroethane  | 79-00-5                   | < 0.036                      | *************************************** | < 0.036                     |                                         | < 0.036                     |                   | < 0.036                     |                                         | < 0.022                     |                                        | < 0.17                |                 | N                                        |
| Trichloroethene        | 79-01-6                   | < 0.034                      |                                         | < 0.034                     |                                         | < 0.034                     |                   | < 0.034                     |                                         | < 0.020                     |                                        | < 0.16                |                 | N                                        |
| Trichlorofluoromethane | 75-69-4                   | < 0.036                      | J                                       | < 0.036                     | J                                       | < 0.036                     | J                 | < 0.036                     |                                         | < 0.011                     |                                        | < 0.16                | J               | P                                        |
| 1,2,3-Trichloropropane | 96-18-4                   | < 0.050                      |                                         | < 0.050                     |                                         | < 0.050                     |                   | < 0.050                     |                                         | < 0.036                     |                                        | < 0.24                |                 | N                                        |
| 1,2,4-Trimethylbenzene | 95-63-6                   | < 0.015                      |                                         | < 0.015                     |                                         | < 0.015                     |                   | < 0.015                     |                                         | < 0.043                     |                                        | < 0.10                |                 | N                                        |
| 1,3,5-Trimethylbenzene | 108-67-8                  | < 0.010                      |                                         | < 0.010                     | *************************************** | < 0.010                     |                   | < 0.010                     | *************************************** | < 0.019                     |                                        | < 0.059               |                 | N                                        |
| Vinyl chloride         | 75-01-4                   | < 0.013                      |                                         | < 0.013                     |                                         | < 0.018                     | J                 | < 0.016                     | J                                       | < 0.068                     |                                        | < 0.13                | J               | P                                        |
| m-Xylene & p-Xylene    | 136777-61-2               | < 0.10                       |                                         | < 0.10                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.10                      |                   | < 0.10                      |                                         | < 0.043                     |                                        | < 0.44                |                 | N                                        |
| o-Xylene               | 95-47-6                   | < 0.013                      |                                         | < 0.013                     |                                         | < 0.013                     |                   | < 0.013                     |                                         | < 0.026                     |                                        | < 0.078               |                 | N                                        |

### VOST Summary - Run 2 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-9. HLLWE Run ID: 0031-STRT-2

|                             |                           | VOST<br>Tube Set #1<br>(Total μg/Set)         | VOST<br>Tube Set #2<br>(Total μg/Set)         | VOST<br>Tube Set #3<br>(Total μg/Set)         | VOST<br>Tube Set #4<br>(Total μg/Set)         | VOST<br>Condensate<br>(Total μg)              | VOST<br>Total¹<br>(Total μg) |                                          |
|-----------------------------|---------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------|------------------------------------------|
| Analyte                     | CAS<br>Registry<br>Number | Risk<br>Result <sup>2</sup> Flag <sup>3</sup> | Risk<br>Result <sup>4</sup> Flag <sup>5</sup> | Total Flag                   | Project<br>Specific<br>Flag <sup>6</sup> |
| TICs <sup>7</sup>           |                           |                                               |                                               | ***************************************       | !                                             |                                               |                              |                                          |
| Hexane, 2-methyl-           | 591-76-4                  |                                               | 0.17                                          | 0.059                                         | 0.072                                         |                                               | 0.30 N,J,M                   | Р                                        |
| Pentane, 2,3-dimethyl-      | 565-59-3                  |                                               |                                               | 0.057                                         | 0.056                                         |                                               | 0.11 N,J,M                   | P                                        |
| Hexane, 3-methyl-           | 589-34-4                  |                                               |                                               | 0.12                                          | 0.15                                          |                                               | 0.27 N,J,M                   | Р                                        |
| Pentane, 3-ethyl-           | 617-78-7                  |                                               |                                               | 0.034                                         |                                               |                                               | 0.034 N,J,M                  | Р                                        |
| Cyclohexene                 | 110-83-8                  | 0.030                                         | 0.042                                         | 0.036                                         | 0.073                                         |                                               | 0.18 N,J,M                   | Р                                        |
| Cyclopentane, 1,2-dimethyl- | 2452-99-5                 |                                               | 0.053                                         |                                               |                                               |                                               | 0.053 N,J,M                  | Р                                        |
| Cyclohexane, methyl-        | 108-87-2                  |                                               | 0.13                                          | 0.032                                         | 0.037                                         |                                               | 0.20 N,J,M                   | P                                        |
| Hexane, 2,4-dimethyl-       | 589-43-5                  |                                               | 0.13                                          | 0.037                                         | 0.037                                         |                                               | 0.20 N,J,M                   | P                                        |
| Cyclopentane, ethyl-        | 1640-89-7                 |                                               | 0.036                                         |                                               |                                               |                                               | 0.036 N,J,M                  | P                                        |
| Benzonitrile                | 100-47-0                  | 0.038                                         | 0.034                                         |                                               |                                               |                                               | 0.072 N,J,M                  | P                                        |
| Tridecane                   | 629-50-5                  | 0.082                                         |                                               |                                               |                                               |                                               | 0.082 N,J,M                  | Р                                        |
| Undecane                    | 1120-21-4                 |                                               | 0.065                                         | 0.10                                          | 0.080                                         |                                               | 0.24 N,J,M                   | Р                                        |
| Decane, 2,2,5-trimethyl-    | 62237-96-1                |                                               |                                               |                                               | 0.060                                         |                                               | 0.060 N,J,M                  | Р                                        |
| Undecane, 5-methyl-         | 1632-70-8                 | 0.052                                         | 0.051                                         | 0.11                                          |                                               |                                               | 0.21 N,J,M                   | P                                        |
| Dodecane                    | 112-40-3                  | 3.4                                           | 3.4                                           | 8.1                                           | 6.8                                           |                                               | 22 N,J,M                     | Р                                        |
| Dodecane, 6-methyl-         | 6044-71-9                 |                                               |                                               | 0.052                                         |                                               |                                               | 0.052 N,J,M                  | Р                                        |
| Undecane, 2,6-dimethyl-     | 17301-23-4                |                                               |                                               |                                               | 0.046                                         |                                               | 0.046 N,J,M                  | Р                                        |
| Tridecane                   | 629-50-5                  | 0.34                                          | 0.29                                          | 0.84                                          | 0.93                                          |                                               | 2.4 N,J,M                    | P                                        |
| Tetradecane                 | 629-59-4                  | 0.17                                          | 0.16                                          | 0.28                                          | 0.37                                          |                                               | 0.98 N,J,M                   | Р                                        |

#### Footnotes:

- The Method 0031 VOST Run Total (in Total μg) is the sum of results for the four (4) VOST tube sets and the condensate sample collected during the same sampling run using the following guidelines:
  - When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
  - When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
  - When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
  - When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
  - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the VOST Total are the cumulative set of flags contributed by each train tube set included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Total" column when the associated component analytical result is a significant number in comparison to the VOST Total. That is, if the VOST Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Total, but if the VOST Total is not affected by a VOST component, the associated flag is not carried through to the VOST Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

The Method 0031 VOST Tube Set (Total μg/Set) result consists of the sum of the analytical results for the two (2) Tenax<sup>®</sup> resin tube contents (analyzed together) and the analytical result for the Anasorb 747<sup>®</sup> Tube contents. The calculation is as follows:

(Total  $\mu g$  on the Tenax® Tubes #1 and #2) + (Total  $\mu g$  on the Anasorb 747® Tube) = Total  $\mu g$  on the Method 0031 VOST tube set. Therefore:  $(\mu g) + (\mu g) = \text{Total } \mu g/\text{set}$ 

When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value included in the tube set total is the default RDL value and the actual value is known to be less than (<) the displayed result.

- The data flags in this column for the VOST Tube Set are the cumulative set of flags contributed by each individual train component included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Tube Set" column when the associated component analytical result is a significant number in comparison to the VOST tube set total. That is, if the VOST Tube Set Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Tube Set Total, but if the VOST Tube Set Total is not affected by a VOST component analytical result, the associated flag is not carried through to the VOST Tube Set Total.
- <sup>4</sup> The VOST Condensate result was obtained by multiplying the sample's corresponding RDL or "hit" by the VOST condensate volume.
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value.

- A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
- A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
- An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral evidence.
- An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- 6. Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- 7. The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

### **VOST Summary - Run 4 Train Totals** Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-10. HLLWE Run ID: 0031-END-2

Field Sample Name:

Volatile Organic Sampling Train (VOST) Totals
Tenax® and Anasorb 747® Tube Sets (Sets #1, #2, #3, and #4) and the VOST Condensate for Volatile Organic Compounds (VOC) Analysis Sample Description:

|                             | 010                                     | VOS<br>Tube Se<br>(Total μ  | et #1                                   | VOS<br>Tube S<br>(Total μ   | et #2                                   | VOS<br>Tube Se<br>(Total µg | et #3                                   | VOS<br>Tube S<br>(Total μ   | et #4             | VOS<br>Conde<br>(Total      | nsate                                   | VOS<br>Tota<br>(Total | ıl¹                                     | Project                       |
|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-------------------|-----------------------------|-----------------------------------------|-----------------------|-----------------------------------------|-------------------------------|
| Analyte                     | CAS<br>Registry<br>Number               | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>4</sup> | Flag <sup>5</sup>                       | Total                 | Flag                                    | Specific<br>Flag <sup>6</sup> |
| Target Compound List        |                                         |                             |                                         |                             |                                         |                             |                                         |                             |                   |                             |                                         |                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                               |
| Acetone                     | 67-64-1                                 | < 0.46                      | J,B                                     | 0.59                        | В                                       | 1.3                         | В                                       | 1.4                         | В                 | 0.081                       | J,B                                     | < 3.8                 | J,B                                     | A                             |
| Acrylonitrile               | 107-13-1                                | < 0.58                      |                                         | < 0.58                      |                                         | < 0.58                      |                                         | < 0.58                      |                   | < 0.51                      | *************************************** | < 2.8                 |                                         | N                             |
| Benzene                     | 71-43-2                                 | < 0.052                     |                                         | < 0.034                     |                                         | < 0.044                     |                                         | < 0.047                     |                   | < 0.027                     |                                         | < 0.20                |                                         | P                             |
| Bromobenzene                | 108-86-1                                | < 0.020                     |                                         | < 0.020                     |                                         | < 0.020                     |                                         | < 0.020                     |                   | < 0.036                     |                                         | < 0.12                |                                         | N                             |
| Bromochloromethane          | 74-97-5                                 | < 0.030                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.030                     |                                         | < 0.030                     |                                         | < 0.030                     |                   | < 0.028                     |                                         | < 0.15                |                                         | N                             |
| Bromodichloromethane        | 75-27-4                                 | < 0.022                     |                                         | < 0.022                     |                                         | < 0.022                     |                                         | < 0.022                     |                   | < 0.033                     |                                         | < 0.12                |                                         | N                             |
| Bromoform                   | 75-25-2                                 | < 0.038                     | ,,                                      | < 0.038                     |                                         | < 0.038                     | *************************************** | < 0.038                     |                   | < 0.025                     |                                         | < 0.18                |                                         | N                             |
| Bromomethane                | 74-83-9                                 | < 0.030                     | J                                       | < 0.055                     | J                                       | < 0.041                     | J                                       | < 0.049                     | J                 | < 0.020                     |                                         | < 0.20                | J                                       | Р                             |
| 2-Butanone                  | 78-93-3                                 | < 0.20                      | *************************************** | < 0.20                      |                                         | < 0.20                      |                                         | < 0.20                      |                   | < 0.093                     |                                         | < 0.89                |                                         | N                             |
| n-Butylbenzene              | 104-51-8                                | < 0.032                     |                                         | < 0.032                     |                                         | < 0.032                     |                                         | < 0.032                     |                   | < 0.025                     |                                         | < 0.15                |                                         | N                             |
| sec-Butylbenzene            | 135-98-8                                | < 0.017                     |                                         | < 0.017                     |                                         | < 0.017                     | *************************************** | < 0.017                     |                   | < 0.017                     |                                         | < 0.085               |                                         | N                             |
| tert-Butylbenzene           | 98-06-6                                 | < 0.032                     | *************************************** | < 0.032                     |                                         | < 0.032                     |                                         | < 0.032                     |                   | < 0.014                     |                                         | < 0.14                |                                         | N                             |
| Carbon disulfide            | 75-15-0                                 | 0.22                        |                                         | < 0.036                     |                                         | < 0.18                      |                                         | < 0.19                      |                   | < 0.011                     |                                         | < 0.64                |                                         | Р                             |
| Carbon tetrachloride        | 56-23-5                                 | < 0.036                     | J                                       | < 0.036                     |                                         | < 0.036                     | ••••                                    | < 0.036                     | J                 | < 0.020                     |                                         | < 0.16                | J                                       | P                             |
| Chlorobenzene               | 108-90-7                                | < 0.017                     | J                                       | < 0.017                     |                                         | < 0.017                     | J                                       | < 0.017                     | J                 | < 0.027                     |                                         | < 0.095               | J                                       | P                             |
| Chlorodibromomethane        | 124-48-1                                | < 0.030                     |                                         | < 0.030                     |                                         | < 0.030                     |                                         | < 0.030                     |                   | < 0.029                     |                                         | < 0.15                |                                         | N                             |
| Chloroethane                | 75-00-3                                 | < 0.036                     | J                                       | < 0.036                     | J                                       | < 0.036                     | J                                       | < 0.036                     | J                 | < 0.014                     |                                         | < 0.16                | J                                       | P                             |
| Chloroform                  | 67-66-3                                 | < 0.15                      |                                         | < 0.036                     |                                         | < 0.087                     |                                         | < 0.087                     |                   | < 0.031                     |                                         | < 0.39                |                                         | Р                             |
| Chloromethane               | 74-87-3                                 | 0.46                        |                                         | < 0.70                      |                                         | 0.65                        | J                                       | 0.70                        |                   | < 0.011                     |                                         | < 2.5                 | J                                       | P                             |
| 2-Chlorotoluene             | 95-49-8                                 | < 0.0094                    |                                         | < 0.0094                    |                                         | < 0.0094                    |                                         | < 0.0094                    |                   | < 0.021                     |                                         | < 0.059               |                                         | N                             |
| 4-Chlorotoluene             | 106-43-4                                | < 0.0094                    |                                         | < 0.0094                    |                                         | < 0.0094                    |                                         | < 0.0094                    |                   | < 0.021                     |                                         | < 0.059               |                                         | N                             |
| 1,2-Dibromo-3-chloropropane | 96-12-8                                 | < 0.058                     |                                         | < 0.058                     |                                         | < 0.058                     |                                         | < 0.058                     |                   | < 0.042                     |                                         | < 0.27                |                                         | N                             |
| 1,2-Dibromoethane           | 106-93-4                                | < 0.040                     |                                         | < 0.040                     |                                         | < 0.040                     |                                         | < 0.040                     |                   | < 0.042                     |                                         | < 0.20                |                                         | N                             |
| Dibromomethane              | 74-95-3                                 | < 0.034                     |                                         | < 0.034                     | ••••                                    | < 0.034                     |                                         | < 0.034                     | .,                | < 0.030                     |                                         | < 0.17                |                                         | N                             |
| 1,2-Dichlorobenzene         | 95-50-1                                 | < 0.040                     |                                         | < 0.040                     |                                         | < 0.040                     |                                         | < 0.040                     |                   | < 0.019                     |                                         | < 0.18                |                                         | N                             |
| 1,3-Dichlorobenzene         | 541-73 <b>-</b> 1                       | < 0.020                     |                                         | < 0.020                     |                                         | < 0.020                     |                                         | < 0.020                     |                   | < 0.022                     |                                         | < 0.10                |                                         | N                             |
| 1,4-Dichlorobenzene         | 106-46-7                                | < 0.028                     |                                         | < 0.028                     | *************************************** | < 0.028                     |                                         | < 0.028                     |                   | < 0.023                     |                                         | < 0.14                |                                         | N                             |
|                             | *************************************** | A                           |                                         |                             |                                         |                             |                                         |                             |                   |                             |                                         |                       |                                         |                               |

Last saved by Patti Carswell on 02/05/02 at 7:54 AM

E:\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-10. 0031-END-2.doc

Created on 2/5/2002 7:51 AM

## VOST Summary - Run 4 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-10. HLLWE Run ID: 0031-END-2

|                           |                           | VOS<br>Tube Se<br>(Total µ  | et #1                                   | VOS<br>Tube S<br>(Total µ   | et #2                                   | VOS<br>Tube Se<br>(Total με | et #3             | VOS<br>Tube S<br>(Total μ   | et #4                                   | VOS<br>Conde<br>(Total      | nsate             | VOS<br>Tota<br>(Total | d <sup>1</sup>                          |                                          |
|---------------------------|---------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-------------------|-----------------------------|-----------------------------------------|-----------------------------|-------------------|-----------------------|-----------------------------------------|------------------------------------------|
| Analyte                   | CAS<br>Registry<br>Number | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>4</sup> | Flag <sup>5</sup> | Total                 | Flag                                    | Project<br>Specific<br>Flag <sup>6</sup> |
| Dichlorodifluoromethane   | 75-71-8                   | < 0.032                     | J                                       | < 0.041                     |                                         | < 0.039                     |                   | < 0.039                     |                                         | < 0.011                     |                   | < 0.16                | J                                       | P                                        |
| 1,1-Dichloroethane        | 75-34-3                   | < 0.034                     |                                         | < 0.034                     |                                         | < 0.034                     | ••••              | < 0.034                     |                                         | < 0.017                     |                   | < 0.15                |                                         | N                                        |
| 1,2-Dichloroethane        | 107-06-2                  | < 0.034                     |                                         | < 0.034                     |                                         | < 0.034                     |                   | < 0.034                     |                                         | < 0.020                     |                   | < 0.16                |                                         | N                                        |
| I,I-Dichloroethene        | 75-35-4                   | < 0.036                     | J                                       | < 0.036                     |                                         | < 0.036                     | J                 | < 0.036                     | J                                       | < 0.016                     |                   | < 0.16                | J                                       | P                                        |
| cis-1,2-Dichloroethene    | 156-59-2                  | < 0.032                     |                                         | < 0.032                     |                                         | < 0.032                     |                   | < 0.032                     |                                         | < 0.021                     |                   | < 0.15                |                                         | N                                        |
| trans-1,2-Dichloroethene  | 156-60-5                  | < 0.038                     |                                         | < 0.038                     | haner                                   | < 0.038                     |                   | < 0.038                     |                                         | < 0.013                     |                   | < 0.17                |                                         | N                                        |
| 1,2-Dichloropropane       | 78-87-5                   | < 0.026                     |                                         | < 0.026                     |                                         | < 0.026                     |                   | < 0.026                     |                                         | < 0.023                     |                   | < 0.13                |                                         | N                                        |
| 1,3-Dichloropropane       | 142-28-9                  | < 0.038                     |                                         | < 0.038                     |                                         | < 0.038                     |                   | < 0.038                     |                                         | < 0.022                     |                   | < 0.17                |                                         | N                                        |
| 2,2-Dichloropropane       | 594-20-7                  | < 0.036                     | ·,····································  | < 0.036                     |                                         | < 0.036                     |                   | < 0.036                     |                                         | < 0.011                     |                   | < 0.16                |                                         | N                                        |
| 1,1-Dichloropropene       | 563-58-6                  | < 0.040                     |                                         | < 0.040                     |                                         | < 0.040                     |                   | < 0.040                     |                                         | < 0.016                     |                   | < 0.18                |                                         | N                                        |
| cis-1,3-Dichloropropene   | 10061-01-5                | < 0.024                     | *************************************** | < 0.024                     |                                         | < 0.024                     |                   | < 0.024                     |                                         | < 0.030                     |                   | < 0.13                |                                         | N                                        |
| trans-1,3-Dichloropropene | 10061-02-6                | < 0.030                     |                                         | < 0.030                     |                                         | < 0.030                     |                   | < 0.030                     |                                         | < 0.028                     |                   | < 0.15                |                                         | N                                        |
| Ethylbenzene              | 100-41-4                  | < 0.018                     |                                         | < 0.018                     |                                         | < 0.018                     |                   | < 0.018                     |                                         | < 0.021                     |                   | < 0.093               |                                         | N                                        |
| Hexachlorobutadiene       | 87-68-3                   | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                   | < 0.050                     |                                         | < 0.025                     |                   | < 0.23                |                                         | N                                        |
| 2-Hexanone                | 591-78-6                  | < 0.13                      | *************************************** | < 0.13                      |                                         | < 0.13                      |                   | < 0.13                      | •                                       | < 0.036                     |                   | < 0.56                |                                         | N                                        |
| Isopropylbenzene          | 98-82-8                   | < 0.013                     |                                         | < 0.013                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.013                     |                   | < 0.013                     | *************************************** | < 0.018                     |                   | < 0.070               |                                         | N                                        |
| p-Isopropyltoluene        | 99-87-6                   | < 0.024                     |                                         | < 0.024                     |                                         | < 0.024                     |                   | < 0.024                     |                                         | < 0.018                     |                   | < 0.11                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | N                                        |
| Methylene chloride        | 75-09-2                   | 0.13                        | В                                       | 0.071                       | В                                       | 0.10                        | В                 | 0.11                        | В                                       | < 0.019                     | J,B               | < 0.43                | J,B                                     | A                                        |
| 4-Methyl-2-pentanone      | 108-10-1                  | < 0.14                      |                                         | < 0.14                      |                                         | < 0.14                      |                   | < 0.14                      |                                         | < 0.030                     |                   | < 0.59                |                                         | N                                        |
| Naphthalene               | 91-20-3                   | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                   | < 0.050                     |                                         | < 0.011                     |                   | < 0.21                |                                         | N                                        |
| n-Propylbenzene           | 103-65-1                  | < 0.011                     |                                         | < 0.011                     |                                         | < 0.011                     |                   | < 0.011                     |                                         | < 0.022                     |                   | < 0.066               |                                         | N                                        |
| Styrene                   | 100-42-5                  | < 0.014                     |                                         | < 0.014                     |                                         | < 0.014                     |                   | < 0.014                     |                                         | < 0.022                     |                   | < 0.078               |                                         | N                                        |
| 1,1,1,2-Tetrachloroethane | 630-20-6                  | < 0.019                     |                                         | < 0.019                     |                                         | < 0.019                     |                   | < 0.019                     |                                         | < 0.023                     |                   | < 0.099               |                                         | N                                        |
| 1,1,2,2-Tetrachloroethane | 79-34-5                   | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                   | < 0.050                     | *************************************** | < 0.025                     |                   | < 0.23                |                                         | N                                        |
| Tetrachloroethene         | 127-18-4                  | < 0.032                     |                                         | < 0.032                     |                                         | < 0.032                     |                   | < 0.032                     |                                         | < 0.021                     |                   | < 0.15                |                                         | N                                        |
| Toluene                   | 108-88-3                  | < 0.048                     |                                         | < 0.046                     |                                         | < 0.028                     | J                 | 0.026                       | J                                       | < 0.028                     | 101,000,000,000   | < 0.18                | J                                       | Р                                        |
| 1,2,3-Trichlorobenzene    | 87-61-6                   | < 0.050                     |                                         | < 0.050                     | ,,                                      | < 0.050                     |                   | < 0.050                     |                                         | < 0.011                     |                   | < 0.21                |                                         | N                                        |
| 1,2,4-Trichlorobenzene    | 120-82-1                  | < 0.050                     |                                         | < 0.050                     |                                         | < 0.050                     |                   | < 0.050                     |                                         | < 0.025                     |                   | < 0.23                |                                         | N                                        |
| 1.1,1-Trichloroethane     | 71-55-6                   | < 0.044                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.044                     |                                         | < 0.044                     |                   | < 0.044                     |                                         | < 0.018                     | ,                 | < 0.19                |                                         | N                                        |

Created by Patti Carswell Created on 2/5/2002 7:51 AM Last saved by Patti Carswell on 02/05/02 at 7:54 AM Last printed 2/5/2002 7:54 AM

Filename and Path: E:\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-10. 0031-END-2.doc

## VOST Summary - Run 4 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-10. HLLWE Run ID: 0031-END-2

|                                |                           | VOS<br>Tube Se<br>(Total με             | et #1             | VOS<br>Tube Se<br>(Total μ  | et #2             | VOS<br>Tube Se<br>(Total με | et #3                                   | VOS<br>Tube S<br>(Total μ   | et #4                                   | VOS<br>Conde<br>(Total      | nsate                                   | VOS<br>Tota<br>(Tota | ai¹   |                                          |
|--------------------------------|---------------------------|-----------------------------------------|-------------------|-----------------------------|-------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|----------------------|-------|------------------------------------------|
| Analyte                        | CAS<br>Registry<br>Number | Risk<br>Result <sup>2</sup>             | Flag <sup>3</sup> | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup> | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>2</sup> | Flag <sup>3</sup>                       | Risk<br>Result <sup>4</sup> | Flag <sup>5</sup>                       | Total                | Flag  | Project<br>Specific<br>Flag <sup>6</sup> |
| 1,1,2-Trichloroethane          | 79-00-5                   | < 0.036                                 |                   | < 0.036                     |                   | < 0.036                     |                                         | < 0.036                     |                                         | < 0.022                     |                                         | < 0.17               |       | N                                        |
| Trichloroethene                | 79-01-6                   | < 0.034                                 |                   | < 0.034                     |                   | < 0.034                     |                                         | < 0.034                     | *************************************** | < 0.020                     |                                         | < 0.16               |       | N                                        |
| Trichlorofluoromethane         | 75-69-4                   | < 0.036                                 | J                 | < 0.036                     |                   | < 0.036                     | J                                       | < 0.036                     | J                                       | < 0.011                     | ed miles administer                     | < 0.16               | J     | Р                                        |
| 1,2,3-Trichloropropane         | 96-18-4                   | < 0.050                                 |                   | < 0.050                     |                   | < 0.050                     | ,                                       | < 0.050                     |                                         | < 0.036                     |                                         | < 0.24               |       | N                                        |
| 1,2,4-Trimethylbenzene         | 95-63-6                   | < 0.015                                 |                   | < 0.015                     |                   | < 0.015                     |                                         | < 0.015                     | *************************************** | < 0.042                     |                                         | < 0.10               |       | N                                        |
| 1,3,5-Trimethylbenzene         | 108-67-8                  | < 0.010                                 |                   | < 0.010                     |                   | < 0.010                     |                                         | < 0.010                     | •••••                                   | < 0.019                     |                                         | < 0.059              |       | N                                        |
| Vinyl chloride                 | 75-01-4                   | < 0.020                                 | J                 | < 0.026                     | J                 | < 0.026                     | J                                       | < 0.027                     | J                                       | < 0.068                     |                                         | < 0.17               | J     | Р                                        |
| m-Xylene & p-Xylene            | 136777-61-2               | < 0.10                                  | .,,               | < 0.10                      |                   | < 0.10                      |                                         | < 0.10                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 0.042                     |                                         | < 0.44               |       | N                                        |
| o-Xylene                       | 95-47-6                   | < 0.013                                 | J                 | < 0.013                     |                   | < 0.013                     |                                         | < 0.013                     |                                         | < 0.025                     |                                         | < 0.077              | J     | Р                                        |
| TICs <sup>7</sup>              |                           | ••••••••••••••••••••••••••••••••••••••• |                   |                             |                   |                             |                                         |                             | ,                                       |                             |                                         |                      |       |                                          |
| Hexane, 2-methyl-              | 591-76-4                  | 0.047                                   | ,                 | 0.10                        |                   | 0.052                       |                                         | 0.040                       |                                         |                             |                                         | 0.24                 | N,J,M | P                                        |
| Pentane, 2,3-dimethyl-         | 565-59-3                  |                                         |                   | 0.10                        |                   |                             |                                         | 0.037                       |                                         |                             |                                         | 0.14                 | N,J,M | P                                        |
| Hexane, 3-methyl-              | 589-34-4                  |                                         |                   | 0.26                        |                   |                             |                                         | 0.081                       |                                         |                             |                                         | 0.34                 | N,J,M | Р                                        |
| Pentane, 3-ethyl-              | 617-78-7                  |                                         |                   |                             |                   | 0.032                       |                                         |                             |                                         |                             | *************************************** | 0.032                | N,J,M | P                                        |
| Cyclohexene                    | 110-83-8                  | 0.026                                   |                   |                             |                   |                             |                                         |                             |                                         |                             |                                         | 0.026                | N,J,M | Р                                        |
| Cyclopentane, 1,2-dimethyl-, t | 822-50-4                  |                                         |                   | 0.030                       |                   |                             |                                         |                             |                                         |                             |                                         | 0.030                | N,J,M | P                                        |
| Cyclohexane, methyl-           | 108-87-2                  | 0.027                                   |                   | 0.065                       |                   | 0.031                       |                                         |                             |                                         |                             |                                         | 0.12                 | N,J,M | P                                        |
| Hexane, 2,4-dimethyl-          | 589-43-5                  |                                         |                   | 0.066                       |                   | 0.028                       |                                         |                             |                                         |                             |                                         | 0.094                | N,J,M | P                                        |
| Benzonitrile                   | 100-47-0                  |                                         |                   |                             |                   |                             |                                         | 0.047                       |                                         |                             |                                         | 0.047                | N,J,M | Р                                        |
| Undecane                       | 1120-21-4                 | 0.014                                   |                   |                             |                   | 0.054                       |                                         | 0.049                       |                                         |                             |                                         | 0.12                 | N,J,M | Р                                        |
| Undecane, 5-methyl-            | 1632-70-8                 | 0.13                                    |                   |                             |                   | 0.047                       |                                         |                             |                                         |                             |                                         | 0.18                 | N,J,M | Р                                        |
| Dodecane                       | 112-40-3                  | 9.9                                     |                   | 0.070                       |                   | 3.8                         |                                         | 3.5                         |                                         |                             |                                         | 17                   | N,J,M | P                                        |
| Undecane, 2,6-dimethyl-        | 17301-23-4                | 0.083                                   |                   |                             |                   |                             |                                         |                             |                                         |                             |                                         | 0.083                | N,J,M | Р                                        |
| Tridecane                      | 629-50-5                  | 1.9                                     |                   | 0.046                       |                   | 0.58                        |                                         | 0.53                        |                                         |                             |                                         | 3.1                  | N,J,M | P                                        |
| Tetradecane                    | 629-59-4                  | 0.58                                    |                   | 0.096                       |                   | 0.35                        | *************************************** | 0.36                        |                                         |                             |                                         | 1.4                  | N,J,M | Р                                        |

#### Footnotes:

- The Method 0031 VOST Run Total (in Total μg) is the sum of results for the four (4) VOST tube sets and the condensate sample collected during the same sampling run using the following guidelines:
  - When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
  - When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
  - When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
  - When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
  - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the VOST Total are the cumulative set of flags contributed by each train tube set included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Total" column when the associated component analytical result is a significant number in comparison to the VOST Total. That is, if the VOST Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Total, but if the VOST Total is not affected by a VOST component, the associated flag is not carried through to the VOST Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

The Method 0031 VOST Tube Set (Total  $\mu$ g/Set) result consists of the sum of the analytical results for the two (2) Tenax<sup>®</sup> resin tube contents (analyzed together) and the analytical result for the Anasorb 747<sup>®</sup> Tube contents. The calculation is as follows:

(Total  $\mu g$  on the Tenax<sup>®</sup> Tubes #1 and #2) + (Total  $\mu g$  on the Anasorb 747<sup>®</sup> Tube) = Total  $\mu g$  on the Method 0031 VOST tube set. Therefore:  $(\mu g) + (\mu g) = \text{Total } \mu g/\text{set}$ 

When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value included in the tube set total is the default RDL value and the actual value is known to be less than (<) the displayed result.

- The data flags in this column for the VOST Tube Set are the cumulative set of flags contributed by each individual train component included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Tube Set" column when the associated component analytical result is a significant number in comparison to the VOST tube set total. That is, if the VOST Tube Set Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Tube Set Total, but if the VOST Tube Set Total is not affected by a VOST component analytical result, the associated flag is not carried through to the VOST Tube Set Total.
- <sup>4</sup> The VOST Condensate result was obtained by multiplying the sample's corresponding RDL or "hit" by the VOST condensate volume.
- <sup>5</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - ♦ A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value.

- A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
- A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
- An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral evidence.
- An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- <sup>6</sup> Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- 7. The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

Last printed 2/5/2002 7:54 AM

### BECHTEL BWXT IDAHO, LLC (BBWI) INTEC HLLWE Effluent Gas Emissions Inventory Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### VOST Analytical Results Summary Table A-11. Run 2, VOST Tenax® Tube Pair Field Blank

Field Sample Name:

Volatile Organic Sampling Train (VOST)

Sample Description:

VOST Tenax® Tube Pair Field Blank for Volatile Organic Compounds Analysis

Field Sample Number(s):

A-3392

STL Sample Number(s).

H1F250144-019

|                             | CAS<br>Registry  |                         |                  | Tenax® T<br>Field<br>(μg/Sa | Blank |                          |                                         |
|-----------------------------|------------------|-------------------------|------------------|-----------------------------|-------|--------------------------|-----------------------------------------|
| Analyte                     | Number           | Lab Result <sup>1</sup> | MDL <sup>2</sup> | RDL <sup>3</sup>            | RL⁴   | Risk Result <sup>5</sup> | Flag <sup>6</sup>                       |
| Acetone                     | 67-64-1          | 0.027                   | 0.024            | 0.063                       | 0.10  | < 0.063                  | J,B                                     |
| Acrylonitrile               | 107-13-1         | ND                      | 0.11             | 0.29                        | 0.50  | < 0.29                   |                                         |
| Benzene                     | 71-43-2          | ND                      | 0.0064           | 0.017                       | 0.025 | < 0.017                  |                                         |
| Bromobenzene                | 108-86-1         | ND                      | 0.0039           | 0.010                       | 0.025 | < 0.010                  |                                         |
| Bromochloromethane          | 74-97-5          | ND                      | 0.0056           | 0.015                       | 0.025 | < 0.015                  |                                         |
| Bromodichloromethane        | 75-27-4          | ND                      | 0.0042           | 0.011                       | 0.025 | < 0.011                  |                                         |
| Bromoform                   | 75-25-2          | ND                      | 0.0074           | 0.019                       | 0.025 | < 0.019                  |                                         |
| Bromomethane                | 74-83-9          | ND                      | 0.0059           | 0.015                       | 0.050 | < 0.015                  | ,                                       |
| 2-Butanone                  | 78-93-3          | ND                      | 0.038            | 0.10                        | 0.10  | < 0.10                   |                                         |
| n-Butylbenzene              | 104-51-8         | ND                      | 0.0061           | 0.016                       | 0.025 | < 0.016                  |                                         |
| sec-Butylbenzene            | 135-98-8         | ND                      | 0.0032           | 0.0084                      | 0.025 | < 0.0084                 |                                         |
| tert-Butylbenzene           | 98-06-6          | ND                      | 0.0062           | 0.016                       | 0.025 | < 0.016                  |                                         |
| Carbon disulfide            | 75-15-0          | ND                      | 0.0070           | 0.018                       | 0.025 | < 0.018                  |                                         |
| Carbon tetrachloride        | 56-23-5          | ND                      | 0.0069           | 0.018                       | 0.025 | < 0.018                  |                                         |
| Chlorobenzene               | 108-90-7         | ND                      | 0.0032           | 0.0084                      | 0.025 | < 0.0084                 |                                         |
| Chlorodibromomethane        | 124-48-1         | ND                      | 0.0056           | 0.015                       | 0.025 | < 0.015                  |                                         |
| Chloroethane                | 75-00 <b>-</b> 3 | ND                      | 0.0068           | 0.018                       | 0.050 | < 0.018                  |                                         |
| Chloroform                  | 67-66-3          | ND                      | 0.0070           | 0.018                       | 0.025 | < 0.018                  |                                         |
| Chloromethane               | 74-87-3          | ND                      | 0.0048           | 0.013                       | 0.050 | < 0.013                  |                                         |
| 2-Chlorotoluene             | 95-49-8          | ND                      | 0.0018           | 0.0047                      | 0.025 | < 0.0047                 |                                         |
| 4-Chlorotoluene             | 106-43-4         | ND                      | 0.0018           | 0.0047                      | 0.025 | < 0.0047                 |                                         |
| 1,2-Dibromo-3-chloropropane | 96-12-8          | ND                      | 0.011            | 0.029                       | 0.050 | < 0.029                  |                                         |
| 1,2-Dibromoethane           | 106-93-4         | ND                      | 0.0075           | 0.020                       | 0.025 | < 0.020                  |                                         |
| Dibromomethane              | 74-95-3          | ND                      | 0.0064           | 0.017                       | 0.025 | < 0.017                  |                                         |
| 1,2-Dichlorobenzene         | 95-50-1          | ND                      | 0.0077           | 0.020                       | 0.025 | < 0.020                  |                                         |
| 1,3-Dichlorobenzene         | 541-73-1         | ND                      | 0.0038           | 0.010                       | 0.025 | < 0.010                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 1,4-Dichlorobenzene         | 106-46-7         | ND                      | 0.0055           | 0.014                       | 0.025 | < 0.014                  |                                         |
| Dichlorodifluoromethane     | 75-71-8          | ND                      | 0.0051           | 0.013                       | 0.025 | < 0.013                  |                                         |

VOST Analytical Results Summary (Continued)
Table A-11. Run 2, VOST Tenax® Tube Pair Field Blank

| , 400                     | CAS<br>Registry |                         |                  | Tenax® T<br>Field<br>(µg/Sa |                 |                          |                                         |
|---------------------------|-----------------|-------------------------|------------------|-----------------------------|-----------------|--------------------------|-----------------------------------------|
| Analyte                   | Number          | Lab Result <sup>1</sup> | MDL <sup>2</sup> | RDL <sup>3</sup>            | RL <sup>4</sup> | Risk Result <sup>5</sup> | Flag                                    |
| 1,1-Dichloroethane        | 75-34-3         | ND                      | 0.0064           | 0.017                       | 0.025           | < 0.017                  |                                         |
| 1,2-Dichloroethane        | 107-06-2        | ND                      | 0.0066           | 0.017                       | 0.025           | < 0.017                  |                                         |
| 1.1-Dichloroethene        | 75-35-4         | ND                      | 0.0067           | 0.018                       | 0.025           | < 0.018                  |                                         |
| cis-1,2-Dichloroethene    | 156-59-2        | ND                      | 0.0062           | 0.016                       | 0.025           | < 0.016                  | ·····                                   |
| trans-1,2-Dichloroethene  | 156-60-5        | ND                      | 0.0074           | 0.019                       | 0.025           | < 0.019                  |                                         |
| 1,2-Dichloropropane       | 78-87-5         | ND                      | 0.0049           | 0.013                       | 0.025           | < 0.013                  |                                         |
| 1,3-Dichloropropane       | 142-28-9        | ND                      | 0.0073           | 0.019                       | 0.025           | < 0.019                  |                                         |
| 2,2-Dichloropropane       | 594-20-7        | ND                      | 0.0070           | 0.018                       | 0.025           | < 0.018                  |                                         |
| 1,1-Dichloropropene       | 563-58-6        | ND                      | 0.0077           | 0.020                       | 0.025           | < 0.020                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  |
| cis-1,3-Dichloropropene   | 10061-01-5      | ND                      | 0.0046           | 0.012                       | 0.025           | < 0.012                  |                                         |
| trans-1,3-Dichloropropene | 10061-02-6      | ND                      | 0.0059           | 0.015                       | 0.025           | < 0.015                  |                                         |
| Ethylbenzene              | 100-41-4        | ND                      | 0.0035           | 0.0092                      | 0.025           | < 0.0092                 |                                         |
| Hexachlorobutadiene       | 87-68-3         | ND                      | 0.012            | 0.031                       | 0.025           | < 0.025                  | *************************************** |
| 2-Hexanone                | 591-78-6        | ND                      | 0.024            | 0.063                       | 0.10            | < 0.063                  | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Isopropylbenzene          | 98-82-8         | ND                      | 0.0024           | 0.0063                      | 0.025           | < 0.0063                 |                                         |
| p-lsopropyltoluene        | 99-87-6         | ND                      | 0.0044           | 0.012                       | 0.025           | < 0.012                  |                                         |
| Methylene chloride        | 75-09-2         | 0.025                   | 0.016            | 0.042                       | 0.025           | 0.025                    | В                                       |
| 4-Methyl-2-pentanone      | 108-10-1        | ND                      | 0.027            | 0.071                       | 0.10            | < 0.071                  |                                         |
| Naphthalene               | 91-20-3         | ND                      | 0.014            | 0.037                       | 0.025           | < 0.025                  | ,,,                                     |
| n-Propylbenzene           | 103-65-1        | ND                      | 0.0021           | 0.0055                      | 0.025           | < 0.0055                 |                                         |
| Styrene                   | 100-42-5        | ND                      | 0.0026           | 0.0068                      | 0.025           | < 0.0068                 |                                         |
| 1,1,1,2-Tetrachloroethane | 630-20-6        | ND                      | 0.0037           | 0.0097                      | 0.025           | < 0.0097                 |                                         |
| 1,1,2,2-Tetrachloroethane | 79-34-5         | ND                      | 0.0097           | 0.025                       | 0.025           | < 0.025                  |                                         |
| Tetrachloroethene         | 127-18-4        | ND                      | 0.0062           | 0.016                       | 0.025           | < 0.016                  |                                         |
| Toluene                   | 108-88-3        | ND                      | 0.0025           | 0.0066                      | 0.025           | < 0.0066                 |                                         |
| 1,2,3-Trichlorobenzene    | 87-61-6         | ND                      | 0.014            | 0.037                       | 0.025           | < 0.025                  |                                         |
| 1,2,4-Trichlorobenzene    | 120-82-1        | ND                      | 0.013            | 0.034                       | 0.025           | < 0.025                  |                                         |
| 1,1,1-Trichloroethane     | 71-55-6         | ND                      | 0.0082           | 0.022                       | 0.025           | < 0.022                  |                                         |
| 1,1,2-Trichloroethane     | 79-00-5         | ND                      | 0.0070           | 0.018                       | 0.025           | < 0.018                  |                                         |
| Trichloroethene           | 79-01-6         | ND                      | 0.0065           | 0.017                       | 0.025           | < 0.017                  |                                         |
| Trichlorofluoromethane    | 75-69-4         | ND                      | 0.0068           | 0.018                       | 0.050           | < 0.018                  |                                         |
| 1,2,3-Trichloropropane    | 96-18-4         | ND                      | 0.010            | 0.026                       | 0.025           | < 0.025                  |                                         |
| 1,2,4-Trimethylbenzene    | 95-63-6         | ND                      | 0.0029           | 0.0076                      | 0.025           | < 0.0076                 |                                         |

VOST Analytical Results Summary (Continued)
Table A-11. Run 2, VOST Tenax® Tube Pair Field Blank

| Analyte                | CAS<br>Registry<br>Number | Tenax <sup>®</sup> Tube Pair<br>Field Blank<br>(µg/Sample) |                  |                  |                 |                          |                   |  |
|------------------------|---------------------------|------------------------------------------------------------|------------------|------------------|-----------------|--------------------------|-------------------|--|
|                        |                           | Lab Result <sup>1</sup>                                    | MDL <sup>2</sup> | RDL <sup>3</sup> | RL <sup>4</sup> | Risk Result <sup>5</sup> | Flag <sup>6</sup> |  |
| 1,3,5-Trimethylbenzene | 108-67-8                  | ND                                                         | 0.0019           | 0.0050           | 0.025           | < 0.0050                 |                   |  |
| Vinyl chloride         | 75-01-4                   | ND                                                         | 0.0025           | 0.0066           | 0.025           | < 0.0066                 |                   |  |
| m-Xylene & p-Xylene    | 136777-61-2               | ND                                                         | 0.025            | 0.066            | 0.050           | < 0.050                  |                   |  |
| o-Xylene               | 95-47-6                   | ND                                                         | 0.0025           | 0.0066           | 0.025           | < 0.0066                 |                   |  |
|                        |                           |                                                            |                  |                  |                 |                          |                   |  |

### Surrogate Recoveries:

| 50-150% |
|---------|
| 50-150% |
|         |
| 50-150% |
| 50-150% |
| 50-150% |
|         |

### BECHTEL BWXT IDAHO, LLC (BBWI)

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### VOST Analytical Results Summary (Continued) Table A-11. Run 2, VOST Tenax® Tube Pair Field Blank

#### Sample Collection and Analysis Dates:

|                        | Date          |  |  |
|------------------------|---------------|--|--|
| Date(s) Collected:     | June 21, 2001 |  |  |
| Date(s) of Extraction: | July 02, 2001 |  |  |
| Date(s) of Analysis:   | July 02, 2001 |  |  |

#### Sample Collection. Preparation. and Analysis Dates:

SW-846 Method 0031:

"Sampling Method for Volatile Organic Compounds (SMVOC)"

SW-846 Method 5041A:

"Analysis for Desorption of Sorbent Cartridges from Volatile Organic Sampling Train (VOST)"

SW-846 Method 8260B: "Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)"

#### VOST Tentatively Identified Compound (TIC) Summary

| TIC <sup>7</sup>  | CAS<br>Number | Approximate<br>Retention Time<br>(min.) | Sample<br>Result<br>(μg) | TIC<br>Flag <sup>6</sup> |
|-------------------|---------------|-----------------------------------------|--------------------------|--------------------------|
| Hexane, 3-methyl- | 589-34-4      | 4.46                                    | 0.028                    | N,J,M                    |

#### Footnotes:

- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- The RL is the laboratory Reporting Limit (RL).
- Based on the selection rules, the **bolded** value is the value or default value assigned to the analyte using the following guidelines:
  - ♦ When the analytical result is greater than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
  - When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
  - When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the result selected by boldface type is the RDL.
  - ♦ When the analytical result is not detected down to the MDL, the result selected by boldface type is the RDL.
  - It should be noted that when the RDL is selected using the guidelines above, but the RL is less than the RDL, the RL is included as the "Risk Result".
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value
  - ♦ A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
  - A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
  - A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
  - An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral evidence.
  - An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
  - A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

### **VOST Analytical Results Summary** Table A-12. Run 2, VOST Anasorb 747 Tube Field Blank

Field Sample Name: Sample Description: Volatile Organic Sampling Train (VOST)

VOST Anasorb 747 Tube Field Blank for Volatile Organic Compounds Analysis

Field Sample Number(s): STL Sample Number(s).

A-3393 H1F250144-020

|                             | CAS<br>Registry |                         |                  |                  | 747 Tube<br>Blank<br>imple) |                          |                                         |
|-----------------------------|-----------------|-------------------------|------------------|------------------|-----------------------------|--------------------------|-----------------------------------------|
| Analyte                     | Number          | Lab Result <sup>1</sup> | MDL <sup>2</sup> | RDL <sup>3</sup> | RL⁴                         | Risk Result <sup>5</sup> | Flag <sup>6</sup>                       |
| Acetone                     | 67-64-1         | 0.034                   | 0.024            | 0.063            | 0.10                        | < 0.063                  | J,B                                     |
| Acrylonitrile               | 107-13-1        | ND                      | 0.11             | 0.29             | 0.50                        | < 0.29                   |                                         |
| Benzene                     | 71-43-2         | ND                      | 0.0064           | 0.017            | 0.025                       | < 0.017                  |                                         |
| Bromobenzene                | 108-86-1        | ND                      | 0.0039           | 0.010            | 0.025                       | < 0.010                  |                                         |
| Bromochloromethane          | 74-97-5         | ND                      | 0.0056           | 0.015            | 0.025                       | < 0.015                  |                                         |
| Bromodichloromethane        | 75-27-4         | ND                      | 0.0042           | 0.011            | 0.025                       | < 0.011                  |                                         |
| Bromoform                   | 75-25-2         | ND                      | 0.0074           | 0.019            | 0.025                       | < 0.019                  |                                         |
| Bromomethane                | 74-83-9         | ND                      | 0.0059           | 0.015            | 0.050                       | < 0.015                  | *************************************** |
| 2-Butanone                  | 78-93-3         | ND                      | 0.038            | 0.10             | 0.10                        | < 0.10                   |                                         |
| n-Butylbenzene              | 104-51-8        | ND                      | 0.0061           | 0.016            | 0.025                       | < 0.016                  |                                         |
| sec-Butylbenzene            | 135-98-8        | ND                      | 0.0032           | 0.0084           | 0.025                       | < 0.0084                 |                                         |
| tert-Butylbenzene           | 98-06-6         | ND                      | 0.0062           | 0.016            | 0.025                       | < 0.016                  |                                         |
| Carbon disulfide            | 75-15-0         | ND                      | 0.0070           | 0.018            | 0.025                       | < 0.018                  |                                         |
| Carbon tetrachloride        | 56-23-5         | ND                      | 0.0069           | 0.018            | 0.025                       | < 0.018                  |                                         |
| Chlorobenzene               | 108-90-7        | ND                      | 0.0032           | 0.0084           | 0.025                       | < 0.0084                 |                                         |
| Chlorodibromomethane        | 124-48-1        | ND                      | 0.0056           | 0.015            | 0.025                       | < 0.015                  |                                         |
| Chloroethane                | 75-00-3         | ND                      | 0.0068           | 0.018            | 0.050                       | < 0.018                  |                                         |
| Chloroform                  | 67-66-3         | ND                      | 0.0070           | 0.018            | 0.025                       | < 0.018                  |                                         |
| Chloromethane               | 74-87-3         | ND                      | 0.0048           | 0.013            | 0.050                       | < 0.013                  |                                         |
| 2-Chlorotoluene             | 95-49-8         | ND                      | 0.0018           | 0.0047           | 0.025                       | < 0.0047                 |                                         |
| 4-Chlorotoluene             | 106-43-4        | ND                      | 0.0018           | 0.0047           | 0.025                       | < 0.0047                 |                                         |
| 1,2-Dibromo-3-chloropropane | 96-12-8         | ND                      | 0.011            | 0.029            | 0.050                       | < 0.029                  |                                         |
| 1,2-Dibromoethane           | 106-93-4        | ND                      | 0.0075           | 0.020            | 0.025                       | < 0.020                  |                                         |
| Dibromomethane              | 74-95-3         | ND                      | 0.0064           | 0.017            | 0.025                       | < 0.017                  |                                         |
| 1,2-Dichlorobenzene         | 95-50-1         | ND                      | 0.0077           | 0.020            | 0.025                       | < 0.020                  |                                         |
| 1,3-Dichlorobenzene         | 541-73-1        | ND                      | 0.0038           | 0.010            | 0.025                       | < 0.010                  |                                         |
| 1,4-Dichlorobenzene         | 106-46-7        | ND                      | 0.0055           | 0.014            | 0.025                       | < 0.014                  |                                         |
| Dichlorodifluoromethane     | 75-71-8         | ND                      | 0.0051           | 0.013            | 0.025                       | < 0.013                  |                                         |

## VOST Analytical Results Summary (Continued) Table A-12. Run 2, VOST Anasorb 747 Tube Field Blank

|                           | CAS<br>Registry |                         |                  | Field            | 747 Tube<br>Blank<br>ample) |                          |                                         |
|---------------------------|-----------------|-------------------------|------------------|------------------|-----------------------------|--------------------------|-----------------------------------------|
| Analyte                   | Number          | Lab Result <sup>1</sup> | MDL <sup>2</sup> | RDL <sup>3</sup> | RL⁴                         | Risk Result <sup>5</sup> | Flag <sup>6</sup>                       |
|                           |                 |                         |                  |                  |                             |                          |                                         |
| 1,1-Dichloroethane        | 75-34-3         | ND                      | 0.0064           | 0.017            | 0.025                       | < 0.017                  |                                         |
| 1,2-Dichloroethane        | 107-06-2        | ND                      | 0.0066           | 0.017            | 0.025                       | < 0.017                  |                                         |
| 1,1-Dichloroethene        | 75-35-4         | ND                      | 0.0067           | 0.018            | 0.025                       | < 0.018                  |                                         |
| cis-1,2-Dichloroethene    | 156-59-2        | ND                      | 0.0062           | 0.016            | 0.025                       | < 0.016                  |                                         |
| trans-1,2-Dichloroethene  | 156-60-5        | ND                      | 0.0074           | 0.019            | 0.025                       | < 0.019                  |                                         |
| 1,2-Dichloropropane       | 78-87-5         | ND                      | 0.0049           | 0.013            | 0.025                       | < 0.013                  |                                         |
| 1,3-Dichloropropane       | 142-28-9        | ND                      | 0.0073           | 0.019            | 0.025                       | < 0.019                  |                                         |
| 2,2-Dichloropropane       | 594-20-7        | ND                      | 0.0070           | 0.018            | 0.025                       | < 0.018                  |                                         |
| 1,1-Dichloropropene       | 563-58-6        | ND                      | 0.0077           | 0.020            | 0.025                       | < 0.020                  |                                         |
| cis-1,3-Dichloropropene   | 10061-01-5      | ND                      | 0.0046           | 0.012            | 0.025                       | < 0.012                  |                                         |
| trans-1,3-Dichloropropene | 10061-02-6      | ND                      | 0.0059           | 0.015            | 0.025                       | . < 0.015                |                                         |
| Ethylbenzene              | 100-41-4        | ND                      | 0.0035           | 0.0092           | 0.025                       | < 0.0092                 |                                         |
| Hexachlorobutadiene       | 87-68-3         | ND                      | 0.012            | 0.031            | 0.025                       | < 0.025                  |                                         |
| 2-Hexanone                | 591-78-6        | ND                      | 0.024            | 0.063            | 0.10                        | < 0.063                  |                                         |
| Isopropylbenzene          | 98-82-8         | ND                      | 0.0024           | 0.0063           | 0.025                       | < 0.0063                 |                                         |
| p-Isopropyltoluene        | 99-87-6         | ND                      | 0.0044           | 0.012            | 0.025                       | < 0.012                  | *************************************** |
| Methylene chloride        | 75-09-2         | 0.027                   | 0.016            | 0.042            | 0.025                       | 0.027                    | В                                       |
| 4-Methyl-2-pentanone      | 108-10-1        | ND                      | 0.027            | 0.071            | 0.10                        | < 0.071                  |                                         |
| Naphthalene               | 91-20-3         | ND                      | 0.014            | 0.037            | 0.025                       | < 0.025                  |                                         |
| n-Propylbenzene           | 103-65-1        | ND                      | 0.0021           | 0.0055           | 0.025                       | < 0.0055                 |                                         |
| Styrene                   | 100-42-5        | ND                      | 0.0026           | 0.0068           | 0.025                       | < 0.0068                 |                                         |
| 1,1,2-Tetrachloroethane   | 630-20-6        | ND                      | 0.0037           | 0.0097           | 0.025                       | < 0.0097                 |                                         |
| 1,1,2,2-Tetrachloroethane | 79-34-5         | ND                      | 0.0097           | 0.025            | 0.025                       | < 0.025                  |                                         |
| Tetrachloroethene         | 127-18-4        | ND                      | 0.0062           | 0.016            | 0.025                       | < 0.016                  |                                         |
| Toluene                   | 108-88-3        | 0.12                    | 0.0025           | 0.0066           | 0.025                       | 0.12                     |                                         |
| 1,2,3-Trichlorobenzene    | 87-61-6         | ND                      | 0.014            | 0.037            | 0.025                       | < 0.025                  |                                         |
| 1,2,4-Trichlorobenzene    | 120-82-1        | ND                      | 0.013            | 0.034            | 0.025                       | < 0.025                  | *************************************** |
| 1,1,1-Trichloroethane     | 71-55-6         | ND                      | 0.0082           | 0.022            | 0.025                       | < 0.022                  |                                         |
| 1,1,2-Trichloroethane     | 79-00-5         | ND                      | 0.0070           | 0.018            | 0.025                       | < 0.018                  | *************************************** |
| Trichloroethene           | 79-01-6         | ND                      | 0.0065           | 0.017            | 0.025                       | < 0.017                  |                                         |
| Trichlorofluoromethane    | 75-69-4         | ND                      | 0.0068           | 0.018            | 0.050                       | < 0.018                  |                                         |
| 1,2,3-Trichloropropane    | 96-18-4         | ND                      | 0.010            | 0.026            | 0.025                       | < 0.025                  | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 1,2,4-Trimethylbenzene    | 95-63-6         | ND                      | 0.0029           | 0.0076           | 0.025                       | < 0.0076                 |                                         |

VOST Analytical Results Summary (Continued)
Table A-12. Run 2, VOST Anasorb 747 Tube Field Blank

| Analyte                | CAS<br>Registry |                         | Anasorb 747 Tube<br>Field Blank<br>(μg/Sample) |                  |                 |                          |                   |  |
|------------------------|-----------------|-------------------------|------------------------------------------------|------------------|-----------------|--------------------------|-------------------|--|
|                        | Number          | Lab Result <sup>1</sup> | MDL <sup>2</sup>                               | RDL <sup>3</sup> | RL <sup>4</sup> | Risk Result <sup>5</sup> | Flag <sup>6</sup> |  |
| 1,3,5-Trimethylbenzene | 108-67-8        | ND                      | 0.0019                                         | 0.0050           | 0.025           | < 0.0050                 |                   |  |
| Vinyl chloride         | 75-01-4         | ND                      | 0.0025                                         | 0.0066           | 0.025           | < 0.0066                 |                   |  |
| m-Xylene & p-Xylene    | 136777-61-2     | ND                      | 0.025                                          | 0.066            | 0.050           | < 0.050                  |                   |  |
| o-Xylene               | 95-47-6         | ND                      | 0.0025                                         | 0.0066           | 0.025           | < 0.0066                 |                   |  |
|                        |                 |                         |                                                |                  |                 |                          |                   |  |

### Surrogate Recoveries:

| ,2-Dichloroethane-d <sub>4</sub>  | Percent Recovery<br>(%) | Laboratory Recovery<br>Limits<br>(%) |  |
|-----------------------------------|-------------------------|--------------------------------------|--|
| Dibromofluoromethane              | 77%                     | 50-150%                              |  |
| 1,2-Dichloroethane-d <sub>4</sub> | 68%                     | 50-150%                              |  |
| Toluene-d <sub>8</sub>            | 99%                     | 50-150%                              |  |
| Bromofluorobenzene                | 73%                     | 50-150%                              |  |

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

## VOST Analytical Results Summary (Continued) Table A-12. Run 2, VOST Anasorb 747 Tube Field Blank

### Sample Collection and Analysis Dates:

|                        | Date          |
|------------------------|---------------|
| Date(s) Collected:     | June 21, 2001 |
| Date(s) of Extraction: | July 02, 2001 |
| Date(s) of Analysis:   | July 02, 2001 |

### Sample Collection. Preparation. and Analysis Dates:

SW-846 Method 0031:

"Sampling Method for Volatile Organic Compounds (SMVOC)"

SW-846 Method 5041A: SW-846 Method 8260B:

"Analysis for Desorption of Sorbent Cartridges from Volatile Organic Sampling Train (VOST)"

"Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)"

### VOST Tentatively Identified Compound (TIC) Summary

| TIC <sup>7</sup>       | CAS<br>Number | Approximate<br>Retention Time<br>(min.) | Sample<br>Result<br>(µg) | TIC<br>Flag <sup>6</sup> |
|------------------------|---------------|-----------------------------------------|--------------------------|--------------------------|
|                        |               |                                         |                          |                          |
| Cyclohexane, methyl-   | 108-87-2      | 5.32                                    | 0.17                     | N,J,M                    |
| Hexane, 2,4-dimethyl-  | 589-43-5      | 5.40                                    | 0.16                     | N,J,M                    |
| Cyclopentane, ethyl-   | 1640-89-7     | 5.49                                    | 0.044                    | N,J,M                    |
| Pentane, 2,3-dimethyl- | 565-59-3      | 4.36                                    | 0.30                     | N,J,M                    |
| Pentane, 3,3-dimethyl- | 562-49-2      | 4.13                                    | 0.064                    | N,J,M                    |
| Hexane, 2-methyl-      | 591-76-4      | 4.30                                    | 0.26                     | N,J,M                    |

### Footnotes:

- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- The RL is the laboratory Reporting Limit (RL).
- Based on the selection rules, the **bolded** value is the value or default value assigned to the analyte using the following guidelines:
  - ♦ When the analytical result is greater than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
  - When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
  - ♦ When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the result selected by boldface type is the RDL.
  - When the analytical result is not detected down to the MDL, the result selected by boldface type is the RDL.
  - It should be noted that when the RDL is selected using the guidelines above, but the RL is less than the RDL, the RL is included as the "Risk Result".
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value.
  - ♦ A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
  - A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
  - A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
  - An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral evidence.
  - An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
  - A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

### M5 Particulate and Anion Train - Run 1 **Analytical Results Summary** Table A-13. HLLWE Run ID: 0050-STRT-1

Field Sample Name:

M5 HCl/Cl2 and Particulate Train

Sample Description:

Particulate Filter and Acetone Probe Rinse Samples for Particulate Determination

Field Sample Number(s):

A-3308 and A-3309

STL Sample No.:

H1F210104-001 and H1F210104-002

| Analyte     | Particulate Filter | Acetone Probe Rinse | Particulate <sup>1</sup>  |
|-------------|--------------------|---------------------|---------------------------|
|             | Particulate Weight | Particulate Weight  | Total                     |
|             | (µg)               | (µg)                | (Total µg of Particulate) |
| Particulate | 100 B              | 3,400               | 3,500 B                   |

Field Sample Name:

M5 HCl/Cl<sub>2</sub> and Particulate Train

Sample Description:

0.1N H<sub>2</sub>SO<sub>4</sub> Impinger Solution for Chloride, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3310

STL Sample No.:

H1F210104-003

| Analyte                                      | Laboratory<br>Result <sup>2</sup><br>(Total mg) | $MDL^3$ | $RDL^4$ | RL <sup>5</sup> | Risk<br>Result<br>(Total mg) <sup>6</sup> | Flag <sup>7</sup> |
|----------------------------------------------|-------------------------------------------------|---------|---------|-----------------|-------------------------------------------|-------------------|
| Chloride (as HCl) <sup>8</sup>               | 1.9                                             | 1.7     | 4.5     | 2.9             | < 2.9                                     | В                 |
| Fluoride (as HF) <sup>9</sup>                | ND                                              | 0.075   | 0.20    | 1.5             | < 0.20                                    |                   |
| Nitrate (as HNO <sub>3</sub> ) <sup>10</sup> | 11                                              | 0.072   | 0.19    | 0.72            | 11                                        |                   |
| Nitrite (as HNO <sub>2</sub> ) <sup>11</sup> | ND                                              | 0.073   | 0.19    | 0.73            | < 0.19                                    |                   |

### M5 Particulate and Anion Train - Run 1 **Analytical Results Summary (Continued)** Table A-13. HLLWE Run ID: 0050-STRT-1

Field Sample Name:

M5 HCl/Cl<sub>2</sub> and Particulate Train

Sample Description:

0.1N NaOH Impinger Solution for Chlorine, Fluoride, Nitrate, and Nitrite Analysis

Flag <sup>7</sup>

Field Sample Number(s):

A-3311 STL Sample No.:

H1F210104-004

| Analyte                           | Laboratory<br>Result <sup>2</sup><br>(Total mg) | $MDL^3$ | RDL⁴ | RL <sup>5</sup> | Risk<br>Result<br>(Total mg) <sup>6</sup> |
|-----------------------------------|-------------------------------------------------|---------|------|-----------------|-------------------------------------------|
| Chlorine (as Cl <sub>2</sub> ) 12 | ND                                              | 0.16    | 0.42 | 0.29            | < 0.29                                    |

|   | Chlorine (as Cl <sub>2</sub> ) <sup>12</sup> | ND   | 0.16  | 0.42  | 0.29 | < 0.29 |  |
|---|----------------------------------------------|------|-------|-------|------|--------|--|
|   | Fluoride (as HF) <sup>9</sup>                | ND   | 0.075 | 0.20  | 1.5  | < 0.20 |  |
|   | Nitrate (as HNO <sub>3</sub> ) 10            | 0.85 | 0.014 | 0.037 | 0.14 | 0.85   |  |
| , | Nitrite (as HNO <sub>2</sub> ) 11            | 1.4  | 0.073 | 0.19  | 0.73 | 1.4    |  |
|   |                                              |      |       |       |      |        |  |

### Sample Collection and Analysis Dates:

|                                      | Particulate Acetone Filter Probe Rinse |                  | 0.1N H <sub>2</sub> SO <sub>4</sub> Impinger<br>Composite | 0.1N NaOH Impinger<br>Composite |  |
|--------------------------------------|----------------------------------------|------------------|-----------------------------------------------------------|---------------------------------|--|
| Date(s) Collected:                   | June 07, 2001                          | June 07, 2001    | June 07, 2001                                             | June 07, 2001                   |  |
| Date(s) of Preparation-<br>Analysis: | June 22-26, 2001                       | June 25-26, 2001 | June 29, 2001                                             | July 02, 2001                   |  |

### Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056: "Determination of Inorganic Anions by Ion Chromatography"

### BECHTEL BWXT IDAHO, LLC (BBWI) INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### M5 Particulate and Anion Train - Run 1 Analytical Results Summary (Continued) Table A-13. HLLWE Run ID: 0050-STRT-1

### Footnotes:

1 The Total M-5 Particulate result is the sum of the acetone probe rinse particulate weight and the particulate filter particulate weight.

<sup>2</sup> This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).

<sup>3</sup> This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

<sup>5</sup> The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:

- When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
- When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
- ♦ When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.
- When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.
- <sup>7</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.
     A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.
- The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

Total mg (HCI) = mg of Cl<sup>-</sup> 
$$\times \frac{(36.46 \text{ mg HCl})}{(35.45 \text{ mg Cl}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl' in mg/mg-mole.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-13. 0050-STRT-1.DOC Last printed on 2/5/2002 10:50 AM2/5/2002 at 10:50 AM

### M5 Particulate and Anion Train - Run 1 Analytical Results Summary (Continued) Table A-13. HLLWE Run ID: 0050-STRT-1

The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg(HF) = mg of F<sup>-</sup> 
$$\times \frac{(20.01 \text{ mgHF})}{(19.00 \text{ mgF}^-)}$$

Where: 20.01 = the molecular weight of HF in mg/mg-mole and 19.00 = the atomic weight of F in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO<sub>3</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>3</sub>) = mg of NO<sub>3</sub><sup>-</sup> × 
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3^-)}$$

Where: 63.01 = the molecular weight of HNO<sub>3</sub> in mg/mg-mole and 62.00 = the molecular weight of NO<sub>3</sub> in mg/mg-mole.

11 The calculation of the total milligrams (mg) of HNO<sub>2</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>2</sub>) = mg of NO<sub>2</sub><sup>-</sup> × 
$$\frac{(47.01 \text{ mg HNO}_2)}{(46.01 \text{ mg NO}_2^-)}$$

Where: 47.01 = the molecular weight of HNO<sub>2</sub> in mg/mg-mole and 46.01 = the molecular weight of NO<sub>2</sub> in mg/mg-mole.

No additional calculation was required to be performed to obtain the total milligrams (mg) of Cl<sub>2</sub> in the NaOH Impinger Composite. Note that the NaOH Impingers were treated with NaS<sub>2</sub>O<sub>3</sub> prior to the analysis of chlorine.

### M5 Particulate and Anion Train - Run 3 **Analytical Results Summary** Table A-14. HLLWE Run ID: 0050-END-1

Field Sample Name:

M5 HCl/Cl2 and Particulate Train

Sample Description:

Particulate Filter and Acetone Probe Rinse Samples for Particulate Determination

Field Sample Number(s):

A-3338 and A-3339

STL Sample No.:

H1F210104-018 and H1F210104-019

| Analyte     | Particulate Filter | Acetone Probe Rinse | Particulate <sup>1</sup>  |
|-------------|--------------------|---------------------|---------------------------|
|             | Particulate Weight | Particulate Weight  | Total                     |
|             | (µg)               | (µg)                | (Total μg of Particulate) |
| Particulate | 300 B              | 2,600               | 2,900 В                   |

Field Sample Name:

M5 HCl/Cl2 and Particulate Train

Sample Description:

0.1N H<sub>2</sub>SO<sub>4</sub> Impinger Solution for Chloride, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3340

STL Sample No.:

H1F210104-020

| Analyte                                      | Laboratory<br>Result <sup>2</sup><br>(Total mg) | $MDL^3$ | RDL⁴ | RL <sup>5</sup> | Risk<br>Result<br>(Total mg) <sup>6</sup> | Flag <sup>7</sup> |
|----------------------------------------------|-------------------------------------------------|---------|------|-----------------|-------------------------------------------|-------------------|
| Chloride (as HC!) <sup>8</sup>               | 2.1                                             | 1.7     | 4.4  | 2.9             | < 2.9                                     | В                 |
| Fluoride (as HF) <sup>9</sup>                | ND                                              | 0.075   | 0.20 | 1.5             | < 0.20                                    |                   |
| Nitrate (as HNO <sub>3</sub> ) <sup>10</sup> | 9.8                                             | 0.072   | 0.19 | 0.72            | 9.8                                       |                   |
| Nitrite (as HNO <sub>2</sub> ) 11            | ND                                              | 0.073   | 0.19 | 0.73            | < 0.19                                    |                   |

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### M5 Particulate and Anion Train - Run 3 **Analytical Results Summary (Continued)** Table A-14. HLLWE Run ID: 0050-END-1

Field Sample Name:

M5 HCl/Cl2 and Particulate Train

Sample Description:

0.1N NaOH Impinger Solution for Chlorine, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3341

H1F210104-021 STL Sample No.:

| Analyte                                      | Laboratory<br>Result <sup>2</sup><br>(Total mg) | $MDL^3$ | RDL⁴  | RL <sup>5</sup> | Risk<br>Result<br>(Total mg) <sup>6</sup> | Flag <sup>7</sup> |
|----------------------------------------------|-------------------------------------------------|---------|-------|-----------------|-------------------------------------------|-------------------|
| Chlorine (as Cl <sub>2</sub> ) <sup>12</sup> | 0.42                                            | 0.32    | 0.85  | 0.57            | < 0.57                                    | В                 |
| Fluoride (as HF) <sup>9</sup>                | ND                                              | 0.075   | 0.20  | 1.5             | < 0.20                                    |                   |
| Nitrate (as HNO <sub>3</sub> ) <sup>10</sup> | 0.61                                            | 0.014   | 0.038 | 0.14            | 0.61                                      |                   |
| Nitrite (as HNO <sub>2</sub> ) 11            | 3.6                                             | 0.029   | 0.076 | 0.29            | 3.6                                       |                   |

### Sample Collection and Analysis Dates:

|                                            | Particulate<br>Filter           | Acetone<br>Probe Rinse         | 0.1N H <sub>2</sub> SO <sub>4</sub> Impinger<br>Composite | 0.1N NaOH Impinger<br>Composite |  |
|--------------------------------------------|---------------------------------|--------------------------------|-----------------------------------------------------------|---------------------------------|--|
| Date(s) Collected: Date(s) of Preparation- | June 07, 2001  June 22-26, 2001 | June 07, 2001 June 25-26, 2001 | June 07, 2001  June 29, 2001                              | June 07, 2001 July 02, 2001     |  |
| Analysis:                                  | June 22-20, 2001                | Julie 25-20, 2001              | June 27, 2001                                             | July 02, 2001                   |  |

### Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056: "Determination of Inorganic Anions by Ion Chromatography"

### M5 Particulate and Anion Train - Run 3 Analytical Results Summary (Continued) Table A-14. HLLWE Run ID: 0050-END-1

### Footnotes:

The Total M-5 Particulate result is the sum of the acetone probe rinse particulate weight and the particulate filter particulate weight.

This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).

This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

<sup>5</sup> The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:

• When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.

• When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.

• When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.

• When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.

• It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.

<sup>7</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:

A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.
 A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.

The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

Total mg (HCl) = mg of Cl<sup>-</sup> 
$$\times \frac{(36.46 \text{ mg HCl})}{(35.45 \text{ mg Cl}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl in mg/mg-mole.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-14. 0050-END-1.DOC Last printed on 2/5/2002 11:11 AM2/5/2002 at 11:11 AM

### M5 Particulate and Anion Train - Run 3 Analytical Results Summary (Continued) Table A-14. HLLWE Run ID: 0050-END-1

<sup>9</sup> The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg(HF) = mg of F 
$$\times \frac{(20.01 \text{ mgHF})}{(19.00 \text{mgF})}$$

Where: 20.01 = the molecular weight of HF in mg/mg-mole and 19.00 = the atomic weight of F in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO<sub>3</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>3</sub>) = mg of NO<sub>3</sub><sup>-</sup> × 
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3^-)}$$

Where: 63.01 = the molecular weight of HNO<sub>3</sub> in mg/mg-mole and 62.00 = the molecular weight of NO<sub>3</sub> in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO<sub>2</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>2</sub>) = mg of NO<sub>2</sub><sup>-</sup> × 
$$\frac{(47.01 \text{ mg HNO}_2)}{(46.01 \text{ mg NO}_2)}$$

Where: 47.01 = the molecular weight of HNO<sub>2</sub> in mg/mg-mole and 46.01 = the molecular weight of NO<sub>2</sub> in mg/mg-mole.

No additional calculation was required to be performed to obtain the total milligrams (mg) of Cl<sub>2</sub> in the NaOH Impinger Composite. Note that the NaOH Impingers were treated with NaS<sub>2</sub>O<sub>3</sub> prior to the analysis of chlorine.

## M5 Particulate and Anion Train - Run 2 Analytical Results Summary Table A-15. HLLWE Run ID: 0050-STRT-2

Field Sample Name:

M5 HCl/Cl<sub>2</sub> and Particulate Train

Sample Description:

Particulate Filter and Acetone Probe Rinse Samples for Particulate Determination

Field Sample Number(s):

A-3312 and A-3313

STL Sample No.:

H1F210104-005 and H1F210104-006

| Analyte     | Particulate Filter | Acetone Probe Rinse | Particulate <sup>1</sup>  |
|-------------|--------------------|---------------------|---------------------------|
|             | Particulate Weight | Particulate Weight  | Total                     |
|             | (μg)               | (µg)                | (Total µg of Particulate) |
| Particulate | 600                | 500                 | 1,100                     |

Field Sample Name:

M5 HCl/Cl<sub>2</sub> and Particulate Train

Sample Description:

0.1N H<sub>2</sub>SO<sub>4</sub> Impinger Solution for Chloride, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3314

STL Sample No.:

H1F210104-007

| Analyte                                      | Laboratory<br>Result <sup>2</sup><br>(Total mg) | $MDL^3$ | RDL⁴ | RL <sup>5</sup> | Risk<br>Result<br>(Total mg) <sup>6</sup> | Flag <sup>7</sup> |
|----------------------------------------------|-------------------------------------------------|---------|------|-----------------|-------------------------------------------|-------------------|
| Chloride (as HCl) <sup>8</sup>               | 1.7                                             | 1.6     | 4.3  | 2.9             | < 2.9                                     | В                 |
| Fluoride (as HF) <sup>9</sup>                | ND                                              | 0.074   | 0.19 | 1.5             | < 0.19                                    |                   |
| Nitrate (as HNO <sub>3</sub> ) <sup>10</sup> | 8.4                                             | 0.071   | 0.19 | 0.71            | 8.4                                       |                   |
| Nitrite (as HNO <sub>2</sub> ) <sup>11</sup> | ND                                              | 0.14    | 0.38 | 1.4             | < 0.38                                    |                   |

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### M5 Particulate and Anion Train - Run 2 **Analytical Results Summary (Continued)** Table A-15. HLLWE Run ID: 0050-STRT-2

Field Sample Name:

M5 HCl/Cl2 and Particulate Train

Sample Description:

0.1N NaOH Impinger Solution for Chlorine, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3315

STL Sample No.:

H1F210104-008

| Analyte                                      | Laboratory<br>Result <sup>2</sup><br>(Total mg) | MDL <sup>3</sup> | RDL⁴  | RL <sup>5</sup> | Risk<br>Result<br>(Total mg) <sup>6</sup> | Flag <sup>7</sup> |
|----------------------------------------------|-------------------------------------------------|------------------|-------|-----------------|-------------------------------------------|-------------------|
| Chlorine (as Cl <sub>2</sub> ) <sup>12</sup> | ND                                              | 0.16             | 0.42  | 0.28            | < 0.28                                    |                   |
| Fluoride (as HF) <sup>9</sup>                | ND                                              | 0.074            | 0.19  | 1.5             | < 0.19                                    |                   |
| Nitrate (as HNO <sub>3</sub> ) <sup>10</sup> | 0.22                                            | 0.014            | 0.037 | 0.14            | 0.22                                      |                   |
| Nitrite (as HNO <sub>2</sub> ) 11            | 1.2                                             | 0.029            | 0.075 | 0.29            | 1.2                                       |                   |

### Sample Collection and Analysis Dates:

|                                      | Particulate<br>Filter |                  | 0.1N H <sub>2</sub> SO <sub>4</sub> Impinger<br>Composite | 0.1N NaOH Impinger<br>Composite |
|--------------------------------------|-----------------------|------------------|-----------------------------------------------------------|---------------------------------|
| Date(s) Collected:                   | June 11, 2001         | June 11, 2001    | June 11, 2001                                             | June 11, 2001                   |
| Date(s) of Preparation-<br>Analysis: | June 22-26, 2001      | June 25-26, 2001 | June 29, 2001                                             | July 05, 2001                   |

### Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056: "Determination of Inorganic Anions by Ion Chromatography"

### M5 Particulate and Anion Train - Run 2 Analytical Results Summary (Continued) Table A-15. HLLWE Run ID: 0050-STRT-2

The Total M-5 Particulate result is the sum of the acetone probe rinse particulate weight and the particulate filter particulate weight.

This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).

This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

<sup>5</sup> The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:

• When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.

• When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.

• When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.

• When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.

• It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.

<sup>7</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:

A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.
 A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.

<sup>8</sup> The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

Total mg (HCI) = mg of Cl<sup>-</sup> 
$$\times \frac{(36.46 \text{ mg HCl})}{(35.45 \text{ mg Cl}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl in mg/mg-mole.

### M5 Particulate and Anion Train - Run 2 Analytical Results Summary (Continued) Table A-15. HLLWE Run ID: 0050-STRT-2

The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg(HF) = mg of F<sup>-</sup> 
$$\times \frac{(20.01 \text{ mgHF})}{(19.00 \text{ mgF}^-)}$$

Where: 20.01 = the molecular weight of HF in mg/mg-mole and 19.00 = the atomic weight of F<sup>-</sup> in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO<sub>3</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>3</sub>) = mg of NO<sub>3</sub><sup>-</sup> × 
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3^-)}$$

Where: 63.01 = the molecular weight of HNO<sub>3</sub> in mg/mg-mole and 62.00 = the molecular weight of NO<sub>3</sub> in mg/mg-mole.

11 The calculation of the total milligrams (mg) of HNO<sub>2</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>2</sub>) = mg of NO<sub>2</sub><sup>-</sup> × 
$$\frac{(47.01 \text{ mg HNO}_2)}{(46.01 \text{ mg NO}_2)}$$

Where: 47.01 = the molecular weight of HNO<sub>2</sub> in mg/mg-mole and 46.01 = the molecular weight of NO<sub>2</sub> in mg/mg-mole.

No additional calculation was required to be performed to obtain the total milligrams (mg) of Cl<sub>2</sub> in the NaOH Impinger Composite. Note that the NaOH Impingers were treated with NaS<sub>2</sub>O<sub>3</sub> prior to the analysis of chlorine.

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

## M5 Particulate and Anion Train - Run 4 Analytical Results Summary Table A-16. HLLWE Run ID: 0050-END-2

Field Sample Name:

M5 HCl/Cl<sub>2</sub> and Particulate Train

Sample Description:

Particulate Filter and Acetone Probe Rinse Samples for Particulate Determination

Field Sample Number(s):

A-3342 and A-3343

STL Sample No.:

H1F210104-022 and H1F210104-023

| Analyte     | Particulate Filter | Acetone Probe Rinse | Particulate <sup>1</sup>  |
|-------------|--------------------|---------------------|---------------------------|
|             | Particulate Weight | Particulate Weight  | Total                     |
|             | (µg)               | (µg)                | (Total µg of Particulate) |
| Particulate | 700                | 100 B               | 800 B                     |

Field Sample Name:

M5 HCl/Cl2 and Particulate Train

Sample Description:

0.1N H<sub>2</sub>SO<sub>4</sub> Impinger Solution for Chloride, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3344

STL Sample No.:

H1F210104-024

| Analyte                                      | Laboratory<br>Result <sup>2</sup><br>(Total mg) | MDL <sup>3</sup> | $\mathrm{RDL}^4$ | RL <sup>5</sup> | Risk<br>Result<br>(Total mg) <sup>6</sup> | Flag <sup>7</sup> |
|----------------------------------------------|-------------------------------------------------|------------------|------------------|-----------------|-------------------------------------------|-------------------|
| Chloride (as HCl) <sup>8</sup>               | 1.8                                             | 1.6              | 4.3              | 2.9             | < 2.9                                     | В                 |
| Fluoride (as HF) <sup>9</sup>                | ND                                              | 0.074            | 0.19             | 1.5             | < 0.19                                    |                   |
| Nitrate (as HNO <sub>3</sub> ) <sup>10</sup> | 6.6                                             | 0.071            | 0.19             | 0.71            | 6.6                                       |                   |
| Nitrite (as HNO <sub>2</sub> ) <sup>11</sup> | ND                                              | 0.14             | 0.38             | 1.4             | < 0.38                                    |                   |

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### M5 Particulate and Anion Train - Run 4 Analytical Results Summary (Continued) Table A-16. HLLWE Run ID: 0050-END-2

Field Sample Name:

M5 HCl/Cl<sub>2</sub> and Particulate Train

Sample Description:

0.1N NaOH Impinger Solution for Chlorine, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s): A-3345

STL Sample No.:

H1F210104-025

| Analyte                           | Laboratory<br>Result <sup>2</sup><br>(Total mg) | MDL <sup>3</sup> | RDL⁴  | RL <sup>5</sup> | Risk<br>Result<br>(Total mg) <sup>6</sup> | Flag <sup>7</sup> |
|-----------------------------------|-------------------------------------------------|------------------|-------|-----------------|-------------------------------------------|-------------------|
| Chlorine (as Cl <sub>2</sub> ) 12 | ND                                              | 0.16             | 0.42  | 0.29            | < 0.29                                    |                   |
| Fluoride (as HF) <sup>9</sup>     | ND                                              | 0.075            | 0.20  | 1.5             | < 0.20                                    |                   |
| Nitrate (as HNO <sub>3</sub> ) 10 | 0.51                                            | 0.014            | 0.038 | 0.14            | 0.51                                      |                   |
| Nitrite (as HNO <sub>2</sub> ) 11 | 2.7                                             | 0.015            | 0.038 | 0.15            | 2.7                                       |                   |

### Sample Collection and Analysis Dates:

|                                                      | Particulate                     | Acetone                        | 0.1N H <sub>2</sub> SO <sub>4</sub> Impinger | 0.1N NaOH Impinger          |
|------------------------------------------------------|---------------------------------|--------------------------------|----------------------------------------------|-----------------------------|
|                                                      | Filter                          | Probe Rinse                    | Composite                                    | Composite                   |
| Date(s) Collected: Date(s) of Preparation- Analysis: | June 11, 2001  June 22-26, 2001 | June 11, 2001 June 25-26, 2001 | June 11, 2001 June 29, 2001                  | June 11, 2001 July 05, 2001 |

### Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056:

"Determination of Inorganic Anions by Ion Chromatography"

### M5 Particulate and Anion Train - Run 4 Analytical Results Summary (Continued) Table A-16. HLLWE Run ID: 0050-END-2

### Footnotes:

The Total M-5 Particulate result is the sum of the acetone probe rinse particulate weight and the particulate filter particulate weight.

- This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.
- <sup>4</sup> The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.
- The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.
- The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:
  - ♦ When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
  - When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
  - ♦ When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.
  - When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.
  - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - ♦ A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.

    A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.
- The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

Total mg (HCI) = mg of CI<sup>-</sup> 
$$\times \frac{(36.46 \text{ mg HCI})}{(35.45 \text{ mg CI}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl in mg/mg-mole.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HIL\WE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-16. 0050-END-2.DOC Last printed on 2/5/2002 11:16 AM2/5/2002 at 11:16 AM

<sup>&</sup>lt;sup>2</sup> This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### M5 Particulate and Anion Train - Run 4 Analytical Results Summary (Continued) Table A-16. HLLWE Run ID: 0050-END-2

The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg(HF) = mg of F 
$$\times \frac{(20.01 \,\text{mgHF})}{(19.00 \,\text{mgF})}$$

Where: 20.01 = the molecular weight of HF in mg/mg-mole and

19.00 = the atomic weight of F in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO<sub>3</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>3</sub>) = mg of NO<sub>3</sub><sup>-</sup> × 
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3^-)}$$

Where: 63.01 = the molecular weight of HNO<sub>3</sub> in mg/mg-mole and

62.00 = the molecular weight of NO<sub>3</sub> in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO<sub>2</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>2</sub>) = mg of NO<sub>2</sub><sup>-</sup> × 
$$\frac{(47.01 \text{ mg HNO}_2)}{(46.01 \text{ mg NO}_2)}$$

Where: 47.01 = the molecular weight of HNO<sub>2</sub> in mg/mg-mole and

46.01 = the molecular weight of NO<sub>2</sub> in mg/mg-mole.

No additional calculation was required to be performed to obtain the total milligrams (mg) of Cl<sub>2</sub> in the NaOH Impinger Composite. Note that the NaOH Impingers were treated with NaS<sub>2</sub>O<sub>3</sub> prior to the analysis of chlorine.

### Table A-17. M5 Particulate and Anion Train - Run 2 Reagent Blanks **Analytical Results Summary**

Field Sample Name:

M5 HCl/Cl<sub>2</sub> and Particulate Train Reagent Blanks

Sample Description:

Particulate Filter and Acetone Probe Rinse Reagent Blanks for Particulate Determination

Field Sample Number(s):

A-3316 and A-3317

STL Sample No.:

H1F210104-009 and H1F210104-010

| Analyte     | Particulate Filter | Acetone Probe Rinse | Particulate <sup>1</sup>  |  |
|-------------|--------------------|---------------------|---------------------------|--|
|             | Particulate Weight | Particulate Weight  | Total                     |  |
|             | (µg)               | (µg)                | (Total µg of Particulate) |  |
| Particulate | 500 U              | 500 U               | 1,000 U                   |  |

Field Sample Name:

M5 HCl/Cl<sub>2</sub> and Particulate Train Reagent Blanks

Sample Description: Field Sample Number(s): 0.1N H<sub>2</sub>SO<sub>4</sub> Impinger Solution Reagent Blanks for Chloride, Fluoride, Nitrate, and Nitrite Analysis

A-3318

STL Sample No.:

H1F210104-011

| Analyte                                      | Laboratory<br>Result <sup>2</sup><br>(Total mg) | $MDL^3$ | RDL⁴  | RL <sup>5</sup> | Risk<br>Result<br>(Total mg) <sup>6</sup> | Flag <sup>7</sup> |
|----------------------------------------------|-------------------------------------------------|---------|-------|-----------------|-------------------------------------------|-------------------|
| Chloride (as HCl) <sup>8</sup>               | 1.6                                             | 1.2     | 3.0   | 2.0             | < 2.0                                     | В                 |
| Fluoride (as HF) <sup>9</sup>                | ND                                              | 0.052   | 0.14  | 1.0             | < 0.14                                    |                   |
| Nitrate (as HNO <sub>3</sub> ) <sup>10</sup> | ND                                              | 0.020   | 0.053 | 0.20            | < 0.053                                   |                   |
| Nitrite (as HNO <sub>2</sub> ) <sup>11</sup> | ND                                              | 0.10    | 0.27  | 1.0             | < 0.27                                    |                   |

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

## Table A-17. M5 Particulate and Anion Train - Run 2 Reagent Blanks Analytical Results Summary (Continued)

Field Sample Name:

M5  $HCl/Cl_2$  and Particulate Train Reagent Blanks

Sample Description:

0.1N NaOH Impinger Solution Reagent Blanks for Chlorine, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3319

STL Sample No.:

H1F210104-012

| Analyte                                      | Laboratory<br>Result <sup>2</sup><br>(Total mg) | $MDL^3$ | RDL⁴  | RL <sup>5</sup> | Risk<br>Result<br>(Total mg) <sup>6</sup> | Flag <sup>7</sup> |
|----------------------------------------------|-------------------------------------------------|---------|-------|-----------------|-------------------------------------------|-------------------|
| Chlorine (as Cl <sub>2</sub> ) 12            | ND                                              | 0.11    | 0.30  | 0.20            | < 0.20                                    |                   |
| Fluoride (as HF) <sup>9</sup>                | ND                                              | 0.11    | 0.28  | 2.1             | < 0.28                                    |                   |
| Nitrate (as HNO <sub>3</sub> ) <sup>10</sup> | 0.012                                           | 0.010   | 0.027 | 0.10            | < 0.027                                   | В                 |
| Nitrite (as HNO <sub>2</sub> ) 11            | ND                                              | 0.010   | 0.027 | 0.10            | < 0.027                                   |                   |

### Sample Collection and Analysis Dates:

|                                                     | Particulate                       | Acetone                        | 0.1N H <sub>2</sub> SO <sub>4</sub> Impinger | 0.1N NaOH Impinger             |
|-----------------------------------------------------|-----------------------------------|--------------------------------|----------------------------------------------|--------------------------------|
|                                                     | Filter                            | Probe Rinse                    | Composite                                    | Composite                      |
| Date(s) Collected: Date(s) of Preparation-Analysis: | June 11, 2001<br>June 22-26, 2001 | June 11, 2001 June 25-26, 2001 | June 11, 2001 June 29, 2001                  | June 11, 2001<br>July 05, 2001 |

### Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056:

"Determination of Inorganic Anions by Ion Chromatography"

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-17. 0050-STRT-2 RBS.DOC

Last printed on 2/5/2002 12:07 PM2/5/2002 at 12:07 PM

## Table A-17. M5 Particulate and Anion Train - Run 2 Reagent Blanks Analytical Results Summary (Continued)

### Footnotes:

<sup>1</sup> The Total M-5 Particulate result is the sum of the acetone probe rinse particulate weight and the particulate filter particulate weight.

- <sup>2</sup> This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).
- This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.
- <sup>5</sup> The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.
- The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:
  - When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
  - When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
  - When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.
  - When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.
  - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.

    A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.
- The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

Total mg (HCI) = mg of CI<sup>-</sup> 
$$\times \frac{(36.46 \text{ mg HCI})}{(35.45 \text{ mg CI}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl<sup>-</sup> in mg/mg-mole.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-17. 0050-STRT-2 RBS.DOC

Last printed on 2/5/2002 12:07 PM2/5/2002 at 12:07 PM

## Table A-17. M5 Particulate and Anion Train - Run 2 Reagent Blanks Analytical Results Summary (Continued)

The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg<sub>(HF)</sub> = mg of F<sup>-</sup> 
$$\times \frac{(20.01 \text{ mgHF})}{(19.00 \text{ mgF}^-)}$$

Where: 20.01 = the molecular weight of HF in mg/mg-mole and

 $19.00 = \text{the atomic weight of } F^{-} \text{ in mg/mg-mole.}$ 

The calculation of the total milligrams (mg) of HNO<sub>3</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>3</sub>) = mg of NO<sub>3</sub><sup>-</sup> × 
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3^-)}$$

Where: 63.01 = the molecular weight of HNO<sub>3</sub> in mg/mg-mole and

62.00 = the molecular weight of  $NO_3$  in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO<sub>2</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>2</sub>) = mg of NO<sub>2</sub><sup>-</sup> × 
$$\frac{(47.01 \text{ mg HNO}_2)}{(46.01 \text{ mg NO}_2^-)}$$

Where: 47.01 = the molecular weight of HNO<sub>2</sub> in mg/mg-mole and

46.01 = the molecular weight of  $NO_2$  in mg/mg-mole.

No additional calculation was required to be performed to obtain the total milligrams (mg) of Cl<sub>2</sub> in the NaOH Impinger Composite. Note that the NaOH Impingers were treated with NaS<sub>2</sub>O<sub>3</sub> prior to the analysis of chlorine.

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### Table A-18. M5 Particulate and Anion Train Run 2 INTEC Deionized Water Reagent Blank **Analytical Results Summary**

Field Sample Name:

M5 HCl/Cl<sub>2</sub> and Particulate Train INTEC D.I. Water Reagent Blank

Sample Description:

INTEC D.I. Water Reagent Blank for Chloride, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3349

STL Sample No.:

H1F210104-013

| Analyte                                       | Laboratory<br>Result <sup>1</sup><br>(Total mg) | MDL <sup>2</sup> | RDL <sup>3</sup> | $\mathbf{RL}^4$ | Risk<br>Result<br>(Total mg) <sup>5</sup> | Flag <sup>6</sup> |
|-----------------------------------------------|-------------------------------------------------|------------------|------------------|-----------------|-------------------------------------------|-------------------|
| Chloride (as HCl) <sup>7</sup>                | ND                                              | 0.060            | 0.16             | 0.10            | < 0.10                                    |                   |
| Fluoride (as HF) <sup>8</sup>                 | ND                                              | 0.0054           | 0.014            | 0.11            | < 0.014                                   |                   |
| Nitrate (as HNO <sub>3</sub> ) <sup>9</sup>   | 0.0058                                          | 0.0052           | 0.014            | 0.052           | < 0.014                                   | В                 |
| Nitrite (as HNO <sub>2</sub> ) <sup>-10</sup> | ND                                              | 0.01             | 0.014            | 0.052           | < 0.014                                   |                   |

### Sample Collection and Analysis Dates:

| Date(s) Collected:               | June 11, 2001 |
|----------------------------------|---------------|
| Date(s) of Preparation-Analysis: | June 29, 2001 |
|                                  |               |

### Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056: "Determination of Inorganic Anions by Ion Chromatography"

### Table A-18. M5 Particulate and Anion Train Run 2 INTEC Deionized Water Reagent Blank Analytical Results Summary (Continued)

### Footnotes:

This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).

This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl<sub>2</sub>, HCl, HF, HNO<sub>3</sub>, or HNO<sub>2</sub>, as appropriate.

The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:

- ♦ When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
- When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
- When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.
- When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.
- <sup>6</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.

    A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.

<sup>7</sup> The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

Total mg(HCl) = mg of Cl<sup>-</sup> × 
$$\frac{(36.46 \text{ mg HCl})}{(35.45 \text{ mg Cl}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl<sup>-</sup> in mg/mg-mole.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-18. 0050-STRT- DI H20 RB DOC

Last printed on 2/5/2002 12:12 PM2/5/2002 at 12:12 PM

### INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### Table A-18. M5 Particulate and Anion Train Run 2 INTEC Deionized Water Reagent Blank Analytical Results Summary (Continued)

<sup>8</sup> The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg(HF) = mg of F<sup>-</sup> 
$$\times \frac{(20.01 \text{ mgHF})}{(19.00 \text{ mgF}^-)}$$

Where: 20.01 = the molecular weight of HF in mg/mg-mole and

19.00 = the atomic weight of F in mg/mg-mole.

<sup>9</sup> The calculation of the total milligrams (mg) of HNO<sub>3</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>3</sub>) = mg of NO<sub>3</sub><sup>-</sup> × 
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3^-)}$$

Where: 63.01 = the molecular weight of HNO<sub>3</sub> in mg/mg-mole and

62.00 = the molecular weight of NO<sub>3</sub> in mg/mg-mole.

<sup>10</sup> The calculation of the total milligrams (mg) of HNO<sub>2</sub> in the Impinger Composite is as follows:

Total mg(HNO<sub>2</sub>) = mg of NO<sub>2</sub> × 
$$\frac{(47.01 \text{ mg HNO}_2)}{(46.01 \text{ mg NO}_2)}$$

Where: 47.01 = the molecular weight of HNO<sub>2</sub> in mg/mg-mole and

46.01 = the molecular weight of  $NO_2$  in mg/mg-mole.

| , |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### Table A-19. M5 Particulate and Anion Train Final Acetone Probe Rinse Analytical Results Summary

Field Sample Name: Sample Description:

M5 HCl/Cl<sub>2</sub> and Particulate Train Final Acetone Probe Rinse Final Acetone Probe Rinse for Particulate Determination

Field Sample Number(s):

A-3346

STL Sample No.:

H1G030222-001

| Analyte     | Final Acetone Probe Rinse<br>Particulate Weight<br>(µg) <sup>I</sup> |
|-------------|----------------------------------------------------------------------|
| Particulate | 6,200                                                                |

| Final Acetone Probe Rinse |
|---------------------------|
| June 25, 2001             |
| July 03-06, 2001          |
|                           |

### Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056:

"Determination of Inorganic Anions by Ion Chromatography"

### Footnotes:

- 1 This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.

A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.

 $Last \ saved \ by \ Robin \ Gifford \ on \ E:\\ \ MY \ DOCUMENTS\\ \ HLLWE \ SAMPLING\\ \ FINAL \ REPORT\\ \ APPENDIX \ A\\ \ TABLE \ A-19. \ 0050\_FINAL \ PR.DOC$ 

| • |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |

### Method 0060 Multi-Metals Train (MMT) Train Total Summary - Run 1 Train Totals **Metallic Analyte Analytical Results Summary** Table A-20. HLLWE Run ID: 0060-STRT-1

Field Sample Name:

Method 0060 Multi-Metals Train (MMT)

Sample Description:

Method 0060 Multi-Metals Train (MMT) Totals for Metals Analysis

| Analyte        | CAS<br>Registry<br>Number | MMT<br>Front Half<br>Composite <sup>1</sup><br>(μg) |                   | MMT<br>Back Half<br>Composite <sup>2</sup><br>(μg) |                   | MMT<br>Sampling Train<br>Totals <sup>3</sup><br>(Total μg) |      | Project<br>Specific |
|----------------|---------------------------|-----------------------------------------------------|-------------------|----------------------------------------------------|-------------------|------------------------------------------------------------|------|---------------------|
|                |                           | Risk Result                                         | Flag <sup>4</sup> | Risk Result                                        | Flag <sup>4</sup> | Total <sup>5</sup>                                         | Flag | Flag <sup>6</sup>   |
| Aluminum (Al)  | 7429-90-5                 | 95                                                  |                   | 42                                                 |                   | 140                                                        |      | A                   |
| Antimony (Sb)  | 7440-36-0                 | 2.9                                                 | В                 | 1.7                                                | В                 | < 4.6                                                      | В    | A                   |
| Arsenic (As)   | 7440-38-2                 | 0.92                                                | U                 | 0.66                                               | В                 | < 1.6                                                      | В    | Р                   |
| Barium (Ba)    | 7440-39-3                 | 4.8                                                 | В                 | 1.9                                                | В                 | 6.7                                                        | В    | A                   |
| Beryllium (Be) | 7440-41-7                 | 0.23                                                | В                 | 0.42                                               | U                 | < 0.65                                                     | В    | P                   |
| Cadmium (Cd)   | 7440-43-9                 | 0.32                                                | В                 | 0.14                                               | В                 | < 0.46                                                     | В    | Α                   |
| Chromium (Cr)  | 7440-47-3                 | 1.7                                                 |                   | 1.3                                                |                   | 3.0                                                        |      | A                   |
| Cobalt (Co)    | 7440-48-4                 | 1.3                                                 | В                 | 1.4                                                | В                 | < 2.7                                                      | В    | A                   |
| Copper (Cu)    | 7440-50-8                 | 0.94                                                | В                 | 3.4                                                |                   | 4.3                                                        | В    | A                   |
| Lead (Pb)      | 7439-92-1                 | 0.52                                                | U                 | 0.78                                               | В                 | < 1.3                                                      | В    | P                   |
| Manganese (Mn) | 7439-96-5                 | 2.8                                                 |                   | 16                                                 |                   | 19                                                         |      | A                   |
| Mercury (Hg)   | 7439-97-6                 | 0.37                                                | В                 | 100                                                |                   | 100                                                        |      | A                   |
| Nickel (Ni)    | 7440-02-0                 | 3.8                                                 | В                 | 1.2                                                | В                 | < 5.0                                                      | В    | A                   |
| Selenium (Se)  | 7782-49-2                 | 2.4                                                 |                   | 0.78                                               | В                 | 3.2                                                        | В    | A                   |
| Silver (Ag)    | 7440-22-4                 | 1.9                                                 | U                 | 0.71                                               | U                 | < 2.6                                                      |      | N                   |
| Thallium (Tl)  | 7440-28-0                 | 1.0                                                 | U                 | 1.5                                                | U                 | < 2.5                                                      |      | N                   |
| Vanadium (V)   | 7440-62-2                 | 1.3                                                 | U                 | 1.4                                                | U                 | < 2.7                                                      |      | N                   |
| Zinc (Zn)      | 7440-66-6                 | 18                                                  |                   | 43                                                 |                   | 61                                                         |      | A                   |

### Footnotes:

- <sup>1</sup> The MMT Front Half Composite consists of the Quartz Fiber Particulate Filter and the 0.1 N Nitric Acid Probe Rinse Solution.
- The MMT Back Half configuration includes seven (7) impingers. The first impinger remains empty prior to sampling and serves as a moisture knockout impinger. The second and third impingers are charged with 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> and are analyzed with the first impinger contents for all of the metallic analytes including mercury. The fourth impinger is left empty and serves to protect the mercury trapping solution from carryover. Its contents and glassware rinses are analyzed separately for mercury, only. The fifth and sixth impingers contain 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> and are also analyzed for mercury, only. The seventh impinger contains silica gel for a final scrubbing of residual moisture. The MMT back half mercury (Hg) result is the sum of the mercury in the 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> fraction, the fourth empty impinger fraction, the 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> fraction, and the 8N HCl impinger rinse fraction. The total micrograms (ug) of mercury in these fractions is included in the MMT back half result.
- <sup>3</sup> The total mass for each metal found in the MMT sampling train consists of the sum of the MMT train's Front Half metals content plus the train's Back Half metals content. The calculation is as follows:

(Total  $\mu g$  in the Front Half) + (Total  $\mu g$  in the Back Half) = Total  $\mu g$  in the Multi-Metals Sampling Train. Therefore:  $(\mu g) + (\mu g) = \text{Total } \mu g$ 

The MMT Sampling Train Total value was obtained by summing the MMT Front Half results and the MMT Back Half results using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "B" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "B" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MMT Totals are the cumulative set of flags for each train component included as part of the MMT total. A flag attached to a MMT component is carried through to the "MMT Sampling Train Total" column when the associated component analytical result is a significant number in comparison to the MMT Total. That is, if the MMT Total is affected by a MMT component analytical result, the associated flag is carried to the MMT Train Total, but if the MMT Train Total is not affected by a MMT component, the associated flag is not carried through to the MMT Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- <sup>4</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - ♦ A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.

### Method 0060 Multi-Metals Train (MMT) Train Total Summary - Run 3 Train Totals Metallic Analyte Analytical Results Summary Table A-21. HLLWE Run ID: 0060-END-1

Field Sample Name:

Method 0060 Multi-Metals Train (MMT)

Sample Description: Method 0060 Multi-Metals Train (MMT) Totals for Metals Analysis

| Number<br>7429-90-5<br>7440-36-0 | Risk Result                                                                                                                                                           | Flag <sup>4</sup>                                                                                                                                                                                                                                                                                                                          | Risk Result                                                                                                                                                                                                                                                                                                                                                                                                 | Flag <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | Project<br>Specific                                                                                                                                     |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | 230                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                             | riag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flag                                                         | Flag <sup>6</sup>                                                                                                                                       |
| 7440-36-0                        | 250                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            | 38                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | A                                                                                                                                                       |
|                                  | 3.4                                                                                                                                                                   | В                                                                                                                                                                                                                                                                                                                                          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                                                            | A                                                                                                                                                       |
| 7440-38-2                        | 0.92                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                          | 0.66                                                                                                                                                                                                                                                                                                                                                                                                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | N                                                                                                                                                       |
| 7440-39-3                        | 8.5                                                                                                                                                                   | В                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В                                                            | A                                                                                                                                                       |
| 7440-41-7                        | 0.23                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                          | 0.42                                                                                                                                                                                                                                                                                                                                                                                                        | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                            | P                                                                                                                                                       |
| 7440-43-9                        | 0.68                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                            | 0.14                                                                                                                                                                                                                                                                                                                                                                                                        | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                            | A                                                                                                                                                       |
| 7440-47-3                        | 3.4                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            | 1.3                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | A                                                                                                                                                       |
| 7440-48-4                        | 1.3                                                                                                                                                                   | U                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | N                                                                                                                                                       |
| 7440-50-8                        | 2.2                                                                                                                                                                   | В                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | В                                                            | A                                                                                                                                                       |
| 7439-92-1                        | 0.52                                                                                                                                                                  | В                                                                                                                                                                                                                                                                                                                                          | 0.78                                                                                                                                                                                                                                                                                                                                                                                                        | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                                                            | A                                                                                                                                                       |
| 7439-96-5                        | 5.4                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | A                                                                                                                                                       |
| 7439-97-6                        | 0.37                                                                                                                                                                  | В                                                                                                                                                                                                                                                                                                                                          | 150                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | A                                                                                                                                                       |
| 7440-02-0                        | 4.9                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                                                            | A                                                                                                                                                       |
| 7782-49-2                        | 1.5                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            | 0.63                                                                                                                                                                                                                                                                                                                                                                                                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | P                                                                                                                                                       |
| 7440-22-4                        | 1.9                                                                                                                                                                   | U                                                                                                                                                                                                                                                                                                                                          | 0.71                                                                                                                                                                                                                                                                                                                                                                                                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | N                                                                                                                                                       |
| 7440-28-0                        | 1.0                                                                                                                                                                   | U                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | N                                                                                                                                                       |
| 7440-62-2                        | 1.3                                                                                                                                                                   | U                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | N                                                                                                                                                       |
| 7440-66-6                        | 89                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | A                                                                                                                                                       |
|                                  | 7440-41-7<br>7440-43-9<br>7440-47-3<br>7440-48-4<br>7440-50-8<br>7439-92-1<br>7439-96-5<br>7439-97-6<br>7440-02-0<br>7782-49-2<br>7440-22-4<br>7440-28-0<br>7440-62-2 | 7440-41-7       0.23         7440-43-9       0.68         7440-47-3       3.4         7440-48-4       1.3         7440-50-8       2.2         7439-92-1       0.52         7439-96-5       5.4         7440-02-0       4.9         7782-49-2       1.5         7440-22-4       1.9         7440-28-0       1.0         7440-62-2       1.3 | 7440-41-7       0.23       U         7440-43-9       0.68         7440-47-3       3.4         7440-48-4       1.3       U         7440-50-8       2.2       B         7439-92-1       0.52       B         7439-97-6       0.37       B         7440-02-0       4.9         7782-49-2       1.5         7440-22-4       1.9       U         7440-28-0       1.0       U         7440-62-2       1.3       U | 7440-41-7       0.23       U       0.42         7440-43-9       0.68       0.14         7440-47-3       3.4       1.3         7440-48-4       1.3       U       1.4         7440-50-8       2.2       B       1.4         7439-92-1       0.52       B       0.78         7439-96-5       5.4       18         7439-97-6       0.37       B       150         7440-02-0       4.9       1.1         7782-49-2       1.5       0.63         7440-22-4       1.9       U       0.71         7440-28-0       1.0       U       1.4         7440-62-2       1.3       U       1.4 | 7440-41-7         0.23         U         0.42         B           7440-43-9         0.68         0.14         B           7440-47-3         3.4         1.3         U         1.4         U           7440-48-4         1.3         U         1.4         U         U         7440-50-8         2.2         B         1.4         B         B         0.78         B         B         0.78         B         B         150         0.78         B         150         0.37         B         150         0.37         B         150         0.37         B         1.1         B         0.63         U         0.63         U         0.63         U         0.71         U         0.71         U         0.74         U         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74 <td>7440-41-7       0.23       U       0.42       B       &lt; 0.65</td> 7440-43-9       0.68       0.14       B       < 0.82 | 7440-41-7       0.23       U       0.42       B       < 0.65 | 7440-41-7         0.23         U         0.42         B         < 0.65         B           7440-43-9         0.68         0.14         B         < 0.82 |

#### Footnotes:

- The MMT Front Half Composite consists of the Quartz Fiber Particulate Filter and the 0.1 N Nitric Acid Probe Rinse Solution.
- The MMT Back Half configuration includes seven (7) impingers. The first impinger remains empty prior to sampling and serves as a moisture knockout impinger. The second and third impingers are charged with 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> and are analyzed with the first impinger contents for all of the metallic analytes including mercury. The fourth impinger is left empty and serves to protect the mercury trapping solution from carryover. Its contents and glassware rinses are analyzed separately for mercury, only. The fifth and sixth impingers contain 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> and are also analyzed for mercury, only. The seventh impinger contains silica gel for a final scrubbing of residual moisture. The MMT back half mercury (Hg) result is the sum of the mercury in the 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> fraction, the fourth empty impinger fraction, the 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> fraction, and the 8N HCl impinger rinse fraction. The total micrograms (ug) of mercury in these fractions is included in the MMT back half result.
- The total mass for each metal found in the MMT sampling train consists of the sum of the MMT train's Front Half metals content plus the train's Back Half metals content. The calculation is as follows:

(Total  $\mu g$  in the Front Half) + (Total  $\mu g$  in the Back Half) = Total  $\mu g$  in the Multi-Metals Sampling Train. Therefore:  $(\mu g) + (\mu g) = \text{Total } \mu g$ 

The MMT Sampling Train Total value was obtained by summing the MMT Front Half results and the MMT Back Half results using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "B" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "B" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MMT Totals are the cumulative set of flags for each train component included as part of the MMT total. A flag attached to a MMT component is carried through to the "MMT Sampling Train Total" column when the associated component analytical result is a significant number in comparison to the MMT Total. That is, if the MMT Total is affected by a MMT component analytical result, the associated flag is carried to the MMT Train Total, but if the MMT Train Total is not affected by a MMT component, the associated flag is not carried through to the MMT Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- <sup>4</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.

- ♦ A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- 6 Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.

| · |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

### Method 0060 Multi-Metals Train (MMT) Train Total Summary - Run 2 Train Totals Metallic Analyte Analytical Results Summary Table A-22. HLLWE Run ID: 0060-STRT-2

Field Sample Name:

Method 0060 Multi-Metals Train (MMT)

Sample Description:

Method 0060 Multi-Metals Train (MMT) Totals for Metals Analysis

|                | CAS<br>Registry | MM<br>Front<br>Compo<br>(µg | Half<br>osite <sup>1</sup> | MM<br>Back I<br>Compo<br>(µg | Half<br>site <sup>2</sup><br>) | MN<br>Samplin<br>Tota<br>(Tota | g Train<br>als³ | Project<br>Specific |
|----------------|-----------------|-----------------------------|----------------------------|------------------------------|--------------------------------|--------------------------------|-----------------|---------------------|
| Analyte        | Number          | Risk Result                 | Flag <sup>4</sup>          | Risk Result                  | Flag <sup>4</sup>              | Total <sup>5</sup>             | Flag            | Flag <sup>6</sup>   |
| Aluminum (Al)  | 7429-90-5       | 42                          |                            | 34                           |                                | 76                             |                 | A                   |
| Antimony (Sb)  | 7440-36-0       | 2.8                         | В                          | 1.7                          | В                              | < 4.5                          | В               | A                   |
| Arsenic (As)   | 7440-38-2       | 0.92                        | U                          | 0.66                         | U                              | < 1.6                          |                 | N                   |
| Barium (Ba)    | 7440-39-3       | 3.5                         | В                          | 1.6                          | В                              | 5.1                            | В               | A                   |
| Beryllium (Be) | 7440-41-7       | 0.23                        | В                          | 0.42                         | U                              | < 0.65                         | В               | P                   |
| Cadmium (Cd)   | 7440-43-9       | 0.13                        | U                          | 0.14                         | В                              | < 0.27                         | В               | P                   |
| Chromium (Cr)  | 7440-47-3       | 1.3                         |                            | 1.2                          |                                | 2.5                            |                 | A                   |
| Cobalt (Co)    | 7440-48-4       | 1.3                         | U                          | 1.4                          | . U                            | < 2.7                          |                 | N                   |
| Copper (Cu)    | 7440-50-8       | 0.66                        | В                          | 1.6                          | В                              | < 2.3                          | В               | Α                   |
| Lead (Pb)      | 7439-92-1       | 0.52                        | U                          | 0.89                         | В                              | < 1.4                          | В               | P                   |
| Manganese (Mn) | 7439-96-5       | 16                          |                            | 22                           |                                | 38                             |                 | A                   |
| Mercury (Hg)   | 7439-97-6       | 0.37                        | В                          | 110                          | ·                              | 110                            |                 | A                   |
| Nickel (Ni)    | 7440-02-0       | 3.3                         | В                          | 1.2                          | В                              | < 4.5                          | В               | Α                   |
| Selenium (Se)  | 7782-49-2       | 2.0                         |                            | 0.63                         | В                              | < 2.6                          | В               | A                   |
| Silver (Ag)    | 7440-22-4       | 1.9                         | U                          | 0.71                         | U                              | < 2.6                          |                 | N                   |
| Thallium (Tl)  | 7440-28-0       | 1.0                         | U                          | 1.5                          | U                              | < 2.5                          |                 | N                   |
| Vanadium (V)   | 7440-62-2       | 1.3                         | U                          | 1.4                          | U                              | < 2.7                          |                 | N                   |
| Zinc (Zn)      | 7440-66-6       | 10                          |                            | 20                           |                                | 30                             |                 | A                   |

#### Footnotes:

- The MMT Front Half Composite consists of the Quartz Fiber Particulate Filter and the 0.1 N Nitric Acid Probe Rinse Solution.
- The MMT Back Half configuration includes seven (7) impingers. The first impinger remains empty prior to sampling and serves as a moisture knockout impinger. The second and third impingers are charged with 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> and are analyzed with the first impinger contents for all of the metallic analytes including mercury. The fourth impinger is left empty and serves to protect the mercury trapping solution from carryover. Its contents and glassware rinses are analyzed separately for mercury, only. The fifth and sixth impingers contain 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> and are also analyzed for mercury, only. The seventh impinger contains silica gel for a final scrubbing of residual moisture. The MMT back half mercury (Hg) result is the sum of the mercury in the 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> fraction, the fourth empty impinger fraction, the 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> fraction, and the 8N HCl impinger rinse fraction. The total micrograms (ug) of mercury in these fractions is included in the MMT back half result.
- The total mass for each metal found in the MMT sampling train consists of the sum of the MMT train's Front Half metals content plus the train's Back Half metals content. The calculation is as follows:

(Total  $\mu g$  in the Front Half) + (Total  $\mu g$  in the Back Half) = Total  $\mu g$  in the Multi-Metals Sampling Train. Therefore:  $(\mu g) + (\mu g) = \text{Total } \mu g$ 

The MMT Sampling Train Total value was obtained by summing the MMT Front Half results and the MMT Back Half results using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "B" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "B" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MMT Totals are the cumulative set of flags for each train component included as part of the MMT total. A flag attached to a MMT component is carried through to the "MMT Sampling Train Total" column when the associated component analytical result is a significant number in comparison to the MMT Total. That is, if the MMT Total is affected by a MMT component analytical result, the associated flag is carried to the MMT Train Total, but if the MMT Train Total is not affected by a MMT component, the associated flag is not carried through to the MMT Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- <sup>4</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- 6 Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions

| • |  |  |
|---|--|--|
|   |  |  |
|   |  |  |

### Method 0060 Multi-Metals Train (MMT) Train Total Summary - Run 4 Train Totals Metallic Analyte Analytical Results Summary Table A-23. HLLWE Run ID: 0060-END-2

Field Sample Name:

Method 0060 Multi-Metals Train (MMT)

Sample Description: Method 0060 Multi-Metals Train (MMT) Totals for Metals Analysis

|                | CAS<br>Registry | Front<br>Compo | MMT<br>Front Half<br>Composite <sup>1</sup><br>(μg) |             | MMT Back Half Composite <sup>2</sup> (µg) |                    | MMT<br>Sampling Train<br>Totals <sup>3</sup><br>(Total µg) |                   |
|----------------|-----------------|----------------|-----------------------------------------------------|-------------|-------------------------------------------|--------------------|------------------------------------------------------------|-------------------|
| Analyte        | Number          | Risk Result    | Flag <sup>4</sup>                                   | Risk Result | Flag <sup>4</sup>                         | Total <sup>5</sup> | Flag                                                       | Flag <sup>6</sup> |
| Aluminum (Al)  | 7429-90-5       | 44             |                                                     | 29          |                                           | 73                 |                                                            | A                 |
| Antimony (Sb)  | 7440-36-0       | 2.4            | В                                                   | 1.7         | В                                         | < 4.1              | В                                                          | A                 |
| Arsenic (As)   | 7440-38-2       | 0.92           | U                                                   | 0.66        | U                                         | < 1.6              |                                                            | N                 |
| Barium (Ba)    | 7440-39-3       | 3.6            | В                                                   | 1.1         | В                                         | 4.7                | В                                                          | A                 |
| Beryllium (Be) | 7440-41-7       | 0.23           | U                                                   | 0.42        | В                                         | < 0.65             | В                                                          | P                 |
| Cadmium (Cd)   | 7440-43-9       | 0.13           | U                                                   | 0.14        | U                                         | < 0.27             |                                                            | N                 |
| Chromium (Cr)  | 7440-47-3       | 1.2            |                                                     | 3.9         |                                           | 5.1                |                                                            | A                 |
| Cobalt (Co)    | 7440-48-4       | 1.3            | U                                                   | 1.4         | U                                         | < 2.7              |                                                            | N                 |
| Copper (Cu)    | 7440-50-8       | 0.66           | U                                                   | 0.71        | В                                         | < 1.4              | В                                                          | P                 |
| Lead (Pb)      | 7439-92-1       | 0.52           | U                                                   | 0.68        | В                                         | < 1.2              | В                                                          | P                 |
| Manganese (Mn) | 7439-96-5       | 23             |                                                     | 49          |                                           | 72                 |                                                            | A                 |
| Mercury (Hg)   | 7439-97-6       | 0.37           | В                                                   | 110         |                                           | 110                |                                                            | A                 |
| Nickel (Ni)    | 7440-02-0       | 3.0            | В                                                   | 1.1         | В                                         | < 4.1              | В                                                          | A                 |
| Selenium (Se)  | 7782-49-2       | 1.7            |                                                     | 0.63        | В                                         | < 2.3              | В                                                          | A                 |
| Silver (Ag)    | 7440-22-4       | 1.9            | U                                                   | 0.71        | U                                         | < 2.6              |                                                            | N                 |
| Thallium (Tl)  | 7440-28-0       | 1.0            | U                                                   | 1.4         | U                                         | < 2.4              |                                                            | N                 |
| Vanadium (V)   | 7440-62-2       | 1.3            | U                                                   | 1.4         | U                                         | < 2.7              |                                                            | N                 |
| Zinc (Zn)      | 7440-66-6       | 6.6            |                                                     | 10          |                                           | 17                 |                                                            | A                 |

#### Footnotes:

- <sup>1</sup> The MMT Front Half Composite consists of the Quartz Fiber Particulate Filter and the 0.1 N Nitric Acid Probe Rinse Solution.
- The MMT Back Half configuration includes seven (7) impingers. The first impinger remains empty prior to sampling and serves as a moisture knockout impinger. The second and third impingers are charged with 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> and are analyzed with the first impinger contents for all of the metallic analytes including mercury. The fourth impinger is left empty and serves to protect the mercury trapping solution from carryover. Its contents and glassware rinses are analyzed separately for mercury, only. The fifth and sixth impingers contain 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> and are also analyzed for mercury, only. The seventh impinger contains silica gel for a final scrubbing of residual moisture. The MMT back half mercury (Hg) result is the sum of the mercury in the 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> fraction, the fourth empty impinger fraction, the 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> fraction, and the 8N HCl impinger rinse fraction. The total micrograms (ug) of mercury in these fractions is included in the MMT back half result.
- The total mass for each metal found in the MMT sampling train consists of the sum of the MMT train's Front Half metals content plus the train's Back Half metals content. The calculation is as follows:

(Total  $\mu g$  in the Front Half) + (Total  $\mu g$  in the Back Half) = Total  $\mu g$  in the Multi-Metals Sampling Train. Therefore:  $(\mu g) + (\mu g) = \text{Total } \mu g$ 

The MMT Sampling Train Total value was obtained by summing the MMT Front Half results and the MMT Back Half results using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "B" flag is carried through the calculation to the train total.
- ♦ When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "B" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MMT Totals are the cumulative set of flags for each train component included as part of the MMT total. A flag attached to a MMT component is carried through to the "MMT Sampling Train Total" column when the associated component analytical result is a significant number in comparison to the MMT Total. That is, if the MMT Total is affected by a MMT component analytical result, the associated flag is carried to the MMT Train Total, but if the MMT Train Total is not affected by a MMT component, the associated flag is not carried through to the MMT Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- <sup>4</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - ♦ A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.

- A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.

## Method 0060 Multi-Metals Blank Train (MMT) Train Total Summary Run 2 Blank Train Totals Metallic Analyte Analytical Results Summary Table A-24. HLLWE Run ID: 0060-BT-1

Field Sample Name:

Method 0060 Multi-Metals Blank Train (MMT)

Sample Description: Method 0060 Multi-Metals Blank Train (MMT) Totals for Metals Analysis

| 9-90-5 | (μg)<br>Risk Result              | Flag <sup>4</sup>                                |                                                        | MMT<br>Back Half<br>Composite <sup>2</sup><br>(µg)                       |                                                                         | MMT<br>Sampling Train<br>Totals <sup>3</sup><br>(Total µg) |                                         |
|--------|----------------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|
|        |                                  |                                                  | Risk Result                                            | Flag <sup>4</sup>                                                        | Total <sup>5</sup>                                                      | Flag                                                       | Flag <sup>6</sup>                       |
|        | 46                               |                                                  | 29                                                     |                                                                          | 75                                                                      |                                                            | A                                       |
| -36-0  | 2.5                              | В                                                | 1.7                                                    | В                                                                        | < 4.2                                                                   | В                                                          | A                                       |
| -38-2  | 0.92                             | В                                                | 0.66                                                   | U                                                                        | < 1.6                                                                   | В                                                          | P                                       |
| -39-3  | 3.4                              | В                                                | 1.3                                                    | В                                                                        | 4.7                                                                     | В                                                          | A                                       |
| -41-7  | 0.23                             | U                                                | 0.42                                                   | U                                                                        | < 0.65                                                                  |                                                            | N                                       |
| -43-9  | 0.13                             | U                                                | 0.14                                                   | В                                                                        | < 0.27                                                                  | В                                                          | P                                       |
| -47-3  | 0.66                             | U                                                | 0.66                                                   | U                                                                        | < 1.3                                                                   |                                                            | N                                       |
| -48-4  | 1.3                              | U                                                | 1.4                                                    | U                                                                        | < 2.7                                                                   |                                                            | N                                       |
| -50-8  | 0.66                             | U                                                | 0.71                                                   | В                                                                        | < 1.4                                                                   | В                                                          | P                                       |
| -92-1  | 0.52                             | U                                                | 0.68                                                   | В                                                                        | < 1.2                                                                   | В                                                          | P                                       |
| -96-5  | 1.6                              |                                                  | 3,700                                                  |                                                                          | 3,700                                                                   |                                                            | A                                       |
| -97-6  | 0.37                             | U                                                | 2.7                                                    | U                                                                        | < 3.1                                                                   |                                                            | N                                       |
| -02-0  | 2.8                              | В                                                | 1.2                                                    | В                                                                        | < 4.0                                                                   | В                                                          | A                                       |
| -49-2  | 1.7                              |                                                  | 0.63                                                   | U                                                                        | < 2.3                                                                   |                                                            | P                                       |
| -22-4  | 1.9                              | U                                                | 0.71                                                   | U                                                                        | < 2.6                                                                   |                                                            | N                                       |
| -28-0  | 1.0                              | U                                                | 1.5                                                    | U                                                                        | < 2.5                                                                   |                                                            | N                                       |
| -62-2  | 1.3                              | U                                                | 1.4                                                    | U                                                                        | < 2.7                                                                   |                                                            | N                                       |
| 1-66-6 | 4.7                              |                                                  | 34                                                     |                                                                          | 39                                                                      |                                                            | A                                       |
| ).     | -49-2<br>-22-4<br>-28-0<br>-62-2 | -49-2 1.7<br>-22-4 1.9<br>-28-0 1.0<br>-62-2 1.3 | -49-2 1.7<br>-22-4 1.9 U<br>-28-0 1.0 U<br>-62-2 1.3 U | -49-2 1.7 0.63<br>-22-4 1.9 U 0.71<br>-28-0 1.0 U 1.5<br>-62-2 1.3 U 1.4 | -49-2 1.7 0.63 U -22-4 1.9 U 0.71 U -28-0 1.0 U 1.5 U -62-2 1.3 U 1.4 U | -49-2                                                      | -249-2     1.7     0.63     U     < 2.3 |

#### Footnotes:

- <sup>1</sup> The MMT Front Half Composite consists of the Quartz Fiber Particulate Filter and the 0.1 N Nitric Acid Probe Rinse Solution.
- The MMT Back Half configuration includes seven (7) impingers. The first impinger remains empty prior to sampling and serves as a moisture knockout impinger. The second and third impingers are charged with 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> and are analyzed with the first impinger contents for all of the metallic analytes including mercury. The fourth impinger is left empty and serves to protect the mercury trapping solution from carryover. Its contents and glassware rinses are analyzed separately for mercury, only. The fifth and sixth impingers contain 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> and are also analyzed for mercury, only. The seventh impinger contains silica gel for a final scrubbing of residual moisture. The MMT back half mercury (Hg) result is the sum of the mercury in the 5% HNO<sub>3</sub>/10% H<sub>2</sub>O<sub>2</sub> fraction, the fourth empty impinger fraction, the 4% KMnO<sub>4</sub>/10% H<sub>2</sub>SO<sub>4</sub> fraction, and the 8N HCl impinger rinse fraction. The total micrograms (ug) of mercury in these fractions is included in the MMT back half result.
- The total mass for each metal found in the MMT sampling train consists of the sum of the MMT train's Front Half metals content plus the train's Back Half metals content. The calculation is as follows:

(Total  $\mu g$  in the Front Half) + (Total  $\mu g$  in the Back Half) = Total  $\mu g$  in the Multi-Metals Sampling Train. Therefore:  $(\mu g) + (\mu g) = \text{Total } \mu g$ 

The MMT Sampling Train Total value was obtained by summing the MMT Front Half results and the MMT Back Half results using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "B" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "B" flag is carried through the calculation to the train total.
- ♦ When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MMT Totals are the cumulative set of flags for each train component included as part of the MMT total. A flag attached to a MMT component is carried through to the "MMT Sampling Train Total" column when the associated component analytical result is a significant number in comparison to the MMT Total. That is, if the MMT Total is affected by a MMT component analytical result, the associated flag is carried to the MMT Train Total, but if the MMT Train Total is not affected by a MMT component, the associated flag is not carried through to the MMT Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- <sup>4</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
  - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions
  - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
  - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.

Table A-25. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary Run 2 Front Half Composite Reagent Blank

Field Sample Name:

Method 0060 Multi-Metals Train (MMT) Front Half Composite Reagent Blanks

Sample Description:

Quartz Fiber Particulate Filter and 0.1 N Nitric Acid Probe Rinse Solution Reagent Blanks for Metals (including

Mercury) Analysis

Field Sample ID: STL Sample No.:

A-3297 and A-3298 H1F200234-011

|                |                        | MMT<br>Front Half Composite Reagent Blank<br>Total μg |                  |                  |                 |                                                     |                   |  |  |
|----------------|------------------------|-------------------------------------------------------|------------------|------------------|-----------------|-----------------------------------------------------|-------------------|--|--|
| Analyte        | CAS Registry<br>Number | Lab Result <sup>1</sup>                               | MDL <sup>2</sup> | RDL <sup>3</sup> | RL <sup>4</sup> | Risk Result<br>for Blank<br>Correction <sup>5</sup> | Flag <sup>6</sup> |  |  |
| Aluminum (Al)  | 7429-90-5              | 43                                                    | 5.2              | 14               | 20              | 43                                                  |                   |  |  |
| Antimony (Sb)  | 7440-36-0              | 2.7                                                   | 0.60             | 1.6              | 6.0             | 2.7                                                 | В                 |  |  |
| Arsenic (As)   | 7440-38-2              | 0.72                                                  | 0.35             | 0.92             | 1.0             | 0.72                                                | В                 |  |  |
| Barium (Ba)    | 7440-39-3              | 3.6                                                   | 0.35             | 0.92             | 20              | 3.6                                                 | В                 |  |  |
| Beryllium (Be) | 7440-41-7              | 0.20                                                  | 0.089            | 0.23             | 0.50            | 0.20                                                | В                 |  |  |
| Cadmium (Cd)   | 7440-43-9              | ND                                                    | 0.050            | 0.13             | 0.50            | 0                                                   |                   |  |  |
| Chromium (Cr)  | 7440-47-3              | 0.92                                                  | 0.25             | 0.66             | 1.0             | 0.92                                                | В                 |  |  |
| Cobalt (Co)    | 7440-48-4              | ND                                                    | 0.50             | 1.3              | 5.0             | 0                                                   |                   |  |  |
| Copper (Cu)    | 7440-50-8              | ND                                                    | 0.25             | 0.66             | 2.5             | 0                                                   |                   |  |  |
| Lead (Pb)      | 7439-92-1              | ND                                                    | 0.20             | 0.52             | 1.0             | 0                                                   |                   |  |  |
| Manganese (Mn) | 7439-96-5              | 0.52                                                  | 0.15             | 0.39             | 1.5             | 0.52                                                | В                 |  |  |
| Mercury (Hg)   | 7439-97-6              | ND                                                    | 0.14             | 0.37             | 0.40            | 0                                                   |                   |  |  |
| Nickel (Ni)    | 7440-02-0              | 2.9                                                   | 0.44             | 1.2              | 4.0             | 2.9                                                 | В                 |  |  |
| Selenium (Se)  | 7782-49-2              | 2.9                                                   | 0.35             | 0.92             | 1.0             | 2.9                                                 |                   |  |  |
| Silver (Ag)    | 7440-22-4              | ND                                                    | 0.71             | 1.9              | 2.0             | 0                                                   |                   |  |  |
| Thallium (Tl)  | 7440-28-0              | ND                                                    | 0.40             | 1.0              | 2.0             | 0                                                   |                   |  |  |
| Vanadium (V)   | 7440-62-2              | ND                                                    | 0.50             | 1.3              | 5.0             | 0                                                   |                   |  |  |
| Zinc (Zn)      | 7440-66-6              | 3.1                                                   | 0.23             | 0.60             | 2.0             | 3.1                                                 |                   |  |  |

#### BECHTEL BWXT IDAHO, LLC (BBWI)

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### Table A-25. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary (Continued) Run 2 Front Half Composite Reagent Blank

#### Sample Collection and Analysis Dates:

Date(s) Collected:

Date(s) of Digestion (Metals):

Date(s) of Digestion (Mercury):

Date(s) of Analysis (Metals):

Date(s) of Analysis (Mercury):

June 25, 2001

June 28, 2001

Date(s) of Analysis (Mercury):

June 26, 2001

#### Preparation and Analysis Methods:

SW-846 Method 0060: "Determination of Metals in Stack Emissions"

SW-846 Method 7470A: "Mercury in Liquid Waste (Manual Cold Vapor Technique)"
SW-846 Method 6010B: "Inductively Coupled Plasma - Atomic Emission Spectroscopy"

- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- <sup>2</sup> This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- <sup>4</sup> The RL is the laboratory Reporting Limit (RL).
- The column titled "Risk Result for Blank Correction" presents a "0" for elements that were analyzed for but not detected down to the method detection limit (MDL). Method 0060 specifically calls out the criteria that are to be applied to blank correct multi-metals train (MMT) data.
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

### Table A-26. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary Run 2 Back Half Composite Reagent Blank

Field Sample Name:

Method 0060 Multi-Metals Train (MMT) Back Half Impingers Reagent Blank

Sample Description:

5% HNO3 and 10% H2O2 Impingers Reagent Blank for Metals (including Mercury) Analysis

Field Sample ID:

A-3299

STL Sample No.:

H1F200234-012

| Analyte        |                        | MMT<br>Back Half Composite Reagent Blank<br>Total μg |                  |                  |                 |                                                     |                   |  |  |
|----------------|------------------------|------------------------------------------------------|------------------|------------------|-----------------|-----------------------------------------------------|-------------------|--|--|
|                | CAS Registry<br>Number | Lab Result <sup>1</sup>                              | MDL <sup>2</sup> | RDL <sup>3</sup> | RL <sup>4</sup> | Risk Result<br>for Blank<br>Correction <sup>5</sup> | Flag <sup>6</sup> |  |  |
| Aluminum (Al)  | 7429-90-5              | 19                                                   | 3.5              | 9.2              | 23              | 19                                                  | В                 |  |  |
| Antimony (Sb)  | 7440-36-0              | 0.86                                                 | 0.69             | 1.8              | 6.9             | 0.86                                                | В                 |  |  |
| Arsenic (As)   | 7440-38-2              | ND                                                   | 0.26             | 0.68             | 1.1             | 0                                                   |                   |  |  |
| Barium (Ba)    | 7440-39-3              | 0.96                                                 | 0.34             | 0.89             | 23              | 0.96                                                | В                 |  |  |
| Beryllium (Be) | 7440-41-7              | ND                                                   | 0.17             | 0.45             | 0.57            | 0                                                   |                   |  |  |
| Cadmium (Cd)   | 7440-43-9              | 0.059                                                | 0.057            | 0.15             | 0.57            | 0.059                                               | В                 |  |  |
| Chromium (Cr)  | 7440-47-3              | 0.91                                                 | 0.26             | 0.68             | 1.1             | 0.91                                                | В                 |  |  |
| Cobalt (Co)    | 7440-48-4              | ND                                                   | 0.57             | 1.5              | 5.7             | 0                                                   |                   |  |  |
| Copper (Cu)    | 7440-50-8              | ND                                                   | 0.29             | 0.76             | 2.9             | 0                                                   |                   |  |  |
| Lead (Pb)      | 7439-92-1              | 0.43                                                 | 0.27             | 0.71             | 1.1             | 0.43                                                | В                 |  |  |
| Manganese (Mn) | 7439-96-5              | 14                                                   | 0.17             | 0.45             | 1.7             | 14                                                  |                   |  |  |
| Mercury (Hg)   | 7439-97-6              | ND                                                   | 0.20             | 0.52             | 0.80            | 0                                                   |                   |  |  |
| Nickel (Ni)    | 7440-02-0              | 0.56                                                 | 0.46             | 1.2              | 4.6             | 0.56                                                | В                 |  |  |
| Selenium (Se)  | 7782-49-2              | 0.28                                                 | 0.25             | 0.66             | 1.1             | 0.28                                                | В                 |  |  |
| Silver (Ag)    | 7440-22-4              | ND                                                   | 0.29             | 0.76             | 2.3             | 0                                                   |                   |  |  |
| Thallium (Tl)  | 7440-28-0              | ND                                                   | 0.58             | 1.5              | 2.3             | 0                                                   |                   |  |  |
| Vanadium (V)   | 7440-62-2              | ND                                                   | 0.57             | 1.5              | 5.7             | 0                                                   |                   |  |  |
| Zinc (Zn)      | 7440-66-6              | 4.7                                                  | 0.51             | 1.3              | 2.3             | 4.7                                                 |                   |  |  |

#### BECHTEL BWXT IDAHO, LLC (BBWI)

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

### Table A-26. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary (Continued) Run 2 Back Half Composite Reagent Blank

#### Sample Collection and Analysis Dates:

Date(s) Collected:

Date(s) of Digestion (Metals):

Date(s) of Digestion (Mercury):

Date(s) of Analysis (Metals):

Date(s) of Analysis (Mercury):

June 25, 2001

June 28, 2001

June 26, 2001

#### Preparation and Analysis Methods:

SW-846 Method 0060:

"Determination of Metals in Stack Emissions"

SW-846 Method 7470A:

"Mercury in Liquid Waste (Manual Cold Vapor Technique)"

SW-846 Method 6010B:

"Inductively Coupled Plasma - Atomic Emission Spectroscopy"

- <sup>1</sup> This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- <sup>2</sup> This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- <sup>4</sup> The RL is the laboratory Reporting Limit (RL).
- The column titled "Risk Result for Blank Correction" presents a "0" for elements that were analyzed for but not detected down to the method detection limit (MDL). Method 0060 specifically calls out the criteria that are to be applied to blank correct multi-metals train (MMT) data.
- <sup>6</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

### Table A-27. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary Run 2 Mercury Impinger Composite Reagent Blank

Field Sample Name: Sample Description:

Method 0060 Multi-Metals Train (MMT) Mercury Impingers Reagent Blank 4% KMnO<sub>4</sub> and 10% H<sub>2</sub>SO<sub>4</sub> Impingers Reagent Blank for Mercury (Hg) Analysis

Field Sample ID:

A-3300

STL Sample No.:

H1F200234-013

| CAS Registry<br>Analyte Number | MMT<br>Mercury Impinger Composite<br>Total μg |                  |                  |                 |                                                     |                   |  |
|--------------------------------|-----------------------------------------------|------------------|------------------|-----------------|-----------------------------------------------------|-------------------|--|
|                                | Lab Result <sup>1</sup>                       | MDL <sup>2</sup> | RDL <sup>3</sup> | RL <sup>4</sup> | Risk Result<br>for Blank<br>Correction <sup>5</sup> | Flag <sup>6</sup> |  |
| Mercury (Hg)                   | 7439-97-6                                     | ND               | 0.10             | 0.26            | 0.42                                                | 0                 |  |

#### Sample Collection and Analysis Dates:

Date(s) Collected:

June 07, 2001

Date(s) of Digestion:

June 25, 2001

Date(s) of Analysis:

June 26, 2001

#### Preparation and Analysis Methods:

SW-846 Method 0060:

"Determination of Metals in Stack Emissions"

SW-846 Method 7470A:

"Mercury in Liquid Waste (Manual Cold Vapor Technique)"

### Table A-27. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary (Continued) Run 2 Mercury Impinger Composite Reagent Blank

- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- <sup>2</sup> This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- <sup>4</sup> The RL is the laboratory Reporting Limit (RL).
- The column titled "Risk Result for Blank Correction" presents a "0" for elements that were analyzed for but not detected down to the method detection limit (MDL). Method 0060 specifically calls out the criteria that are to be applied to blank correct multi-metals train (MMT) data.
- <sup>6</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

### Table A-28. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary Run 2 HCI Impinger Rinse Solution Reagent Blank

Field Sample Name:

Method 0060 Multi-Metals Train (MMT) Mercury Impinger HCl Rinse Solution Reagent Blank

Sample Description:

8N HCl Impinger Rinse Solution Reagent Blank for Mercury (Hg) Analysis

Field Sample ID:

A-330

STL Sample No.:

H1F200234-014

|              |                        |                         | 8                | N HCI Mercury    | MT<br><sup>,</sup> Impinger Rin<br>il μg | se                                                  |                   |
|--------------|------------------------|-------------------------|------------------|------------------|------------------------------------------|-----------------------------------------------------|-------------------|
| Analyte      | CAS Registry<br>Number | Lab Result <sup>1</sup> | MDL <sup>2</sup> | RDL <sup>3</sup> | RL <sup>4</sup>                          | Risk Result<br>for Blank<br>Correction <sup>5</sup> | Flag <sup>6</sup> |
| Mercury (Hg) | 7439-97-6              | ND                      | 0.23             | 0.60             | 0.92                                     | 0                                                   |                   |

#### Sample Collection and Analysis Dates:

Date(s) Collected:

June 07, 2001

Date(s) of Digestion:

June 25, 2001

Date(s) of Analysis:

June 26, 2001

#### Preparation and Analysis Methods:

SW-846 Method 0060:

"Determination of Metals in Stack Emissions"

SW-846 Method 7470A:

"Mercury in Liquid Waste (Manual Cold Vapor Technique)"

### Table A-28. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary (Continued) Run 2 HCI Impinger Rinse Solution Reagent Blank

- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- <sup>2</sup> This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- <sup>4</sup> The RL is the laboratory Reporting Limit (RL).
- The column titled "Risk Result for Blank Correction" presents a "0" for elements that were analyzed for but not detected down to the method detection limit (MDL). Method 0060 specifically calls out the criteria that are to be applied to blank correct multi-metals train (MMT) data.
- <sup>6</sup> This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an
    estimated value.

### Table A-29. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary Run 2 INTEC Deionized Water Reagent Blank

Field Sample Name:

INTEC Deionized (D.I.) Water Reagent Blank

Sample Description:

INTEC Deionized (D.I.) Water Reagent Blank for Metals (including Mercury) Analysis

Field Sample ID:

A-3348

STL Sample No.:

H1F200234-015

|                |                        | MMT<br>INTEC Deionized (D.I.) Water Reagent Blank<br>Total µg |                  |                  |                 |                                                     |                   |  |  |  |
|----------------|------------------------|---------------------------------------------------------------|------------------|------------------|-----------------|-----------------------------------------------------|-------------------|--|--|--|
| Analyte        | CAS Registry<br>Number | Lab Result <sup>1</sup>                                       | MDL <sup>2</sup> | RDL <sup>3</sup> | RL <sup>4</sup> | Risk Result<br>for Blank<br>Correction <sup>5</sup> | Flag <sup>6</sup> |  |  |  |
| Aluminum (Al)  | 7429-90-5              | 5.2                                                           | 5.2              | 14               | 20              | 5.2                                                 | В                 |  |  |  |
| Antimony (Sb)  | 7440-36-0              | ND                                                            | 0.60             | 1.6              | 6.0             | 0                                                   |                   |  |  |  |
| Arsenic (As)   | 7440-38-2              | ND                                                            | 0.35             | 0.92             | 1.0             | 0                                                   |                   |  |  |  |
| Barium (Ba)    | 7440-39-3              | ND                                                            | 0.35             | 0.92             | 20              | 0                                                   |                   |  |  |  |
| Beryllium (Be) | 7440-41-7              | 0.13                                                          | 0.089            | 0.23             | 0.50            | 0.13                                                | В                 |  |  |  |
| Cadmium (Cd)   | 7440-43-9              | ND                                                            | 0.050            | 0.13             | 0.50            | 0                                                   |                   |  |  |  |
| Chromium (Cr)  | 7440-47-3              | ND                                                            | 0.25             | 0.66             | 1.0             | 0                                                   |                   |  |  |  |
| Cobalt (Co)    | 7440-48-4              | . ND                                                          | 0.50             | 1.3              | 5.0             | 0                                                   |                   |  |  |  |
| Copper (Cu)    | 7440-50-8              | ND                                                            | 0.25             | 0.66             | 2.5             | 0                                                   |                   |  |  |  |
| Lead (Pb)      | 7439-92-1              | ND                                                            | 0.20             | 0.52             | 1.0             | 0                                                   |                   |  |  |  |
| Manganese (Mn) | 7439-96-5              | ND                                                            | 0.15             | 0.39             | 1.5             | 0                                                   |                   |  |  |  |
| Mercury (Hg)   | 7439-97-6              | ND                                                            | 0.14             | 0.37             | 0.40            | 0                                                   |                   |  |  |  |
| Nickel (Ni)    | 7440-02-0              | ND                                                            | 0.44             | 1.2              | 4.0             | 0                                                   |                   |  |  |  |
| Selenium (Se)  | 7782-49-2              | ND                                                            | 0.35             | 0.92             | 1.0             | 0                                                   |                   |  |  |  |
| Silver (Ag)    | 7440-22-4              | ND                                                            | 0.71             | 1.9              | 2.0             | 0                                                   |                   |  |  |  |
| Thallium (Tl)  | 7440-28-0              | ND                                                            | 0.40             | 1.0              | 2.0             | 0                                                   |                   |  |  |  |
| Vanadium (V)   | 7440-62-2              | ND                                                            | 0.50             | 1.3              | 5.0             | 0                                                   |                   |  |  |  |
| Zinc (Zn)      | 7440-66-6              | 0.93                                                          | 0.23             | 0.60             | 2.0             | 0.93                                                | В                 |  |  |  |

### Table A-29. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary (Continued) Run 2 INTEC Deionized Water Reagent Blank

#### Sample Collection and Analysis Dates:

Date(s) Collected:

Date(s) of Digestion (Metals):

Date(s) of Digestion (Mercury):

Date(s) of Analysis (Metals):

Date(s) of Analysis (Mercury):

June 25, 2001

June 28, 2001

June 26, 2001

#### Preparation and Analysis Methods:

SW-846 Method 0060: "Determination of Metals in Stack Emissions"

SW-846 Method 7470A: "Mercury in Liquid Waste (Manual Cold Vapor Technique)" SW-846 Method 6010B: "Inductively Coupled Plasma - Atomic Emission Spectroscopy"

- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- <sup>2</sup> This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- The RL is the laboratory Reporting Limit (RL).
- The column titled "Risk Result for Blank Correction" presents a "0" for elements that were analyzed for but not detected down to the method detection limit (MDL). Method 0060 specifically calls out the criteria that are to be applied to blank correct multi-metals train (MMT) data.
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - ♦ A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

Table A-30. Final (Post-Test) Acetone Probe Rinse and Nitric Acid Probe Rinse Composite **Metallic Analyte Analytical Results Summary** 

Field Sample Name:

Final (Post-Test) Acetone Probe Rinse and Nitric Acid Probe Rinse Composite

Sample Description:

Final (Post-Test) Acetone Probe Rinse and Nitric Acid Probe Rinse Composite Sample for Metals (including

Mercury) Analysis

Field Sample ID:

A-3346 and A-3347 H1G030222-002

STL Sample No.:

|                | CAS<br>Registry   |                         |                  |                  |                 |                            |                   |  |  |  |  |
|----------------|-------------------|-------------------------|------------------|------------------|-----------------|----------------------------|-------------------|--|--|--|--|
| Analyte        | Number            | Lab Result <sup>2</sup> | MDL <sup>3</sup> | RDL <sup>4</sup> | RL <sup>5</sup> | Risk Result <sup>6,7</sup> | Flag <sup>8</sup> |  |  |  |  |
|                | <b>540</b> 0 00 5 | 100                     | <b></b>          | 1.4              | 20.0            | 120                        |                   |  |  |  |  |
| Aluminum (Al)  | 7429-90-5         | 120                     | 5.2              | 14               |                 |                            | ъ                 |  |  |  |  |
| Antimony (Sb)  | 7440-36-0         | 1.3                     | 0.60             | 1.6              | 6.0             | < 1.6                      | В                 |  |  |  |  |
| Arsenic (As)   | 7440-38-2         | ND                      | 0.35             | 0.92             | 1.0             | < 0.92                     |                   |  |  |  |  |
| Barium (Ba)    | 7440-39-3         | 3.2                     | 0.35             | 0.92             | 20.0            | 3.2                        | В                 |  |  |  |  |
| Beryllium (Be) | 7440-41-7         | ND                      | 0.089            | 0.23             | 0.50            | < 0.23                     |                   |  |  |  |  |
| Cadmium (Cd)   | 7440-43-9         | 4.1                     | 0.050            | 0.13             | 0.50            | 4.1                        |                   |  |  |  |  |
| Chromium (Cr)  | 7440-47-3         | 1.7                     | 0.25             | 0.66             | 1.0             | 1.7                        |                   |  |  |  |  |
| Cobalt (Co)    | 7440-48-4         | 0.85                    | 0.50             | 1.3              | 5.0             | < 1.3                      | В                 |  |  |  |  |
| Copper (Cu)    | 7440-50-8         | 2.5                     | 0.25             | 0.66             | 2.5             | 2.5                        |                   |  |  |  |  |
| Lead (Pb)      | 7439-92-1         | 3.2                     | 0.20             | 0.52             | 1.0             | 3.2                        |                   |  |  |  |  |
| Manganese (Mn) | 7439-96-5         | 6.1                     | 0.15             | 0.39             | 1.5             | 6.1                        |                   |  |  |  |  |
| Mercury (Hg)   | 7439-97-6         | 0.77                    | 0.14             | 0.37             | 0.40            | 0.77                       |                   |  |  |  |  |
| Nickel (Ni)    | 7440-02-0         | 3.2                     | 0.44             | 1.2              | 4.0             | 3.2                        | В                 |  |  |  |  |
| Selenium (Se)  | 7782-49-2         | ND                      | 0.35             | 0.92             | 1.0             | < 0.92                     |                   |  |  |  |  |
| Silver (Ag)    | 7440-22-4         | 1.8                     | 0.71             | 1.9              | 2.0             | < 1.9                      | В                 |  |  |  |  |
| Thallium (Tl)  | 7440-28-0         | ND                      | 0.40             | 1.0              | 2.0             | < 1.0                      |                   |  |  |  |  |
| Vanadium (V)   | 7440-62-2         | ND                      | 0.50             | 1.3              | 5.0             | < 1.3                      |                   |  |  |  |  |
| Zinc (Zn)      | 7440-66-6         | 50                      | 0.23             | 0.60             | 2.0             | 50                         |                   |  |  |  |  |

### Table A-30. Final (Post-Test) Acetone Probe Rinse and Nitric Acid Probe Rinse Composite Metallic Analyte Analytical Results Summary (Continued)

#### Sample Collection and Analysis Dates:

| Date(s) Collected:              | June 25, 2001 |
|---------------------------------|---------------|
| Date(s) of Digestion (Metals):  | July 08, 2001 |
| Date(s) of Digestion (Mercury): | July 08, 2001 |
| Date(s) of Analysis (Metals):   | July 28, 2001 |
| Date(s) of Analysis (Mercury):  | July 08, 2001 |

#### Preparation and Analysis Methods:

SW-846 Method 0060: "Determination of Metals in Stack Emissions"

SW-846 Method 7470A: "Mercury in Liquid Waste (Manual Cold Vapor Technique)" SW-846 Method 6010B: "Inductively Coupled Plasma - Atomic Emission Spectroscopy"

### Table A-30. Final (Post-Test) Acetone Probe Rinse and Nitric Acid Probe Rinse Composite Metallic Analyte Analytical Results Summary (Continued)

- Based on the selection rules, the **bolded** value is the value or default value assigned to the analyte and is carried through to the sampling train total, if it is determined to be significant.
- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- <sup>4</sup> The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- <sup>5</sup> The RL is the laboratory Reporting Limit (RL).
- Based on the selection rules, the **bolded** value is the value or default value assigned to the analyte using the following guidelines:
  - When the analytical result is greater than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
  - When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
  - When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the result selected by boldface type is the RDL.
  - When the analytical result is not detected down to the MDL, the result selected by boldface type is the RDL.
  - It should be noted that when the RDL is selected using the guidelines above, but the RL is less than the RDL, the RL is included as the "Risk Result".
- When listed, the less than (<) sign indicates that the sample result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value is the default RDL value and the actual value is known to be less than (<) the displayed result.
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
  - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
  - ♦ A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

# APPENDIX B OFFGAS SAMPLING DATA

|  | • |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |

#### **CONTENTS**

| Table B-1.  | SVOC-STRT-1                                            | B1  |
|-------------|--------------------------------------------------------|-----|
| Table B-2.  | SVOC-END-1                                             | B2  |
| Table B-3.  | SVOC-STRT-2                                            | B3  |
| Table B-4.  | SVOC-END-2                                             | B4  |
| Table B-5.  | 0031-STRT-1                                            | B5  |
| Table B-6.  | 0031-END-1                                             | B6  |
| Table B-7.  | 0031-STRT-2                                            | B7  |
| Table B-8.  | 0031-END-2                                             | B8  |
| Table B-9.  | 0050-STRT-1                                            | B9  |
| Table B-10. | 0050-END-1                                             | B10 |
| Table B-11. | 0050-STRT-2                                            | B11 |
| Table B-12. | 0050-END-2                                             | B12 |
|             | 0060-STRT-1                                            |     |
| Table B-14. | 0060-END-1                                             | B14 |
| Table B-15. | 0060-STRT-2                                            | B15 |
| Table B-16. | 0060-END-2                                             | B16 |
| Table B-17. | SVOC emission rates – grams per second comparisons     | B17 |
| Table B-18. | 0031 emission rates – grams per second comparisons     | B18 |
| Table B-19. | 0050 emission rates – grams per second comparisons     | B19 |
| Table B-20. | 0060 emission rates – grams per second comparisons     | B20 |
| Table B-21. | 0060 blank corrected emission rates – grams per second |     |
|             | comparisons                                            |     |
|             | SVOC concentration-basis                               |     |
| Table B-23. | 0031 concentration-basis                               | B23 |
| Table B-24. | 0050 concentration-basis                               | B24 |
|             | 0060 concentration-basis                               |     |
| Table B-26. | 0060 blank corrected concentration-basis               | B26 |
|             |                                                        |     |

Table B-1. SVOC-STRT-1.

#### **SVOC SAMPLING DATA SHEET FOR HLLWE TESTS**

| Site:      | LILL VA/E  | Offgas Tie-in |       | Sampling    | Location                 | NAA    | N OFC 72 | Nozzle No   |           |                                               |          | 2.04   | Est. DP:  | 0.45            | E. T. L. 185 400                             |
|------------|------------|---------------|-------|-------------|--------------------------|--------|----------|-------------|-----------|-----------------------------------------------|----------|--------|-----------|-----------------|----------------------------------------------|
| Project:   |            | 062-01-0866   |       | Duct ID. ii |                          | IVIA   | 12       | Nozzle No   |           |                                               |          |        | Est. K:   | -               | Est. Tstack, °F: 133                         |
| Date:      | 01-1       | 6/18/2001     |       |             | essure, in. WG:          |        | -17.5    | Pitot No.:  | e, III    |                                               |          |        | Est. DH:  |                 | Est. vs, ft/s: 25.8  Operator(s): FE, RW, JA |
| Run No.:   |            | 010-STRT-1    |       | Est. O2, 9  | <del></del>              |        | 20.6     | Pitot Coeff | F -       |                                               | ·        |        | Est. DGM  |                 |                                              |
| Run Type   |            | TEST          | ,     | Est CO2,    |                          | · · ·  | 0        | Meter Box   |           |                                               |          |        | Meter Box |                 |                                              |
| Pbar., in. |            | 25.238        |       | Est. Moist  |                          |        | 1.3%     | +           | 110.      | -                                             |          |        | Pretest   |                 | cfm @ 15 in. Hg                              |
| Tambient,  |            | 60            |       | Impinger    |                          |        | 9        | Y-factor:   |           | ·                                             |          | 1.0328 | 1 101001  | 0.004           | Pitot: pass                                  |
| DGM vol.   | Goal (m³): | 3.00          |       |             | Goal (ft <sup>3</sup> ): |        | 127.080  | Min. endin  | g DGM vo  | . (ft <sup>3</sup> ):                         |          |        | Post-test | 0.002           | cfm @ 8 in. Hg                               |
| Sampling   | Clock      | Velocity      |       | Meter       | Meter                    |        |          | TEN         | MPERATURE | (°F)                                          |          |        | Pump      |                 |                                              |
| Time       | Time       | ΔΡ            |       | ΔΗ          | Volume                   | Heated |          | Me          | eter      | <u>, , , , , , , , , , , , , , , , , , , </u> | Impinger | Aux.   | Vacuum    | %I <sub>i</sub> | COMMENTS                                     |
| (min.)     | (24hr)     | (in. WG)      |       | (in. WG)    | (cubic feet)             | Line   | Stack    | In          | Out       | Filter                                        | Exit     | (XAD)  | (in. Hg)  |                 |                                              |
| 0          | 8:30       | 0.15          | 0.387 | 1.30        | 230.461                  | 260    | 133      | 72          | 64        | 263                                           | 53       | 45     | 8.0       |                 |                                              |
| 10         | 8:40       | 0.15          | 0.387 | 1.30        | 237.360                  | 261    | 133      | 76          | 65        | 262                                           | 49       | 44     | 8.0       | 102             | O2 analyzer =20.5%                           |
| 20         | 8:50       | 0.15          | 0.387 | 1.30        | 244.556                  | 247    | 133      | 79          | 67        | 264                                           | 50       | 44     | 8.0       | 106             | O2 analyzer =20.5%                           |
| 30         | 9:00       | 0.15          | 0.387 | 1.30        | 251.562                  | 261    | 132      | 82          | 68        | 263                                           | 46       | 45     | 8.0       | 103             | O2 analyzer =20.5%                           |
| 40         | 9:10       | 0.15          | 0.387 | 1.30        | 258.689                  | 261    | 132      | 83          | 70        | 262                                           | 45       | 45     | 8.0       | 105             | O2 analyzer =20.5%                           |
| 50         | 9:20       | 0.15          | 0.387 | 1.30        | 265.823                  | 261    | 132      | 84          | 71        | 261                                           | 45       | 47     | 8.0       | 104             | O2 analyzer =20.5%                           |
| 60         | 9:30       | 0.15          | 0.387 | 1.30        | 272.975                  | 261    | 132      | 84          | 72        | 262                                           | 46       | 48     | 8.0       | 105             | O2 analyzer =20.5%                           |
| 70         | 9:40       | 0.15          | 0.387 | 1.30        | 280.105                  | 261    | 132      | 85          | 75        | 261                                           | 46       | 49     | 8.0       | 104             | O2 analyzer =20.5%                           |
| 80         | 9:50       | 0.15          | 0.387 | 1.30        | 287.461                  | 261    | 132      | 85          | 73        | 264                                           | 46       | 50     | 8.0       | 107             | O2 analyzer =20.5%                           |
| 90         | 10:00      | 0.15          | 0.387 | 1.30        | 294.590                  | 261    | 132      | 86          | 73        | 262                                           | 47       | 50     | 8.0       | 104             | O2 analyzer =20.5%                           |
| 100        | 10:10      | 0.15          | 0.387 | 1.30        | 301.627                  | 261    | 132      | 87          | 74        | 263                                           | 47       | 50     | 8.0       | 102             | O2 analyzer =20.6%                           |
| 110        | 10:20      | 0.15          | 0.387 | 1.30        | 308.833                  | 261    | 132      | 87          | 74        | 262                                           | 48       | 51     | 8.0       | 105             | O2 analyzer =20.5%                           |
| 120        | 10:30      | 0.15          | 0.387 | 1.30        | 315.990                  | 261    | 132      | 88          | 75        | 263                                           | 48       | 50     | 8.0       | 104             | O2 analyzer =20.6%                           |
| 130        | 10:40      | 0.15          | 0.387 | 1.30        | 323.180                  | 261    | 132      | 88          | 75        | 262                                           | 48       | 51     | 8.0       | 104             | O2 analyzer =20.6%                           |
| 140        | 10:50      | 0.15          | 0.387 | 1.30        | 330.485                  | 261    | 132      | 89          | 76        | 261                                           | 49       | 55     | 8.0       | 106             | O2 analyzer =20.6%                           |
| 150        | 11:00      | 0.15          | 0.387 | 1.30        | 337.600                  | 261    | 132      | 89          | 77        | 262                                           | 49       | 50     | 8.0       | 103             | O2 analyzer =20.6%                           |
| 160        | 11:10      | 0.15          | 0.387 | 1.30        | 344.840                  | 261    | 132      | 89          | 77        | 261                                           | 48       | 49     | 8.0       | 105             | O2 analyzer =20.5%                           |
| 170        | 11:20      | 0.15          | 0.387 | 1.30        | 352.138                  | 261    | 132      | 90          | 78        | 262                                           | 48       | 49     | 8.0       | 106             | O2 analyzer =20.5%                           |
| 180        | 11:30      | 0.15          | 0.387 | 1.30        | 359.336                  | 261    | 132      | 90          | 78        | 262                                           | 49       | 49     | 8.0       | 104             | END OF TEST                                  |
| Total      | Total      | ΔPavg         |       | Average     | Total                    |        |          | Average     | Temperat  | ures (°F)                                     |          |        | Max.      | Ave. %I         |                                              |
| 180        | 3:00       | 0.150         | 0.387 | 1.30        | 128.875                  | 260    | 132      | 85          | 73        | 262                                           | 48       | 48     | 8.0       | 104             |                                              |

Table B-1. SVOC-STRT-1.

### 0010 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

| Site:             |               | fgas Tie-in | Impinger Box no.: XAD trap Quanterra No.: |            | 9<br><b>A-3355</b> |                    |            |                     |  |
|-------------------|---------------|-------------|-------------------------------------------|------------|--------------------|--------------------|------------|---------------------|--|
| Run No.:          | 0010-STRT-1   |             |                                           |            |                    |                    |            | 7                   |  |
| Component:        | XAD           | KO-1        | Imp-1                                     | Imp-2      |                    | Acid Scrub Section | 1          |                     |  |
| Туре:             | trap          | short stem  | modified                                  | G-S        | short stem         | modified           | modified   |                     |  |
| Reagent:          | XAD-2         | None        | Organics                                  | free water | None               | 2N NaOH            | Silica Gel |                     |  |
| Nominal Contents: | 20 - 40g, dry | Empty       | 100 mL                                    | 100 mL     | Empty              | 100 mL             | 300-400g   |                     |  |
| Post-test Wt., g: | 272.8         | 544.6       | 676.9                                     | 690.5      | 573.6              | 730.8              | 804.2      | Impinger Wt. Gain   |  |
| Pre-test Wt., g:  | 272.1         | 541.7       | 677.7                                     | 690.8      | 572.8              | 732.2              | 782.0      | Impringer vvi. Gain |  |
| Wt. Gain, g:      | 0.7           | 2.9         | -0.8                                      | -0.3       | 0.8                | -1.4               | 22.2       | 24.1                |  |
| Post-test Volume: |               | 0.0         | 100.0                                     | 100.0      | 0.0                |                    |            | Impinger Vol. Gain  |  |
| Pre-test Volume:  |               | 0.0         | 100.0                                     | 100.0      | 0.0                |                    |            | impinger voi. Gain  |  |
| Volume Gain:      |               | 0.0         | 0.0                                       | 0.0        | 0.0                |                    |            | 0.0                 |  |
| Post-test pH:     |               |             | 6.0                                       | 6.0        |                    | 14.0               |            |                     |  |

|      | Filter Lot # | STL-A4023 | OF water Lot # | QCLAB-1 | NaOH Lot# | 000381 |
|------|--------------|-----------|----------------|---------|-----------|--------|
| O2%_ | 20.6         | _         |                |         |           |        |
| CO2% | 0.0          | _         |                |         |           |        |

Record impinger change-out and other important information below:

Table B-1. SVOC-STRT-1.

| Project: 01-1062-01-0866  Run Date: 6/18/2001 |        |         |          |  |  |  |  |  |
|-----------------------------------------------|--------|---------|----------|--|--|--|--|--|
| Run Date:<br>Run Identification:              | 0010-S |         |          |  |  |  |  |  |
| PARAMETER                                     | SYMBOL | UNITS   |          |  |  |  |  |  |
| Absolute Pressure in the Duct                 | Pabs   | in. Hg  | 23.951   |  |  |  |  |  |
| Average Duct Gas Temperature                  | Ts     | R       | 592      |  |  |  |  |  |
| Average Meter Temperature                     | Tm     | R       | 538      |  |  |  |  |  |
| Average Gas Oxygen Content                    | Co2,m  | %       | 20.6     |  |  |  |  |  |
| Average Gas Carbon Dioxide Content            | Cco2,m | %       | 0.0      |  |  |  |  |  |
| Total Impinger Weight Gain (water)            | Ww     | grams   | 24.1     |  |  |  |  |  |
| Nozzle Area                                   | An     | ft²     | 0.000538 |  |  |  |  |  |
| Duct Area                                     | As     | ft²     | 0.7854   |  |  |  |  |  |
| Sample Volume                                 | VmStd  | dscf    | 110.435  |  |  |  |  |  |
| Sample Volume (SI)                            | VmStdm | dscm    | 3.127    |  |  |  |  |  |
| Average Sampling Rate                         | Qm     | dscf/m  | 0.614    |  |  |  |  |  |
| Volume of Water Vapor                         | VwStd  | scf     | 1.136    |  |  |  |  |  |
| Volume of Water Vapor (SI)                    | VwStdm | scm     | 0.0322   |  |  |  |  |  |
| Moisture Fraction                             | Bws    | -       | 0.010    |  |  |  |  |  |
| Dry Gas Molecular Weight                      | Md     | g/g-mol | 28.82    |  |  |  |  |  |
| Wet Gas Molecular Weight                      | Ms     | g/g-mol | 28.71    |  |  |  |  |  |
| Gas Velocity at Nozzle                        | vn     | ft/s    | 25.8     |  |  |  |  |  |
| Gas Velocity at Nozzle (SI)                   | vnm    | m/s     | 7.86     |  |  |  |  |  |
| Average Gas Velocity                          | vncor  | ft/s    | 21.77    |  |  |  |  |  |
| Dry Offgas Flow Rate                          | Qsd    | dscf/h  | 43,494   |  |  |  |  |  |
| Dry Offgas Flow Rate (SI)                     | Qsdm   | dscm/h  | 1,231.6  |  |  |  |  |  |
| Actual Offgas Flow Rate                       | Q      | acf/h   | 61,566   |  |  |  |  |  |
| Intermediate Isokinetic Rate                  | li     | %       | 104.6    |  |  |  |  |  |
| Final Isokinetic Rate                         | I      | %       | 104.3    |  |  |  |  |  |

Table B-1. SVOC-STRT-1.

### **RESULTS**

|                                      |          |                | ON         | CENTRATION     |     |                |         | ٨              | //AS     | S FLOW RATE      | S   |                  |
|--------------------------------------|----------|----------------|------------|----------------|-----|----------------|---------|----------------|----------|------------------|-----|------------------|
|                                      |          | Actual         |            | Standard       | 1   | Dry Standard   |         |                | Г        |                  |     |                  |
|                                      |          | (µg/acm)       |            | (µg/scm)       | i   | (µg/dscm)      |         | μg/min         |          | grams/sec        |     | lb/h             |
| Acenaphthene                         | <        | 2.214e0        |            | 3.1e0          |     | 3.1e0          |         | 6.4e1          |          | 1.1e-6           |     | 8.5e-            |
| Acenaphthylene                       | <        | 2.1e0          |            | 3.0e0          |     | 3.0e0          |         | 6.2e1          |          | 1.0e-6           |     | 8.2e-            |
| Acetophenone                         | <,J      | 1.1e1          | <,J        | 1.6e1          | <,J |                | 1 '     | 3.2e2          |          |                  |     | 4.3e-            |
| Aniline                              | < .      | 2.5e1          | <          | 3.5e1          | < . | 3.5e1          | <       | 7.2e2          | <        | 1.2e-5           |     | 9.6e-            |
| Anthracene                           |          | 2.1e0          | <          | 3.0e0          | <   | 3.0e0          |         | 6.2e1          |          | 1.0e-6           |     | 8.2e-            |
| Benzidine                            | <        | 1.5e2          | <          | 2.1e2          | <   | 2.1e2          |         | 4.4e3          |          | 7.3e-5           |     | 5.8e-            |
| Benzoic acid                         | E        | 1.1e3          |            | 1.6e3          |     | 1.6e3          |         | 3.2e4          |          | 5.4e-4           |     | 4.3e-            |
| Benzo(a)anthracene                   | <        | 2.7e0          | <          | 3.8e0          | <   | 3.8e0          |         | 7.9e1          | <_       | 1.3e-6           | •   | 1.0e-            |
| Benzo(a)pyrene                       | <        | 2.9e1          | <          | 4.1e1          | <   | 4.2e1          | <       | 8.5e2          |          | 1.4e-5           |     | 1.1e-            |
| Benzo(b)fluoranthene                 | <        | 6.8e1          | <          | 9.5e1          | <   | 9.6e1          | <       | 2.0e3          |          | 3.3e-5           | 1   | 2.6e~            |
| Benzo(g,h,i)perylene                 | <        | 3.8e1          | <          | 5.4e1          | <   | 5.4e1          | <       | 1.1e3          |          | 1.9e-5           |     | 1.5e-            |
| Benzo(k)fluoranthene                 | <        | 9.7e1          | <          | 1.4e2          | <_  | 1.4e2          |         | 2.8e3          |          | 4.7e-5           |     | 3.7e-            |
| Benzyl alcohol                       | <        | 1.3e2          | <          | 1.8e2          | <   | 1.8e2          |         | 3.7e3          |          | 6.2e-5           |     | 4.9e-            |
| bis(2-Chloroethoxy)methane           | < <      | 2.3e0          | <<br><     | 3.2e0          | <   | 3.2e0<br>3.5e0 |         | 6.6e1<br>7.2e1 |          | 1.1e-6<br>1.2e-6 |     | 8.7e-4<br>9.6e-4 |
| bis(2-Chloroethyl)ether              |          | 2.5e0          |            | 3.5e0          | 1   |                |         | 7.2e1<br>7.9e2 | 1        |                  |     | 1.0e-            |
| bis(2-Ethylhexyl)phthalate           | <,J<br>< | 2.7e1          | <,J<br><   | 3.8e1          | <,J |                |         | 6.2e1          | <,J      | 1.0e-6           |     | 8.2e-6           |
| 4-Bromophenyl-phenylether            | <        | 2.1e0<br>2.9e0 | <          | 3.0e0<br>4.1e0 | <   | 3.0e0<br>4.2e0 |         | 6.2e1<br>8.5e1 | <        | 1.0e-6<br>1.4e-6 | 1   | 8.2e-4           |
| Butylbenzylphthalate<br>Carbazole    | <        | 2.9e0<br>2.9e0 | <          | 4.1e0<br>4.1e0 | <   | 4.2e0<br>4.2e0 |         | 8.5e1          |          | 1.4e-6<br>1.4e-6 |     | 1.1e-            |
| Garbazole<br>4-Chloro-3-methylphenol |          | 2.9e0<br>3.8e0 | <i>'</i>   | 5.4e0          | <   | 5.4e0          | `       | 1.1e2          |          | 1.4e-6           |     | 1.5e-            |
| 4-Chloroaniline                      | <        | 2.0e1          | / · ·      | 2.8e1          | <   | 2.9e1          | ~       | 5.9e2          |          | 9.8e-6           |     | 7.8e-            |
| 2-Chloronaphthalene                  | <        | 2.1e0          | ` <b>'</b> | 2.9e0          | <   | 3.0e0          |         | 6.1e1          |          | 1.0e-6           |     | 8.1e-6           |
| 2-Chlorophenol                       | <        | 2.1e0<br>2.5e0 | <          | 3.5e0          | <   | 3.5e0          | I       | 7.2e1          | 1        | 1.2e-6           |     | 9.6e-6           |
| 4-Chlorophenyl phenyl ether          | <        | 2.5e0          | `<br><     | 3.5e0          | <   | 3.5e0          |         | 7.2e1          |          | 1.2e-6           | 1   | 9.6e-6           |
| Chrysene                             | <        | 2.7e0          | <          | 3.8e0          | <   | 3.8e0          |         | 7.9e1          |          | 1.3e-6           | -   | 1.0e-            |
| Di-n-butylphthalate                  | <,j      | 2.3e1          | <,J        | 3.2e1          | <.J |                |         | 6.6e2          |          |                  |     | 8.7e-            |
| Di-n-octylphthalate                  | <,J      | 3.6e1          |            | 5.1e1          | <,J |                |         | 1.1e3          | 1 '      |                  |     | 1.4e-4           |
| Dibenz(a,h)anthracene                | <"       | 3.8e1          | <          | 5.4e1          | <"  | 5.4e1          | <"      | 1.1e3          |          | 1.9e-5           |     | 1.5e-4           |
| Dibenzofuran                         | <        | 2.5e0          | <          | 3.5e0          | <   | 3.5e0          | <       | 7.2e1          |          | 1.2e-6           |     | 9.6e-6           |
| 1,2-Dichlorobenzene                  | <        | 2.5e0          | <          | 3.5e0          | <   | 3.5e0          | <       | 7.2e1          | <        | 1.2e-6           | <   | 9.6e-6           |
| 1,3-Dichlorobenzene                  | <        | 2.7e0          | <          | 3.8e0          | <   | 3.8e0          | <       | 7.9e1          | <        | 1.3e-6           | <   | 1.0e-            |
| 1,4-Dichlorobenzene                  | <,J      | 3.6e0          | <,J        | 5.1e0          | <,J | 5.1e0          | <,J     | 1.1e2          | <,J      | 1.8e-6           | <,J | 1.4e-            |
| 3,3'-Dichlorobenzidine               | <        | 2.5e1          | <          | 3.5e1          | <   | 3.5e1          | <       | 7.2e2          | <        | 1.2e-5           | <   | 9.6e-            |
| 2,4-Dichlorophenol                   | <        | 2.9e0          | <          | 4.1e0          | <   | 4.2e0          | <       | 8.5e1          | <        | 1.4e-6           | <   | 1.1e-            |
| Diethylphthalate                     | <,J      | 3.6e0          | <,J        | 5.1e0          | <,J | 5.1e0          | <,J     | 1.1e2          | <,J      | 1.8e-6           | <,J | 1.4e-            |
| Dimethyl phthalate                   | <        | 2.2e0          | <          | 3.0e0          | <   | 3.1e0          | <       | 6.3e1          | <        | 1.1e-6           | <   | 8.3e-6           |
| 2,4-Dimethylphenol                   | <        | 1.3e1          | <          | 1.9e1          | <   | 1.9e1          |         | 3.9e2          |          | 6.5e-6           |     | 5.1e-            |
| 4,6-Dinitro-2-methylphenol           | <        | 2.9e1          | <          | 4.1e1          | <   | 4.2e1          | <       | 8.5e2          | <        | 1.4e-5           | 1   | 1.1e-            |
| 2,4-Dinitrophenol                    | <        | 6.1e1          |            | 8.5e1          | <   | 8.6e1          |         | 1.8e3          |          | 3.0e-5           | 1   | 2.3e-4           |
| 2,4-Dinitrotoluene                   | <        | 2.9e0          | <          | 4.1e0          | <_  | 4.2e0          |         | 8.5e1          | <        | 1.4e-6           |     | 1.1e-            |
| 2,6-Dinitrotoluene                   | <        | 2.7e0          | <          | 3.8e0          | <   | 3.8e0          | 1       | 7.9e1          | <        | 1.3e-6           | 1   | 1.0e-            |
| 1,2-Diphenylhydrazine                | <        | 2.2e0          | <          | 3.1e0          | <   | 3.1e0          |         | 6.4e1          | <        | 1.1e-6           | 1   | 8.5e-6           |
| Fluoranthene                         | <        | 2.3e0          | <          | 3.2e0          | <   | 3.2e0          |         | 6.6e1          |          | 1.1e-6           |     | 8.7e-6           |
| Fluorene                             | <        | 2.3e0          | <          | 3.2e0          | <   | 3.2e0          | <       | 6.6e1          | <        | 1.1e-6           |     | 8.7e-6           |
| Hexachlorocyclopentadiene            | <        | 3.6e1          | <          | 5.1e1          | <   | 5.1e1          | <       | 1.1e3          |          | 1.8e-5           |     | 1.4e-4           |
| Hexachlorobenzene                    | <        | 2.5e0          |            | 3.5e0          |     | 3.5e0          | <       | 7.2e1          |          | 1.2e-6           |     | 9.6e-6           |
| Hexachlorobutadiene                  | <        | 3.4e0          | <          | 4.7e0          | <   | 4.8e0          | <       | 9.8e1          | ,        | 1.6e-6           |     | 1.3e-            |
| Hexachloroethane                     | <        | 3.6e0          | <          | 5.1e0          | <   | 5.1e0          | <       | 1.1e2          |          | 1.8e-6           |     | 1.4e-            |
| Indeno(1,2,3-cd)pyrene               | <        | 3.4e1          | <          | 4.7e1          | <   | 4.8e1          | <       | 9.8e2          |          | 1.6e-5           |     | 1.3e-4           |
| Isophorone                           | <        | 2.3e0          | <          | 3.2e0          | <   | 3.2e0          | <       | 6.6e1          |          | 1.1e-6           |     | 8.7e-6           |
| 2-Methylnaphthalene                  | <        | 2.3e0          | <          | 3.2e0          | <   | 3.2e0          | <       | 6.6e1          | <        | 1.1e-6           |     | 8.7e-0           |
| 2-Methylphenol                       | <        | 1.1e1          | <          | 1.5e1          | <   | 1.5e1          | <       | 3.1e2          |          | 5.1e-6           |     | 4.1e-            |
| 3-Methylphenol & 4-Methylphenol      | <        | 7.7e0          | <          | 1.1e1          | <   | 1.1e1          | 1       | 2.2e2          |          | 3.7e-6           |     |                  |
| N-Nitroso-di-n-propylamine           | < <      | 2.5e0          | <          | 3.5e0          | <   | 3.5e0          | <       | 7.2e1          | <        | 1.2e-6           |     | 9.6e-            |
| N-Nitrosodimethylamine               | 1        | 2.5e0          | <          | 3.5e0          | 1 - | 3.5e0          |         | 7.2e1          | 1        | 1.2e-6           |     | 9.6e-            |
| N-Nitrosodiphenylamine               | <        | 3.4e0          | <          | 4.7e0          | <   | 4.8e0          | <       | 9.8e1          | <        | 1.6e-6           |     | 1.3e-            |
| Naphthalene                          | <        | 2.5e0          | < <        | 3.5e0<br>3.5e0 | <   | 3.5e0<br>3.5e0 | <       | 7.2e1<br>7.2e1 | <        | 1.2e-6<br>1.2e-6 |     | 9.6e-6<br>9.6e-6 |
| 2-Nitroaniline                       | <        | 2.5e0          |            |                | <   |                |         |                | 1        |                  |     |                  |
| 3-Nitroaniline                       | <        | 9.3e0          | <          | 1.3e1          | ,   | 1.3e1          | 1       | 2.7e2          |          | 4.5e-6           |     | 3.6e-            |
| 4-Nitroaniline                       | <        | 8.1e0          | <          | 1.1e1          | <_  | 1.2e1          | <u></u> | 2.4e2          | <u>'</u> | 3.9e-6           | L   | 3.1e-            |

Table B-1. SVOC-STRT-1.

Project: 01-1062-01-0866
Run Date: 6/18/2001
Run Identification: 0010-STRT-1 Run loentinication: Run Type: Lab Report Date: Lab Report Status: (preliminary or final) TEST 8/28/2001 Final

#### **RESULTS**

|                                      |       |        |       |        |       |         | ASS F | LOW RATE | ES    |        |       |        |
|--------------------------------------|-------|--------|-------|--------|-------|---------|-------|----------|-------|--------|-------|--------|
|                                      | Ad    | tual   | Sta   | ndard  |       | tandard | l     |          |       |        |       |        |
|                                      | (µg   | /acm)  | (µg   | /scm)  | (μg/  | dscm)   | μί    | g/min    | gra   | ms/sec |       | lb/h   |
| Nitrobenzene                         | <,J   | 3.6e0  | <,J   | 5.1e0  |       | 5.1e0   |       | 1.1e2    |       | 1.8e-6 |       | 1.4e-5 |
| 2-Nitrophenol                        | <     | 2.1e1  | <     | 2.9e1  |       | 2.9e1   |       | 6.0e2    |       | 1.0e-5 |       | 7.9e-5 |
| 4-Nitrophenol                        | ئ,>   |        |       | 2.4e1  | <,J   | 2.4e1   |       | 5.0e2    |       | 8.3e-6 |       | 6.6e-5 |
| 2,2'-Oxybis(1-chloropropane)         | . <   | 3.2e0  |       | 4.4e0  |       | 4.5e0   |       | 9.2e1    |       | 1.5e-6 |       | 1.2e-5 |
| Pentachlorobenzene                   | <     | 2.3e0  |       | 3.2e0  |       | 3.2e0   |       | 6.6e1    | <     | 1.1e-6 |       | 8.7e-6 |
| Pentachloronitrobenzene              | <     | 2.5e0  | l .   | 3.5e0  | 1     | 3.5e0   |       | 7.2e1    |       | 1.2e-6 |       | 9.6e-6 |
| Pentachlorophenol                    | <     | 6.8e1  |       | 9.5e1  |       | 9.6e1   |       | 2.0e3    | i     | 3.3e-5 |       | 2.6e-4 |
| Phenanthrene                         | <     | 2.2e0  |       | 3.1e0  |       | 3.1e0   |       | 6.4e1    |       | 1.1e-6 |       | 8.5e-6 |
| Phenol                               | <     | 1.7e1  | <     | 2.4e1  |       | 2.5e1   |       | 5.1e2    |       | 8.4e-6 |       | 6.7e-5 |
| Pyrene                               | <     | 2.3e0  | <     | 3.2e0  | <     | 3.2e0   | <     | 6.6e1    |       | 1.1e-6 |       | 8.7e-6 |
| Pyridine                             | <     | 3.8e0  | l .   | 5.4e0  | 1     | 5.4e0   |       | 1.1e2    |       | 1.9e-6 |       | 1.5e-5 |
| 1,2,4,5-Tetrachlorobenzene           | <     | 2.5e0  | <     | 3.5e0  |       | 3.5e0   |       | 7.2e1    |       | 1.2e-6 |       | 9.6e-6 |
| 1,2,4-Trichlorobenzene               | <     | 2.7e0  | <     | 3.8e0  | <     | 3.8e0   |       | 7.9e1    |       | 1.3e-6 |       | 1.0e-5 |
| 2,4,5-Trichlorophenol                | <     | 5.6e0  | l .   | 7.9e0  |       | 8.0e0   |       | 1.6e2    |       | 2.7e-6 |       | 2.2e-5 |
| 2,4,6-Trichlorophenol<br><b>TICs</b> | <     | 3.6e0  | <     | 5.1e0  | <     | 5.1e0   |       | 1.1e2    |       | 1.8e-6 |       | 1.4e-5 |
| Furan, 2,5-dimethyl-                 | N,J,M |        | N,J,M | 4.4e0  | N,J,M |         | N,J,M |          | N,J,M |        | N,J,M | 1.2e-5 |
| 3-Hexanone                           | N,J,M | 4.3e1  | N,J,M | 6.0e1  | N,J,M | 6.1e1   | N,J,M | 1.2e3    | N,J,M | 2.1e-5 | M,J,M | 1.6e-4 |
| 2-Hexanone                           | N,J,M | 5.2e1  | N,J,M | 7.3e1  | N,J,M | 7.4e1   | N,J,M | 1.5e3    | N,J,M | 2.5e-5 | N,J,M | 2.0e-4 |
| Octane, 3-methyl-                    | N,J,M | 1.8e0  | N,J,M | 2.5e0  | N,J,M | 2.5e0   | N,J,M | 5.2e1    | N,J,M | 8.6e-7 | N,J,M | 6.9e-6 |
| Benzaldehyde                         | N,J,M | 2.5e2  | N,J,M | 3.5e2  | N,J,M | 3.5e2   | N,J,M | 7.2e3    | N,J,M | 1.2e-4 | N,J,M | 9.6e-4 |
| Dodecane                             | N,J,M | 1.5e1  | N,J,M | 2.1e1  | N,J,M | 2.1e1   | N,J,M | 4.4e2    | N,J,M | 7.3e-6 | N,J,M | 5.8e-5 |
| Tridecane                            | N,J,M | 4.5e0  | M,L,M | 6.3e0  | N,J,M | 6.4e0   | N,J,M | 1.3e2    | N,J,M | 2.2e-6 | N,J,M | 1.7e-5 |
| Tetradecane                          | N,J,M | 1.9e0  | N,J,M | 2.7e0  | N,J,M | 2.8e0   | N,J,M | 5.6e1    | N,J,M | 9.4e-7 | N,J,M | 7.5e-6 |
| Pentadecane                          | N,J,M | 3.4e0  | N,J,M | 4.7e0  | N,J,M | 4.8e0   | N,J,M | 9.8e1    | N,J,M | 1.6e-6 | N,J,M | 1.3e-5 |
| Phosphoric acid tributyl ester       | N,J,M | 5.2e0  | N,J,M | 7.3e0  | N,J,M | 7.4e0   | M,J,M | 1.5e2    | N,J,M | 2.5e-6 | N,J,M | 2.0e-5 |
| Cyclododecane                        | N,J,M | 7.0e0  | N,J,M | 9.8e0  | N,J,M | 9.9e0   | N,J,M | 2.0e2    | N,J,M | 3.4e-6 | N,J,M | 2.7e-5 |
| Heptadecane                          | N,J,M | 2.0e0  | N,J,M | 2.8e0  | N,J,M | 2.8e0   | N,J,M | 5.8e1    | N,J,M | 9.7e-7 | N,J,M | 7.7e-6 |
| Eicosane                             | N,J,M | 1.4e0  | N,J,M | 1.9e0  | N,J,M | 2.0e0   | N,J,M | 4.0e1    | N,J,M | 6.7e-7 | N,J,M | 5.3e-6 |
| Hexadecanoic acid                    | N,J,M | 1.2e0  | N,J,M | 1.7e0  | N,J,M | 1.7e0   | N,J,M | 3.5e1    | N,J,M | 5.9e-7 | N,J,M | 4.7e-6 |
| Octadecanoic acid                    | N,J,M | 8.1e-1 | N,J,M | 1.1e0  | N,J,M | 1.2e0   | N,J,M | 2.4e1    | N,J,M | 3.9e-7 | N,J,M | 3.1e-6 |
| Phosphine oxide, triphenyl-          | N,J,M | 2.0e0  | N,J,M | 2.8e0  | N,J,M | 2.8e0   | N,J,M | 5.7e1    | N,J,M | 9.5e-7 | N,J,M | 7.6e-6 |
| Heneicosane                          | N,J,M | 4.5e-1 | N,J,M | 6.3e-1 | N,J,M | 6.4e-1  | N,J,M | 1.3e1    | N,J,M | 2.2e-7 | N,J,M | 1.7e-6 |
| Tetratetracontane                    | N,J,M | 1.5e0  | N,J,M | 2.1e0  | N,J,M | 2.1e0   | N,J,M | 4.3e1    | N,J,M | 7.2e-7 | N,J,M | 5.7e-6 |
| Heptane, 2,5-dimethyl-               |       |        |       |        |       |         |       |          |       |        |       |        |
| Heptane, 2,3-dimethyl-               |       |        |       |        |       |         |       |          |       |        | 1     |        |
| Benzaldehyde, ethyl-                 | _     |        |       |        |       |         |       |          |       |        |       |        |
| Octodecane                           | ı     |        | İ     |        |       |         |       |          |       |        | İ     |        |
| Nonacosane                           | ı     |        |       |        |       |         |       |          |       |        |       |        |
| Hexatriacontane                      | ı     |        |       |        |       |         |       |          |       |        |       |        |
| Tetracosane                          |       |        |       |        | ***** |         |       |          |       |        |       |        |
| Tetratriacontane                     | ı     |        |       |        |       |         |       |          |       |        |       |        |

Table B-2. SVOC-END-1.

# **SVOC SAMPLING DATA SHEET FOR HLLWE TESTS**

| Site:            |               | HLLWE Offgas Tie-in | Sampling    | Location:                | MA             | N-OFG-73 | Nozzle No   | .:        |                       |                  | 2-01          | Est. DP:           | 0.14     | Est. Tsta  | ack, °F: | 133    |
|------------------|---------------|---------------------|-------------|--------------------------|----------------|----------|-------------|-----------|-----------------------|------------------|---------------|--------------------|----------|------------|----------|--------|
| Project:         |               | 01-1062-01-0866     | Duct ID, i  | nches:                   |                | 12       | Nozzle Siz  | e, in.:   |                       |                  | 0.3140        | Est. K:            |          | Est. vs, t |          | 25.0   |
| Date:            |               | 6/18/2001           | Static Pre  | essure, in. WG:          |                | -17.5    | Pitot No.:  | 71        |                       |                  |               | Est. DH:           |          | Operator   | r(s):    | FE/RW  |
| Run No.:         |               | 0010-END-1          | Est. O2, 9  | %:                       |                | 20.5     | Pitot Coeff | f.:       |                       |                  |               | Est. DGM           |          |            |          | 80     |
| Run Type         |               |                     | Est CO2,    |                          |                | 0        | Meter Box   | No.       |                       |                  |               | Meter Box          |          |            | Pitot:   |        |
| Pbar., in.       |               | 25.176              | Est. Mois   |                          |                |          | ΔH≥:        |           |                       |                  |               | Pretest            | 0.001    | cfm @      |          | in. Hg |
| Tambient,        |               | 70                  | Impinger    |                          |                | 9        | Y-factor:   | 5014      | (6.3)                 |                  | 1.0328        |                    |          |            |          | pass   |
| DGM Vol.         | Goal (m³):    | 3.00                | DGM Vol.    | Goal (ft <sup>3</sup> ): |                | 127.080  | Min. endin  | g DGM vo  | l. (π <sup>-</sup> ): |                  | 486.849       | Post-test          | 0.000    | cfm @      | 8        | in. Hg |
| Sampling<br>Time | Clock<br>Time | Velocity<br>ΔP      | Meter<br>ΔH | Meter<br>Volume          | 11             |          |             | MPERATURE | (°F)                  |                  |               | Pump               | %I,      |            | COMMENT  | c      |
| (min.)           | (24hr)        | (in. WG)            | (in. WG)    | (cubic feet)             | Heated<br>Line | Stack    | tn Me       | Out       | Filter                | Impinger<br>Exit | Aux.<br>(XAD) | Vacuum<br>(in. Hg) | 764      |            | COMMENT  | 3      |
| 0                | 15:00         | 0.14                | 1.30        | 359.769                  | 257            | 132      | 84          | 75        | 262                   | 50               | 52            | 7.9                |          | O2=20.5    |          |        |
| 10               | 15:10         | 0.14                | 1.30        | 366.680                  | 257            | 132      | 88          | 76        | 263                   | 44               | 51            | 7.9                | 104      | O2=20.5    |          |        |
| 20               | 15:20         | 0.14                | 1.25        | 373.830                  | 257            | 131      | 90          | 78        | 262                   | 46               | 51            | 7.5                | 107      | O2=20.5    |          |        |
| 30               | 15:30         | 0.14                | 1.25        | 380.845                  | 252            | 131      | 91          | 79        | 261                   | 47               | 51            | 7.5                | 105      | O2=20.5    |          |        |
| 40               | 15:40         | 0.14                | 1.25        | 387.920                  | 255            | 131      | 93          | 80        | 262                   | 47               | 52            | 7.5                | 105      | O2=20.5    |          |        |
| 50               | 15:50         | 0.14                | 1.25        | 395.020                  | 250            | 131      | 94          | 81        | 262                   | 48               | 52            | 7.5                | 105      | O2=20.5    |          |        |
| 60               | 16:00         | 0.14                | 1.25        | 402.150                  | 249            | 131      | 94          | 82        | 261                   | 48               | 53            | 7.5                | 106      | O2=20.5    |          |        |
| 70               | 16:10         | 0.14                | 1.25        | 409.290                  | 249            | 131      | 95          | 82        | 261                   | 47               | 51            | 7.5                | 106      | O2=20.6    |          |        |
| 80               | 16:20         | 0.14                | 1.25        | 416.870                  | 249            | 131      | 95          | 82        | 261                   | 46               | 50            | 7.6                | 112      | O2=20.5    |          |        |
| 90               | 16:30         | 0.14                | 1.25        | 423.600                  | 249            | 131      | 95          | 82        | 262                   | 46               | 50            | 7.5                | 100      | O2=20.6    |          |        |
| 100              | 16:40         | 0.14                | 1.25        | 430.740                  | 249            | 131      | 95          | 83        | 261                   | 46               | 50            | 7.5                | 106      | O2=20.5    |          |        |
| 110              | 16:50         | 0.14                | 1.25        | 437.900                  | 249            | 131      | 95          | 83        | 262                   | 46               | 51            | 7.6                | 106      | O2=20.6    |          |        |
| 120              | 17:00         | 0.14                | 1.25        | 445.075                  | 249            | 131      | 95          | 83        | 262                   | 46               | 51            | 7.5                | 106      | O2=20.5    |          |        |
| 130              | 17:10         | 0.14                | 1.25        | 452.200                  | 249            | 131      | 95          | 83        | 260                   | 46               | 52            | 7.5                | 105      | O2=20.5    |          |        |
| 140              | 17:20         | 0.14                | 1.25        | 459.330                  | 249            | 131      | 95          | 83        | 261                   | 47               | 52            | 7.5                | 106      | O2=20.5    |          |        |
| 150              | 17:30         | 0.14                | 1.25        | 466.570                  | 249            | 131      | 95          | 82        | 260                   | 47               | 52            | 7.5                | 107      | O2=20.5    |          |        |
| 160              | 17:40         | 0.14                | 1.25        | 473.610                  | 249            | 131      | 95          | 82        | 260                   | 47               | 51            | 7.5                | 104      | O2=20.5    |          |        |
| 170              | 17:50         | 0.14                | 1.25        | 480.770                  | 249            | 131      | 94          | 82        | 260                   | 46               | 51            | 7.5                | 106      | O2=20.5    |          |        |
| 180              | 18:00         | 0.14                | 1.25        | 487.903                  | 249            | 131      | 94          | 82        | 261                   | 46               | 50            | 7.5                | 106      | O2=20.6    |          |        |
| Total            | Total         | ΔPavg               | Average     | Total                    |                | 1        | Average     | Temperat  | ures (°F)             |                  |               | Max.               | Ave. %li | <u> </u>   | -        |        |
| 180              | 3:00          | 0.140               | 1.26        | 128.134                  | 251            | 131      | 93          | 81        | 261                   | 47               | 51            | 7.9                | 106      | Avg. O2=2  | 0.5      |        |

Table B-2. SVOC-END-1.

# 0010 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

| Site:             | HLLWE Offg    | as Tie-in            | 1              | mpinger Box no.:  |            | 9                  |               |                    |
|-------------------|---------------|----------------------|----------------|-------------------|------------|--------------------|---------------|--------------------|
| Date:             | 6/18/2001     |                      | >              | KAD trap Quanterr | ra No.:    | A-3405             |               |                    |
| Run No.:          | 0010-END-1    |                      |                |                   |            |                    |               | 7                  |
| Component:        | XAD           | KO-1                 | Imp-1          | Imp-2             |            | Acid Scrub Section | <u> </u>      | _                  |
| Туре:             | trap          | short stem           | modified       | G-S               | short stem | modified           | modified      |                    |
| Reagent:          | XAD-2         | None                 | Organics for   | ree water         | None       | 2N NaOH            | Silica Gel    |                    |
| Nominal Contents: | 20 - 40g, dry | Empty                | 100 mL         | 100 mL            | Empty      | 100 mL             | 300-400g      |                    |
| Post-test Wt., g: | 301.4         | 534.9                | 686.9          | 691.5             | 574.2      | 731.0              | 802.8         | Impinger Wt. Gain  |
| Pre-test Wt., g:  | 300.7         | 532.0                | 687.8          | 691.1             | 572.8      | 730.7              | <b>78</b> 1.2 | Impinger W. Gain   |
| Wt. Gain, g:      | 0.7           | 2.9                  | -0.9           | 0.4               | 1.4        | 0.3                | 21.6          | 26.4               |
| Post-test Volume: |               | 0.0                  | 100.0          | 100.0             | 0.0        |                    |               | Impinger Vol. Gain |
| Pre-test Volume:  |               | 0.0                  | 100.0          | 100.0             | 0.0        |                    |               | mpinger ven eum    |
| Volume Gain:      |               | 0.0                  | 0.0            | 0.0               | 0.0        |                    |               | 0.0                |
| Post-test pH:     |               |                      | 6.0            | 6.0               |            | 14.0               |               |                    |
|                   | Filter Lot #  | STL-A4023            | OF water Lot # | QCLAB-1           | NaOH Lot#  | QCLAB-381          |               |                    |
| O2%               | 6 20.6        | ALLANASTE PET AT THE |                |                   | _          |                    |               |                    |
| CO29              | % O.0         | _                    |                |                   |            |                    |               |                    |

Record impinger change-out and other important information below:

Table B-2. SVOC-END-1.

| Project:                           | 01-1062-0 |         |          |
|------------------------------------|-----------|---------|----------|
| Run Date:                          |           |         |          |
| Run Identification:                |           |         |          |
| PARAMETER                          | SYMBOL    |         | 22.222   |
| Absolute Pressure in the Duct      | Pabs      | in. Hg  | 23.889   |
| Average Duct Gas Temperature       | Ts        | R       | 591      |
| Average Meter Temperature          | Tm        | R       | 547      |
| Average Gas Oxygen Content         | Co2,m     | %       | 20.6     |
| Average Gas Carbon Dioxide Content | Cco2,m    | %       | 0.0      |
| Total Impinger Weight Gain (water) | Ww        | grams   | 26.4     |
| Nozzle Area                        | An        | ft²     | 0.000538 |
| Duct Area                          | As        | ft²     | 0.7854   |
| Sample Volume                      | VmStd     | dscf    | 107.847  |
| Sample Volume (SI)                 | VmStdm    | dscm    | 3.054    |
| Average Sampling Rate              | Qm        | dscf/m  | 0.599    |
| Volume of Water Vapor              | VwStd     | scf     | 1.245    |
| Volume of Water Vapor (SI)         | VwStdm    | scm     | 0.0352   |
| Moisture Fraction                  | Bws       | -       | 0.011    |
| Dry Gas Molecular Weight           | Md        | g/g-mol | 28.82    |
| Wet Gas Molecular Weight           | Ms        | g/g-mol | 28.70    |
| Gas Velocity at Nozzle             | vn        | ft/s    | 24.9     |
| Gas Velocity at Nozzle (SI)        | vnm       | m/s     | 7.60     |
| Average Gas Velocity               | vncor     | ft/s    | 21.05    |
| Dry Offgas Flow Rate               | Qsd       | dscf/h  | 41,960   |
| Dry Offgas Flow Rate (SI)          | Qsdm      | dscm/h  | 1,188.2  |
| Actual Offgas Flow Rate            | Q         | acf/h   | 59,517   |
| Intermediate Isokinetic Rate       | li        | %       | 105.8    |
| Final Isokinetic Rate              | I         | %       | 105.6    |

Table B-2. SVOC-END-1.

Project: 01-1062-010866
Run Date: 6/18/2001
Run Identification: 0010-END-1
Run Type:
Lab Report Date: 8/28/2001
Lab Report Status: (preliminary or final)
Final

| fina                                    | l)         | rinai          |     |                      |                |                          |            |                 |                     |                  |           |                  |
|-----------------------------------------|------------|----------------|-----|----------------------|----------------|--------------------------|------------|-----------------|---------------------|------------------|-----------|------------------|
|                                         |            |                |     | CONCENTRATIONS       |                |                          |            | MASS FLOW RATES |                     |                  |           |                  |
|                                         |            | Actual         |     | Standard<br>(ug/scm) | 1              | ry Standard<br>(µg/dscm) |            | μg/min          |                     | grams/sec        |           | lb/h             |
| A                                       |            | ug/acm)        | <   | (µg/scm)<br>3.2e0    | ~              | 3.2e0                    | <          | 6.4e1           | _                   | 1.1e-6           | <         | 8.4e-6           |
| Acenaphtheles                           | < <        | 2.3e0<br>2.2e0 |     | 3.2e0<br>3.1e0       | ı ·            | 3.2e0<br>3.1e0           |            | 6.2e1           | <                   | 1.0e-6           |           | 8.1e-6           |
| Acenaphthylene<br>Acetophenone          | <,J        | 8.3e0          |     |                      | ,J             | 1.2e1                    |            | 2.3e2           |                     | 3.9e-6           |           | 3.1e-5           |
| Aniline                                 | <          | 2.5e1          | <,5 | 3.6e1                | < "            | 3.6e1                    | <,0        | 7.1e2           |                     | 1.2e-5           |           | 9.4e-8           |
| Anthracene                              | <          | 2.2e0          | <   | 3.1e0                | <              | 3.1e0                    | <          | 6.2e1           | <                   | 1.0e-6           |           | 8.1e-6           |
| Benzidine                               | <          | 1.5e2          | <   | 2.2e2                | <              | 2.2e2                    | <          | 4.3e3           | <                   | 7.2e-5           | <         | 5.7e-4           |
| Benzoic acid                            | <,E        | 6.0e2          | <,E | 8.4e2                | <,E            | 8.5e2                    | <,E        | 1.7e4           | <,E                 | 2.8e-4           | <,E       | 2.2e-3           |
| Benzo(a)anthracene                      | <          | 2.8e0          | <   | 3.9e0                | <              | 3.9e0                    | <          | 7.8e1           | <                   | 1.3e-6           | <         | 1.0e-5           |
| Benzo(a)pyrene                          | <          | 3.0e1          | <   | 4.2e1                | <              | 4.3e1                    | <          | 8.4e2           |                     | 1.4e-5           |           | 1.1e-4           |
| Benzo(b)fluoranthene                    | <          | 6.9e1          | <   | 9.7e1                | <              | 9.8e1                    | <          | 1.9e3           |                     | 3.2e-5           |           | 2.6e-4           |
| Benzo(g,h,i)perylene                    | <          | 3.9e1          | <   | 5.5e1                | <              | 5.6e1                    | <          | 1.1e3           | <                   | 1.8e-5           | <         | 1.5e-4           |
| Benzo(k)fluoranthene                    | <          | 9.9e1          | <   | 1.4e2                | < .            | 1.4e2                    | <          | 2.8e3           | <                   | 4.6e-5           | <         | 3.7e-4           |
| Benzyl alcohol                          | <          | 1.3e2          | <   | 1.8e2                | <              | 1.9e2                    | <          | 3.7e3           |                     | 6.2e-5           | <         | 4.9e-4           |
| bis(2-Chloroethoxy)methane              | <          | 2.3e0          |     | 3.2e0                | <              | 3.3e0                    | <          | 6.5e1           | <                   | 1.1e-6           |           | 8.6e-6           |
| bis(2-Chloroethyl)ether                 | <          | 2.5e0          |     | 3.6e0                | <              | 3.6e0                    | <          | 7.1e1           |                     | 1.2e-6           | ı         | 9.4e-6<br>1.9e-4 |
| bis(2-Ethylhexyl)phthalate              | < <        | 5.1e1          | < < | 7.1e1<br>3.0e0       | <              | 7.2e1<br>3.1e0           | -          | 1.4e3<br>6.1e1  | <                   | 2.4e-5<br>1.0e-6 | <         | 8.1e-6           |
| 4-Bromophenyl-phenylether               | <          | 2.2e0<br>3.0e0 | <   | 4.2e0                | 2              | 4.3e0                    | >          | 8.4e1           | <                   | 1.4e-6           | 2         | 1.1e-5           |
| Butylbenzylphthalate                    | <          | 3.0e0          | <   | 4.2e0<br>4.2e0       | [              | 4.3e0<br>4.3e0           | >          | 8.4e1           | <                   | 1.4e-6           | <         | 1.1e-5           |
| Carbazole                               | <          | 3.9e0          | <   | 5.5e0                | <              | 5.6e0                    | <          | 1.1e2           |                     | 1.8e-6           | <         | 1.5e-5           |
| 4-Chloro-3-methylphenol 4-Chloroaniline | <          | 2.1e1          | <   | 2.9e1                | <br>  ~        | 2.9e1                    | <          | 5.8e2           |                     | 9.7e-6           | <         | 7.7e-5           |
| 2-Chloronaphthalene                     | 2          | 2.1e0          | <   | 3.0e0                | <              | 3.0e0                    | <          | 6.0e1           |                     | 1.0e-6           | <         | 8.0e-6           |
| 2-Chlorophenol                          | <          | 2.5e0          | <   | 3.6e0                | <              | 3.6e0                    | <          | 7.1e1           | <                   | 1.2e-6           |           | 9.4e-6           |
| 4-Chlorophenyl phenyl ether             | <          | 2.5e0          | <   | 3.6e0                | <              | 3.6e0                    | <          | 7.1e1           | <                   | 1.2e-6           | <         | 9.4e-€           |
| Chrysene                                | <          | 2.8e0          |     | 3.9e0                | <              | 3.9e0                    | <          | 7.8e1           | <                   | 1.3e-6           | <         | 1.0e-5           |
| Di-n-butylphthalate                     | <,J        | 2.3e1          | <,J | 3.2e1                | <,J            | 3.3e1                    | <,J        | 6.5e2           | <,J                 | 1.1e-5           | <,J       | 8.6e-5           |
| Di-n-octylphthalate                     | <,J        | 3.7e1          | <,J | 5.2e1                | <,J            | 5.2e1                    | <,J        | 1.0e3           |                     | 1.7e-5           |           | 1.4e-4           |
| Dibenz(a,h)anthracene                   | <          | 3.9e1          | <_  | 5.5e1                | <              | 5.6e1                    | <          | 1.1 <u>e3</u>   |                     | 1.8e-5           | <         | 1.5e-4           |
| Dibenzofuran                            | <          | 2.5e0          | <   | 3.6e0                | <              | 3.6e0                    | <          | 7.1e1           | <                   | 1.2e-6           | <         | 9.4e-6           |
| 1,2-Dichlorobenzene                     | <          | 2.5e0          | <   | 3.6e0                | <              | 3.6e0                    | <          | 7.1e1           |                     | 1.2e-6           |           | 9.4e-6           |
| 1,3-Dichlorobenzene                     | <b> </b> < | 2.8e0          | <   | 3.9e0                | <              | 3.9e0                    | <          | 7.8e1           |                     | 1.3e-6           |           | 1.0e-5           |
| 1,4-Dichlorobenzene                     | _ J        | 4.4e0          |     | 6.2e0                | J              | 6.2e0<br>3.6e1           | J<br><     | 1.2e2<br>7.1e2  |                     | 2.1e-6<br>1.2e-5 |           | 1.6e-5<br>9.4e-5 |
| 3,3'-Dichlorobenzidine                  | < <        | 2.5e1<br>3.0e0 |     | 3.6e1<br>4.2e0       | <              | 4.3e0                    | <          | 7.1e2<br>8.4e1  | <                   | 1.4e-6           |           | 1.1e-5           |
| 2,4-Dichlorophenol                      | <          | 3.5e0          | <   | 4.2e0<br>4.9e0       | <              | 4.9e0                    | ~          | 9.7e1           | <                   | 1.6e-6           |           | 1.3e-5           |
| Diethylphthalate                        | <          | 2.2e0          | <   | 3.1e0                | <              | 3.1e0                    | <          | 6.2e1           | <                   | 1.0e-6           |           | 8.2e-6           |
| Dimethyl phthalate 2.4-Dimethylphenol   | \ <u>`</u> | 1.4e1          | <   | 1.9e1                | <              | 1.9e1                    | <          | 3.8e2           | _                   | 6.4e-6           | <         | 5.1e-5           |
| 4,6-Dinitro-2-methylphenol              | <          | 3.0e1          |     | 4.2e1                | <              | 4.3e1                    | <          | 8.4e2           |                     | 1.4e-5           | <         | 1.1e-4           |
| 2.4-Dinitrophenol                       | <          | 6.2e1          |     | 8.7e1                | <              | 8.8e1                    | <          | 1.8e3           |                     | 2.9e-5           | <         | 2.3e-4           |
| 2.4-Dinitrotoluene                      | <          | 3.0e0          | <   | 4.2e0                | <              | 4.3e0                    | <          | 8.4e1           | <                   | 1.4e-6           |           | 1.1e-5           |
| 2,6-Dinitrotoluene                      | <          | 2.8e0          | <   | 3.9e0                | <              | 3.9e0                    | <          | 7.8e1           |                     | 1.3e-6           |           | 1.0e-5           |
| 1,2-Diphenylhydrazine                   | <          | 2.3e0          | <   | 3.2e0                | <              | 3.2e0                    | <          | 6.4e1           |                     | 1.1e-6           |           | 8.4e-6           |
| Fluoranthene                            | <          | 2.3e0          | <   | 3.2e0                | <              | 3.3e0                    | <          | 6.5e1           |                     | 1.1e-6           |           | 8.6e-6           |
| Fluorene                                | <          | 2.3e0          | <   | 3.2e0                | <              | 3.3e0                    | <          | 6.5e1           | <                   | 1.1e-6           |           | 8.6e-6           |
| Hexachlorocyclopentadiene               | <          | 3.7e1          | <   | 5.2e1                | <              | 5.2e1                    | <          | 1.0e3           |                     | 1.7e-5           | <         | 1.4e-4           |
| Hexachlorobenzene                       | <          | 2.5e0          |     | 3.6e0                | <              | 3.6e0                    | < <        | 7.1e1           | <                   | 1.2e-6           |           | 9.4e-6           |
| Hexachlorobutadiene                     | <          | 3.5e0          | <   | 4.9e0                | < <            | 4.9e0                    | <          | 9.7e1<br>1.0e2  | <                   | 1.6e-6<br>1.7e-6 | <         | 1.3e-5<br>1.4e-5 |
| Hexachloroethane                        | < <        | 3.7e0<br>3.5e1 | <   | 5.2e0<br>4.9e1       | <              | 5.2e0<br>4.9e1           | ~          | 9.7e2           | <                   | 1.7e-0           | <         | 1.3e-4           |
| Indeno(1,2,3-cd)pyrene                  | \ <u></u>  | 2.3e0          | ,   | 4.9e1<br>3.2e0       | <              | 3.3e0                    | <          | 6.5e1           | <                   | 1.1e-6           | <         | 8.6e-6           |
| Isophorone                              | <          | 2.3e0<br>2.3e0 |     | 3.2e0                | <              | 3.3e0                    | ~          | 6.5e1           | <                   | 1.1e-6           |           | 8.6e-6           |
| 2-Methylnaphthalene<br>2-Methylphenol   | <          | 1.1e1          | <   | 1.5e1                |                | 1.5e1                    | <          | 3.0e2           |                     | 5.1e-6           | ı         | 4.0e-5           |
| 3-Methylphenol & 4-Methylphenol         | <          | 7.8e0          |     | 1.1e1                | <              | 1.1e1                    | <          | 2.2e2           |                     | 3.7e-6           |           | 2.9e-5           |
| N-Nitroso-di-n-propylamine              | <          | 2.5e0          | <   | 3.6e0                | <              | 3.6e0                    | <          | 7.1e1           | ı                   | 1.2e-6           |           | 9.4e-6           |
| N-Nitrosodimethylamine                  | <          | 2.5e0          | <   | 3.6e0                | <              | 3.6e0                    | <          | 7.1e1           | <                   | 1.2e-6           | <         | 9.4e-€           |
| N-Nitrosodiphenylamine                  | <          | 3.5e0          | <   | 4.9e0                | <              | 4.9e0                    | <          | 9.7e1           | <                   | 1.6e-6           | < .       | 1.3e-5           |
| Naphthalene                             | <          | 2.5e0          | <   | 3.6e0                | <              | 3.6e0                    | <          | 7.1e1           | <                   | 1.2e-6           | <         | 9.4e-6           |
| 2-Nitroaniline                          | <          | 2.5e0          | <   | 3.6e0                | <              | 3.6e0                    | <          | 7.1e1           | <                   | 1.2e-6           | <         | 9.4e-6           |
| 3-Nitroaniline                          | <          | 9.5e0          | <   | 1.3e1                | <              | 1.3e1                    | <          | 2.7e2           |                     | 4.4e-6           | <         | 3.5e-6           |
| 4-Nitroaniline                          | <          | 8.3e0          | <   | 1.2e1                | <              | 1.2e1                    | <          | 2.3e2           |                     | 3.9e-6           |           | 3.1e-5           |
| Nitrobenzene                            | <,J        | 3.5e0          | <,J | 4.9e0                | <b>&lt;</b> ,J | 4.9e0                    | <,J        | 9.7e1           |                     | 1.6e-6           |           | 1.3e-5           |
| 2-Nitrophenol                           | <,J        | 9.5e0          |     | 1 3e1                | <.J            | 1 3e1                    | <,J        | 2.7e2           | 1                   | 4.4e-6           |           | 3.5e-5           |
| 4-Nitrophenol                           | <          | 1.3e1          | <   |                      | <              | 1.8e1                    | <          | 3.6e2           |                     | 5.9e-6           |           | 4.7e-5           |
| 2,2'-Oxybis(1-chloropropane)            | <          | 3.2e0          | <   | 4.5e0                | <              | 4.6e0                    | <b>!</b> < | 9.1e1           | I <sup>&lt;</sup> . | 1.5e-6           | l <u></u> | 1.2e-5           |

Table B-2. SVOC-END-1.

| hriai                           |         |        | CONC  | ENTRATIO | TRATIONS MASS FLOW RATES |         |       |       |       |        |       |        |
|---------------------------------|---------|--------|-------|----------|--------------------------|---------|-------|-------|-------|--------|-------|--------|
|                                 | Ac      | tual   |       | tandard  |                          | tandard |       |       |       |        | 1     |        |
|                                 | (μg/    | acm)   | ()    | ıg/scm)  | (µg/                     | dscm)   | µg/   | min . | gran  | ns/sec | - 1   | b/h    |
| Pentachlorobenzene              | <       | 2.3e0  | <     | 3.2e0    | <                        | 3.3e0   | <     | 6.5e1 | <     | 1.1e-6 | <     | 8.6e-6 |
| Pentachloronitrobenzene         | <       | 2.5e0  | <     | 3.6e0    | <                        | 3.6e0   | <     | 7.1e1 | <     | 1.2e-6 | <     | 9.4e-6 |
| Pentachiorophenol               | <       | 6.9e1  | <     | 9.7e1    | <                        | 9.8e1   |       | 1.9e3 |       | 3.2e-5 |       | 2.6e-4 |
| Phenanthrene                    | <       | 2.3e0  | <     | 3.2e0    | <                        | 3.2e0   |       | 6.4e1 |       | 1.1e-6 |       | 8.4e-6 |
| Phenol                          | <,J     | 8.5e0  | <,J   | 1.2e1    | <,J                      | 1.2e1   | <,J   | 2.4e2 | <,J   | 4.0e-6 | <,J   | 3.2e-5 |
| Pyrene                          | <       | 2.3e0  |       | 3.2e0    | <                        | 3.3e0   |       | 6.5e1 |       | 1.1e-6 |       | 8.6e-6 |
| Pyridine                        | <       | 3.9e0  | <     | 5.5e0    | <                        | 5.6e0   |       | 1.1e2 |       | 1.8e-6 |       | 1.5e-5 |
| 1,2,4,5-Tetrachlorobenzene      | <       | 2.5e0  | <     | 3.6e0    | <                        | 3.6e0   | <     | 7.1e1 | <     | 1.2e-6 |       | 9.4e-6 |
| 1,2,4-Trichlorobenzene          | <       | 2.8e0  |       | 3.9e0    |                          | 3.9e0   |       | 7.8e1 |       | 1.3e-6 |       | 1.0e-5 |
| 2,4,5-Trichlorophenol           | <       | 5.8e0  | <     | 8.1e0    | <                        | 8.2e0   |       | 1.6e2 |       | 2.7e-6 |       | 2.1e-5 |
| 2,4,6-Trichlorophenol           | <       | 3.7e0  | <     | 5.2e0    | <                        | 5.2e0   | <     | 1.0e2 | <     | 1.7e-6 | <     | 1.4e-5 |
| TICs                            |         |        | l     |          |                          |         |       |       |       |        |       |        |
| Furan, 2,5-dimethyl-            | N,J,M   | 1.8e0  | N,J,M | 2.5e0    | N,J,M                    | 2.6e0   | N,J,M |       | N,J,M |        | N,J,M | 6.7e-6 |
| 3-Hexanone                      | N,J,M   |        | N,J,M |          | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 8.2e-5 |
| 2-Hexanone                      | N,J,M   | 2.8e1  | N,J,M |          | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 1.0e-4 |
| Heptane, 2,3-dimethyl-          | N,J,M   |        | N,J,M | 3.2e0    | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 8.5e-6 |
| Benzaldehyde                    | N,J,M   | 1.7e2  | N,J,M | 2.4e2    | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 6.3e-4 |
| Formic acid, phenylmethyl ester | N,J,M   | 1.7e1  | N,J,M |          | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 6.2e-5 |
| Benzaldehyde, 4-ethyl-          | N,J,M   | 1.3e1  | N,J,M |          | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 4.9e-5 |
| Dodecane                        | N, i, M |        | M,J,M |          | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 4.1e-5 |
| Tridecane                       | N,J,M   |        | M,J,M |          | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 1.8e-5 |
| 2,4-Hexadiene                   | N,J,M   |        | M,J,M |          | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 1.4e-4 |
| Tetradecane                     | N,J,M   |        | M,L,N |          | N,J,M                    |         | N,J,M |       | M,J,M |        | N,J,M | 8.2e-5 |
| Phosphoric acid tributyl ester  | N,J,M   |        | N,J,M |          | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 1.4e-5 |
| Cyclododecane                   | N,J,M   |        | N,J,M |          | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 2.6e-5 |
| Heptadecane                     | N,J,M   | 9.2e-1 |       |          | N,J,M                    |         | N,J,M |       | N,J,M |        | N,J,M | 3.4e-6 |
| Octadecanoic acid               | N,J,M   | 4.6e-1 | N,J,M | 6.5e-1   | N,J,M                    | 6.5e-1  | N,J,M | 1.3e1 | N,J,M | 2.2e-7 | N,J,M | 1.7e-6 |
| Heptane, 2,5-dimethyl-          |         |        |       |          |                          |         |       |       |       |        |       |        |
| Benzoic acid, methyl ester      |         |        |       |          | 1                        |         |       |       |       |        |       |        |
| Benzaldehyde, ethyl-            | ŀ       |        |       |          |                          |         |       |       |       |        |       |        |
| Pentadecane                     |         |        |       |          |                          |         |       |       |       |        |       |        |
| Eicosane                        |         |        |       |          |                          |         |       |       | ļ     |        | ļ     |        |
| Heneicosane                     |         |        |       |          |                          |         |       |       |       |        |       |        |
| Octodecane                      |         |        |       |          |                          |         |       |       |       |        |       |        |
| Phosphine oxide, triphenyl-     |         |        |       |          |                          |         |       |       |       |        |       |        |
| Nonacosane                      |         |        |       |          |                          |         |       |       |       |        |       |        |
| Hexatriacontane                 |         |        |       |          |                          |         |       |       |       |        |       |        |
| Tetracosane                     |         |        |       |          |                          |         |       |       |       |        |       |        |
| Tetratriacontane                | ļ       |        | L     |          |                          |         |       |       | Ц     |        | 1     |        |

Table B-3. SVOC-STRT-2.

# **SVOC SAMPLING DATA SHEET FOR HLLWE TESTS**

| Site:        |                | HLLWE Offgas Tie-in | Sampling    | Location:                | 1AM            | N-OFG-73 | Nozzle No   | :          |        |                  | 2-01          | Est. DP:           | 0.16       | Est. Tstack   | k, °F:   | 133    |
|--------------|----------------|---------------------|-------------|--------------------------|----------------|----------|-------------|------------|--------|------------------|---------------|--------------------|------------|---------------|----------|--------|
| Project:     |                | 01-1062-01-0866     | Duct ID, i  | nches:                   |                | 12       | Nozzle Siz  | e, in.:    |        |                  | 0.3140        | Est. K:            | 6.53       | Est. vs, ft/s | s:       | 26.8   |
| Date:        |                | 6/19/2001           | Static Pre  | ssure, in. WG:           |                | -17.5    | Pitot No.:  |            |        |                  |               | Est. DH:           |            | Operator(s    | s):      | FE/RW  |
| Run No.:     |                | 0010-STRT-2         |             |                          |                | 20.5     | Pitot Coeff | :          |        |                  | 0.84          | Est. DGM           | Temperatur | re, °F        |          |        |
| Run Type:    |                |                     | Est CO2,    |                          |                | 0        | Meter Box   | No.        |        |                  |               |                    | Leak Che   | cks:          | Pitot:   | pass   |
| Pbar., in. I |                |                     | Est. Moist  |                          |                | 1.3%     |             |            |        | <del></del>      |               | Pretest            | 0.003      | cfm @         |          | in. Hg |
| Tambient,    |                |                     | Impinger    |                          |                | 4        | Y-factor:   |            | 3.     |                  | 1.0328        |                    |            |               |          | pass   |
| DGM Vol.     | Goal (m³):     | 3.00                | DGM VOI.    | Goal (ft <sup>3</sup> ): |                | 127.080  | Min. endin  |            |        |                  | 615.228       | Post-test          | 0.000      | cfm @         | 6 i      | in. Hg |
| Sampling     | Clock          | Velocity<br>ΔP      | Meter<br>ΔH | Meter                    |                |          |             | PERATURE   | (°F)   |                  |               | Pump               | %l,        |               | O MENTO  |        |
| Time (min.)  | Time<br>(24hr) | (in. WG)            | (in. WG)    | Volume<br>(cubic feet)   | Heated<br>Line | Stack    | In Me       | ter<br>Out | Filter | lmpinger<br>Exit | Aux.<br>(XAD) | Vacuum<br>(in. Hg) | 701;       | ١             | COMMENTS |        |
| 0            | 8:00           | 0.16                | 1.30        | 488.148                  | 267            | 132      | 62          | 53         | 262    | 46               | 48            | 6.0                | -          |               |          |        |
| 10           | 8:10           | 0.16                | 1.30        | 494.990                  | 270            | 133      | 69          | 53         | 263    | 43               | 46            | 6.0                | 100        |               |          |        |
| 20           | 8:20           | 0.16                | 1.30        | 501.989                  | 273            | 133      | 73          | 59         | 267    | 44               | 47            | 6.0                | 101        |               |          |        |
| 30           | 8:30           | 0.16                | 1.30        | 508.995                  | 273            | 132      | 75          | 61         | 262    | 44               | 47            | 6.0                | 101        |               |          |        |
| 40           | 8:40           | 0.16                | 1.30        | 515.900                  | 271            | 132      | 77          | 63         | 269    | 45               | 47            | 6.0                | 99         |               |          |        |
| 50           | 8:50           | 0.16                | 1.30        | 523.020                  | 271            | 132      | 79          | 65         | 263    | 45               | 47            | 6.0                | 102        |               |          |        |
| 60           | 9:00           | 0.16                | 1.30        | 530.080                  | 270            | 132      | 80          | 66         | 264    | 46               | 48            | 6.0                | 101        |               |          |        |
| 70           | 9:10           | 0.16                | 1.30        | 537.101                  | 271            | 132      | 81          | 68         | 264    | 46               | 48            | 6.0                | 100        |               |          |        |
| 80           | 9:20           | 0.16                | 1.30        | 544.260                  | 270            | 132      | 82          | 69         | 262    | 47               | 48            | 6.0                | 102        |               |          |        |
| 90           | 9:30           | 0.16                | 1.30        | 551.510                  | 271            | 132      | 83          | 70         | 262    | 47               | 48            | 6.0                | 103        |               |          |        |
| 100          | 9:40           | 0.16                | 1.30        | 558.270                  | 272            | 132      | 84          | 71         | 262    | 48               | 50            | 6.0                | 96         |               |          |        |
| 110          | 9:50           | 0.16                | 1.30        | 565.420                  | 271            | 132      | 85          | 72         | 263    | 48               | 50            | 6.0                | 101        |               |          |        |
| 120          | 10:00          | 0.16                | 1.30        | 572.570                  | 271            | 132      | 85          | 72         | 263    | 48               | 51            | 6.0                | 101        |               |          |        |
| 130          | 10:10          | 0.16                | 1.30        | 579.710                  | 269            | 132      | 86          | 73         | 263    | 49               | 53            | 6.0                | 101        |               |          |        |
| 140          | 10:20          | 0.16                | 1.30        | 586.860                  | 270            | 132      | 87          | 74         | 263    | 49               | 53            | 6.0                | 100        |               |          |        |
| 150          | 10:30          | 0.16                | 1.30        | 593.900                  | 271            | 132      | 87          | 74         | 264    | 50               | 56            | 6.0                | 99         |               |          |        |
| 160          | 10:40          | 0.16                | 1.30        | 601.150                  | 269            | 132      | 88          | 75         | 264    | 50               | 57            | 6.0                | 102        |               |          |        |
| 170          | 10:50          | 0.16                | 1.30        | 608.300                  | 271            | 132      | 88          | 76         | 262    | 50               | 59            | 6.0                | 100        |               |          |        |
| 180          | 11:00          | 0.16                | 1.30        | 615.462                  | 270            | 132      | 89          | 76         | 262    | 51               | 61            | 6.0                | 100        |               |          |        |
| Total        | Total          | ΔPavg               | Average     | Total                    |                |          | Average     | Temperat   | 1      | 1                | <del></del>   | Max.               | Ave. %I    | 1             |          |        |
| 180          | 3:00           | 0.160               | 1.30        | 127.314                  | 271            | 132      | 81          | 68         | 263    | 47               | 51            | 6.0                | 100        |               |          |        |

Table B-3. SVOC-STRT-2.

# 0010 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

| Site:             | HLLWE O       | ffgas Tie-in                          |                | Impinger Box no.: | 4          | _                  |            |               |
|-------------------|---------------|---------------------------------------|----------------|-------------------|------------|--------------------|------------|---------------|
| Date:             | 6/19/2001     |                                       |                | XAD trap Quanterr | A-3374     | _                  |            |               |
| Run No.:          | 0010-STRT-2   |                                       |                |                   |            |                    |            |               |
| Component:        | XAD           | KO-1                                  | Imp-1          | lmp-2             |            | Acid Scrub Section | n          |               |
| Туре:             | trap          | short stem                            | modified       | G-S               | short stem | modified           | modified   |               |
| Reagent:          | XAD-2         | None                                  | Organics       | free water        | None       | 2N NaOH            | Silica Gel |               |
| Nominal Contents: | 20 - 40g, dry | Empty                                 | 100 mL         | 100 mL            | Empty      | <b>100</b> mL      | 300-400g   | 1             |
| Post-test Wt., g: | 288.7         | 548.8                                 | 696.5          | 683.4             | 536.1      | 730.9              | 837.6      | Impinger Wt.  |
| Pre-test Wt., g:  | 288.5         | 546.3                                 | 698.3          | 683.7             | 535.0      | 733.5              | 813.2      | Gain          |
| Wt. Gain, g:      | 0.2           | 2.5                                   | -1.8           | -0.3              | 1.1        | -2.6               | 24.4       | 23.5          |
| Post-test Volume: |               | 0.0                                   | 100.0          | 100.0             | 0.0        |                    |            | Impinger Vol. |
| Pre-test Volume:  |               | 0.0                                   | 100.0          | 100.0             | 0.0        |                    |            | Gain          |
| Volume Gain:      |               | 0.0                                   | 0.0            | 0.0               | 0.0        |                    |            | 0.0           |
| Post-test pH:     |               |                                       | 6.0            | 6.0               |            | 13.0               |            |               |
|                   | Filter Lot #  | STL-A4023                             | OF water Lot # | QCLAB-1           | NaOH Lot#  | 000381             |            | _             |
| O2%               | 20.6          | · · · · · · · · · · · · · · · · · · · | _              |                   | -          |                    | -          |               |
| CO2%              | 0.0           |                                       |                |                   |            |                    |            |               |

Record impinger change-out and other important information below:

Table B-3. SVOC-STRT-2.

| Project: 01-1062-01-0866                |                  |                 |             |  |  |  |  |  |  |
|-----------------------------------------|------------------|-----------------|-------------|--|--|--|--|--|--|
| Run Date:                               |                  |                 |             |  |  |  |  |  |  |
| Run Identification:                     | 0010-S<br>SYMBOL |                 | <del></del> |  |  |  |  |  |  |
| PARAMETER Absolute Pressure in the Duct | Pabs             | UNITS<br>in. Hg | 23.805      |  |  |  |  |  |  |
|                                         | , 5              |                 |             |  |  |  |  |  |  |
| Average Duct Gas Temperature            | Ts               | R               | 592         |  |  |  |  |  |  |
| Average Meter Temperature               | Tm               | R               | 534         |  |  |  |  |  |  |
| Average Gas Oxygen Content              | Co2,m            | %               | 20.6        |  |  |  |  |  |  |
| Average Gas Carbon Dioxide Content      | Cco2,m           | %               | 0.0         |  |  |  |  |  |  |
| Total Impinger Weight Gain (water)      | Ww               | grams           | 23.5        |  |  |  |  |  |  |
| Nozzle Area                             | An               | ft²             | 0.000538    |  |  |  |  |  |  |
| Duct Area                               | As               | ft²             | 0.7854      |  |  |  |  |  |  |
| Sample Volume                           | VmStd            | dscf            | 109.351     |  |  |  |  |  |  |
| Sample Volume (SI)                      | VmStdm           | dscm            | 3.096       |  |  |  |  |  |  |
| Average Sampling Rate                   | Qm               | dscf/m          | 0.608       |  |  |  |  |  |  |
| Volume of Water Vapor                   | VwStd            | scf             | 1.108       |  |  |  |  |  |  |
| Volume of Water Vapor (SI)              | VwStdm           | scm             | 0.0314      |  |  |  |  |  |  |
| Moisture Fraction                       | Bws              | -               | 0.010       |  |  |  |  |  |  |
| Dry Gas Molecular Weight                | Md               | g/g-mol         | 28.82       |  |  |  |  |  |  |
| Wet Gas Molecular Weight                | Ms               | g/g-mol         | 28.72       |  |  |  |  |  |  |
| Gas Velocity at Nozzle                  | vn               | ft/s            | 26.7        |  |  |  |  |  |  |
| Gas Velocity at Nozzle (SI)             | vnm              | m/s             | 8.15        |  |  |  |  |  |  |
| Average Gas Velocity                    | vncor            | ft/s            | 22.56       |  |  |  |  |  |  |
| Dry Offgas Flow Rate                    | Qsd              | dscf/h          | 44,791      |  |  |  |  |  |  |
| Dry Offgas Flow Rate (SI)               | Qsdm             | dscm/h          | 1,268.3     |  |  |  |  |  |  |
| Actual Offgas Flow Rate                 | Q                | acf/h           | 63,775      |  |  |  |  |  |  |
| Intermediate Isokinetic Rate            | li               | %               | 100.6       |  |  |  |  |  |  |
| Final Isokinetic Rate                   | ı                | %               | 100.3       |  |  |  |  |  |  |

### Table B-3. SVOC-STRT-2.

Project: 01-1062-01-0866
Run Date: 6/19/2001
Run Identification: 0010-STRT-2
Run Type: Test
Lab Report Date: 8/28/2001
Lab Report Status: (preliminary or final)
Final

### **RESULTS**

|                                 | al)                     |                | ON            | CENTRATION | ONS MASS FLOW RATES |             |            |                |                |                  |              |        |  |  |
|---------------------------------|-------------------------|----------------|---------------|------------|---------------------|-------------|------------|----------------|----------------|------------------|--------------|--------|--|--|
|                                 | -                       | Actual         | I             | Standard   |                     | ry Standard |            |                |                |                  |              |        |  |  |
|                                 |                         | (µg/acm)       |               | (µg/scm)   |                     | (µg/dscm)   |            | μg/min         |                | grams/sec        |              | lb/h   |  |  |
| Acenaphthene                    | <,J                     | 3.6e0          | <             | 5.1e0      |                     | 5.2e0       | <,J        | 1.1e2          | <,J            | 1.8e-6           | <,J          | 1.4e-5 |  |  |
| Acenaphthylene                  | <,J                     | 3.6e0          |               | 5.1e0      |                     | 5.2e0       |            | 1.1e2          |                | 1.8e-6           |              | 1.4e-  |  |  |
| Acetophenone                    | -,J                     | 9.5e0          |               | 1.3e1      |                     | 1.4e1       | <,J        | 2.9e2          |                | 4.8e-6           |              | 3.8e-5 |  |  |
| Aniline                         | <'-                     | 3.4e1          |               | 4.8e1      | <                   | 4.8e1       | <          | 1.0e3          |                | 1.7e-5           | <            | 1.4e-4 |  |  |
| Anthracene                      | <,J                     | 3.6e0          |               | 5.1e0      | <.J                 | 5.2e0       | <          | 1.1e2          |                | 1.8e-6           | <,J          | 1.4e-5 |  |  |
| Benzidine                       | < '                     | 1.8e2          |               | 2.6e2      | < '-                | 2.6e2       |            | 5.5e3          |                | 9.1e-5           | <'-          | 7.2e-4 |  |  |
| Benzoic acid                    | lΕ                      | 5.2e2          |               | 7.4e2      | F                   | 7.4e2       | 1          |                | E              | 2.6e-4           | E            | 2.1e-3 |  |  |
| Benzo(a)anthracene              | <,,                     | 4.3e0          |               | 6.1e0      |                     | 6.1e0       |            | 1.3e2          |                | 2.2e-6           | _            | 1.7e-5 |  |  |
| Benzo(a)pyrene                  | <,J                     | 3.2e1          | <,J           | 4.5e1      | <,J                 | 4.5e1       | <,J        | 9.6e2          | <,J            | 1.6e-5           | <,J          | 1.3e-4 |  |  |
| Benzo(b)fluoranthene            | ,,<br><,J               | 6.8e1          |               | 9.6e1      |                     | 9.7e1       | <,J        | 2.0e3          | <,J            | 3.4e-5           | <,J          | 2.7e-4 |  |  |
| Benzo(g,h,i)perylene            | <,J                     | 4.1e1          |               | 5.8e1      |                     | 5.8e1       |            | 1.2e3          |                | 2.0e-5           | <,J          | 1.6e-4 |  |  |
| Benzo(k)fluoranthene            | <,J                     | 9.8e1          | <,J           | 1.4e2      |                     | 1.4e2       | <,J        | 2.9e3          | <,J            | 4.9e-5           | <,J          | 3.9e-4 |  |  |
| Benzyl alcohol                  | <                       | 1.3e2          |               | 1.8e2      | <                   | 1.8e2       | <          | 3.9e3          | <              | 6.5e-5           | <            | 5.1e-4 |  |  |
| bis(2-Chloroethoxy)methane      | <                       | 3.2e0          |               | 4.5e0      | <                   | 4.5e0       | <          | 9.6e1          | <              | 1.6e-6           | <            | 1.3e-5 |  |  |
| bis(2-Chloroethyl)ether         | <.J                     | 3.6e0          |               | 5.1e0      |                     | 5.2e0       | 1          | 1.1e2          | <,J            | 1.8e-6           | ر,>          | 1.4e-5 |  |  |
| bis(2-Ethylhexyl)phthalate      | <,J                     | 2.9e1          | <,J           | 4.2e1      | <,J                 | 4.2e1       | <,J        | 8.9e2          | <,J            | 1.5e-5           | < ,          | 1.2e-4 |  |  |
| 4-Bromophenyl-phenylether       | <,J                     | 4.1e0          |               | 5.8e0      |                     | 5.8e0       | <,J        | 1.2e2          | <,J            | 2.0e-6           | <,J          | 1.6e-5 |  |  |
| Butylbenzylphthalate            | <,J                     | 4.1e0<br>4.3e0 |               | 6.1e0      |                     | 6.1e0       |            | 1.3e2          |                | 2.2e-6           |              | 1.7e-5 |  |  |
| Carbazole                       | <,J                     | 4.1e0          |               | 5.8e0      |                     | 5.8e0       | <,J        | 1.2e2          |                | 2.0e-6           |              | 1.6e-5 |  |  |
| 4-Chloro-3-methylphenol         | <,J                     | 7.0e0          |               | 9.9e0      |                     | 1.0e1       | <,J        | 2.1e2          | <,J            | 3.5e-6           | <,J          | 2.8e-5 |  |  |
| 4-Chloroaniline                 | <                       | 2.5e1          |               | 3.5e1      | <,0                 | 3.6e1       | <          | 7.5e2          | <              | 1.3e-5           | <            | 9.9e-5 |  |  |
| 2-Chloronaphthalene             | \<br>\<br>\<br>\        | 3.4e0          |               | 4.8e0      |                     | 4.8e0       |            |                | -<br> <,J      | 1.7e-6           |              | 1.4e-5 |  |  |
| 2-Chlorophenol                  | د, <i>&gt;</i><br>ال, > |                |               | 4.8e0      |                     | 4.8e0       | <,J        | 1.0e2          |                | 1.7e-6           | >,J<br><,J   | 1.4e-5 |  |  |
|                                 | <,J                     | 3.4e0<br>3.9e0 | <,J<br><,J    | 5.4e0      |                     | 5.5e0       | <,J        | 1.0e2<br>1.2e2 | <b>&gt;</b> ,J | 1.7e-6<br>1.9e-6 | J            | 1.5e-5 |  |  |
| 4-Chlorophenyl phenyl ether     | <,J                     | 4.8e0          | <,J           | 6.7e0      |                     | 6.8e0       |            | 1.4e2          |                | 2.4e-6           |              | 1.9e-5 |  |  |
| Chrysene                        |                         | 2.5e1          |               | 3.5e1      |                     | 3.6e1       |            | 7.5e2          | -,J<br> -,J    | 1.3e-5           | <.J          | 9.9e-5 |  |  |
| Di-n-butylphthalate             | <,J                     | 2.5e1<br>3.6e1 | <,j           | 5.1e1      |                     | 5.2e1       | <,J        | 7.5e2<br>1.1e3 |                | 1.8e-5           | ر, د<br>ار > | 1.4e-4 |  |  |
| Di-n-octylphthalate             | <,J                     |                | <,J           |            |                     |             |            |                | [<,J           |                  |              |        |  |  |
| Dibenz(a,h)anthracene           | <,J                     | 3.9e1          | <,J           | 5.4e1      |                     | 5.5e1       | <,J        | 1.2e3          | <u>&lt;,J</u>  | 1.9e-5           | <,J          | 1.5e-4 |  |  |
| Dibenzofuran                    | <,J                     | 3.9e0          | <,J           | 5.4e0      |                     | 5.5e0       | <,J        | 1.2e2          | <,J            | 1.9e-6           | <,J          | 1.5e-5 |  |  |
| 1,2-Dichlorobenzene             | <,J                     | 3.6e0          |               |            |                     | 5.2e0       | <,J        | 1.1e2          | <,J            | 1.8e-6           |              | 1.4e-5 |  |  |
| 1,3-Dichlorobenzene             | <,J                     | 3.9e0          |               | 5.4e0      | <,J                 | 5.5e0       | •          |                | <b> </b> <,J   | 1.9e-6           |              | 1.5e-5 |  |  |
| 1,4-Dichlorobenzene             | J                       | 4.5e0          | J             | 6.4e0      | J                   | 6.5e0       | J          | 1.4e2          | J.             | 2.3e-6           | J            | 1.8e-5 |  |  |
| 3,3'-Dichlorobenzidine          | <                       | 2.9e1          | <             | 4.2e1      |                     | 4.2e1       | <          | 8.9e2          | <              | 1.5e-5           | <            | 1.2e-4 |  |  |
| 2,4-Dichlorophenol              | <b> </b> < .            | 4.1e0          | < .           | 5.8e0      |                     | 5.8e0       | <b> </b> < | 1.2e2          | ۲.             | 2.0e-6           | < .          | 1.6e-5 |  |  |
| Diethylphthalate                | ر,>                     | 5.0e0          |               | 7.0e0      |                     | 7.1e0       |            | 1.5e2          | <,J            | 2.5e-6           |              | 2.0e-5 |  |  |
| Dimethyl phthalate              | <,J                     | 3.6e0          | <u>&lt;,J</u> | 5.1e0      | <,J                 | 5.2e0       | <,J        | 1.1e2          | <,J            | 1.8e-6           | <,J          | 1.4e-5 |  |  |
| 2,4-Dimethylphenol              | <                       | 1.4e1          | <             |            | <                   | 2.0e1       | <          | 4.2e2          | <              | 7.1e-6           | <            | 5.6e-5 |  |  |
| 4,6-Dinitro-2-methylphenol      | <                       |                | <             | 4.5e1      |                     | 4.5e1       | <          | 9.6e2          | <              | 1.6e-5           | <            | 1.3e-4 |  |  |
| 2,4-Dinitrophenol               | <                       | 6.4e1          | <             | 9.0e1      |                     | 9.0e1       | <          | 1.9e3          | <              | 3.2e-5           | <b> </b> < . | 2.5e-4 |  |  |
| 2,4-Dinitrotoluene              | <,J                     | 4.3e0          |               | 6.1e0      |                     | 6.1e0       |            | 1.3e2          | <,J            | 2.2e-6           | <,J          | 1.7e-5 |  |  |
| 2,6-Dinitrotoluene              | <,J                     |                |               | 5.1e0      |                     | 5.2e0       | <,J        | 1.1e2          | <,J            | 1.8e-6           | <,J          | 1.4e-5 |  |  |
| 1,2-Diphenylhydrazine           | <,J                     | 3.6e0          | <,J           | 5.1e0      |                     | 5.2e0       | <,J        | 1.1e2          | <,J            | 1.8e-6           | <,J          | 1.4e-5 |  |  |
| Fluoranthene                    | <,J                     |                | <,J           |            | <,J                 | 5.5e0       | <,J        | 1.2e2          | <,J            | 1.9e-6           | <,J          | 1.5e-5 |  |  |
| Fluorene                        | <,J                     |                | <,J           | 5.1e0      |                     | 5.2e0       | <,J        | 1.1e2          | <b>&lt;</b> ,J | 1.8e-6           | <,J          | 1.4e-5 |  |  |
| Hexachlorocyclopentadiene       | <                       | 4.1e1          | <             | 5.8e1      | <                   | 5.8e1       | <          | 1.2e3          | <              | 2.0e-5           | <            | 1.6e-4 |  |  |
| Hexachlorobenzene               | <,J                     |                | <,J           | 5.1e0      |                     | 5.2e0       | <,J        | 1.1e2          | <,J            | 1.8e-6           | <,J          | 1.4e-5 |  |  |
| Hexachlorobutadiene             | ال,>                    | 4.5e0          | <,J           |            | <,J                 | 6.5e0       | <,J        | 1.4e2          | <,J            | 2.3e-6           | <,J          | 1.8e-5 |  |  |
| Hexachloroethane                | <,J                     | 4.5e0          | <,J           |            | <,J                 | 6.5e0       | <,J        | 1.4e2          | <,J            | 2.3e-6           | <,J          | 1.8e-5 |  |  |
| Indeno(1,2,3-cd)pyrene          | <,J                     | 3.4e1          | <,J           | 4.8e1      | <,J                 | 4.8e1       | <,J        | 1.0e3          | <,J            | 1.7e-5           | <,J          | 1.4e-4 |  |  |
| Isophorone                      | ر,>                     | 3.6e0          | <,J           |            | ۷,>                 | 5.2e0       | <,J        | 1.1e2          | <,J            | 1.8e-6           | <,J          | 1.4e-5 |  |  |
| 2-Methylnaphthalene             | <,J                     | 3.4e0          | ۷,>           |            | <,J                 | 4.8e0       |            |                | <,J            | 1.7e-6           | <,J          | 1.4e-5 |  |  |
| 2-Methylphenol                  | <                       | 1.2e1          | <             | 1.6e1      | <                   | 1.6e1       | <          | 3.5e2          | <              | 5. <b>8e-</b> 6  | <            | 4.6e-5 |  |  |
| 3-Methylphenol & 4-Methylphenol | <                       | 8.8e0          | <             | 1.2e1      | <                   | 1.3e1       | ٧          |                | <              | 4.4e-6           | <            | 3.5e-5 |  |  |
| N-Nitroso-di-n-propylamine      | <                       | 3.4e0          | <             | 4.8e0      | <                   | 4.8e0       | <          | 1.0e2          | <              | 1.7e-6           | <            | 1.4e-5 |  |  |
| N-Nitrosodimethylamine          | <,J                     | 3.4e0          | <,J           | 4.8e0      | <,J                 | 4.8e0       | <,J        | 1.0e2          | <,J            | 1.7e-6           | ل,>          | 1.4e-5 |  |  |
| N-Nitrosodiphenylamine          | <b>ا</b> ر>             | 4.8e0          | <,J           | 6.7e0      | <,J                 | 6.8e0       | <,J        | 1.4e2          | <,J            | 2.4e-6           | <,J          | 1.9e-5 |  |  |
| Naphthalene                     | <,J                     | 3.9e0          | <,J           | 5.4e0      | <,J                 |             |            | 1.2e2          | <,J            | 1.9e-6           | <,J          | 1.5e-5 |  |  |
| 2-Nitroaniline                  | <                       | 3.9e0          | <             |            | <                   | 5.5e0       | <          | 1.2e2          | <              | 1.9e-6           | <            | 1.5e-5 |  |  |
| 3-Nitroaniline                  | <                       | 1.1e1          | <             | 1.6e1      | <                   | 1.6e1       | <          |                | <              | 5.7e-6           | <            | 4.5e-5 |  |  |
| 4-Nitroaniline                  | <                       | 1.0e1          | <             |            | <                   | 1.4e1       | <          | 3.0e2          |                | 5.0e-6           |              | 4.0e-5 |  |  |

Table B-3. SVOC-STRT-2.

Project: 01-1062-01-0866 Project: 01-1062-01-0866

Run Date: 6/19/2001

Run Identification: 0010-STRT-2

Run Type: Test

Lab Report Date: 8/28/2001

Lab Report Status: (preliminary or final)

Final

**RESULTS** 

| final                           | )       |       | l .    |       |       |        |                 |       |       |        |       |        |
|---------------------------------|---------|-------|--------|-------|-------|--------|-----------------|-------|-------|--------|-------|--------|
|                                 |         |       | ONCENT |       |       |        | MASS FLOW RATES |       |       |        |       |        |
|                                 | Actual  |       | Stan   | dard  |       | andard | l               |       |       |        |       |        |
|                                 | (µg/acm | 1)    | (µg/s  | scm)  | (μg/c | dscm)  | μg/             | min . | gran  | ns/sec | I     | b/h    |
| Nitrobenzene                    | <,J     | 4.5e0 | <,J    | 6.4e0 | <,J   | 6.5e0  | <,J             | 1.4e2 | <,J   | 2.3e-6 | <,J   | 1.8e-5 |
| 2-Nitrophenol                   |         | 8.4e0 | <,J    | 1.2e1 | <,J   | 1.2e1  | <,J             | 2.5e2 | <,J   | 4.2e-6 | <,J   | 3.3e-5 |
| 4-Nitrophenol                   |         | 1.4e1 | <      | 2.0e1 | <     | 2.0e1  | <               | 4.3e2 | <     | 7.2e-6 | <     | 5.7e-5 |
| 2,2'-Oxybis(1-chloropropane)    | <,J     | 5.0e0 | <,J    | 7.0e0 | <,J   | 7.1e0  | <,J             | 1.5e2 | < J   | 2.5e-6 | <,J   | 2.0e-5 |
| Pentachlorobenzene              | <       | 3.4e0 | <      | 4.8e0 | <     | 4.8e0  | <               | 1.0e2 | <     | 1.7e-6 | <     | 1.4e-5 |
| Pentachloronitrobenzene         | <       | 3.6e0 | <      | 5.1e0 | <     | 5.2e0  | <               | 1.1e2 | <     | 1.8e-6 | <     | 1.4e-5 |
| Pentachlorophenol               | <       | 7.0e1 | <      | 9.9e1 | <     | 1.0e2  | <               | 2.1e3 | <     | 3.5e-5 | <     | 2.8e-4 |
| Phenanthrene                    | <,J     | 3.9e0 | <,J    | 5.4e0 | <,J   | 5.5e0  | <,J             | 1.2e2 | <,J   | 1.9e-6 | <,J   | 1.5e-5 |
| Phenol                          | <,J     | 7.5e0 | <,J    | 1.1e1 | <,J   | 1.1e1  | <,J             | 2.3e2 | <,J   | 3.8e-6 | <,J   | 3.0e-5 |
| Pyrene                          | <,J     | 4.1e0 | <,J    | 5.8e0 | <,J   | 5.8e0  | <,J             | 1.2e2 | <,J   | 2.0e-6 | <,J   | 1.6e-5 |
| Pyridine                        | <       | 6.4e0 | <      | 9.0e0 | <     | 9.0e0  | <               | 1.9e2 | <     | 3.2e-6 | <     | 2.5e-5 |
| 1,2,4,5-Tetrachlorobenzene      | <       | 3.6e0 | <      | 5.1e0 | <     | 5.2e0  |                 | 1.1e2 |       | 1.8e-6 |       | 1.4e-5 |
| 1,2,4-Trichlorobenzene          | <,J     | 3.9e0 | <,J    | 5.4e0 | <,J   | 5.5e0  | <,J             | 1.2e2 | <,J   | 1.9e-6 | <,J   | 1.5e-5 |
| 2,4,5-Trichlorophenol           | <       | 6.6e0 | <      | 9.3e0 | <     | 9.4e0  | <               | 2.0e2 | <     | 3.3e-6 |       | 2.6e-5 |
| 2,4,6-Trichlorophenol           | <       | 4.8e0 | <      | 6.7e0 | <     | 6.8e0  | <               | 1.4e2 | <     | 2.4e-6 | <     | 1.9e-5 |
| TICs                            |         |       |        |       |       |        |                 |       |       |        |       |        |
| Furan, 2,5-dimethyl-            | N,J,M   | 2.2e0 | N,J,M  | 3.1e0 | N,J,M | 3.2e0  | N,J,M           |       | N,J,M |        | N,J,M | 8.8e-6 |
| 3-Hexanone                      | N,J,M   | 2.2e1 | N,J,M  | 3.1e1 | M,J,M |        | N,J,M           |       | N,J,M | 1.1e-5 |       | 8.7e-5 |
| Heptane, 2,5-dimethyl-          | N,J,M   | 1.6e0 | N,J,M  | 2.3e0 | N,J,M |        | N,J,M           |       | N,J,M | 8.1e-7 |       | 6.4e-6 |
| Benzaldehyde                    | N,J,M   | 1.5e2 | N,J,M  |       | N,J,M |        | N,J,M           |       | N,J,M | 7.6e-5 |       | 6.1e-4 |
| Formic acid, phenylmethyl este  | N,J,M   | 1.2e1 | N,J,M  | 1.7e1 | N,J,M |        | N,J,M           |       | N,J,M | 5.9e-6 |       | 4.7e-5 |
| Dodecane                        |         | 1.2e1 | N,J,M  |       | N,J,M |        | N,J,M           |       | N,J,M | 6.3e-6 |       | 5.0e-5 |
| Tridecane                       | N,J,M   | 4.1e0 | N,J,M  | 5.8e0 | N,J,M |        | N,J,M           |       | N,J,M | 2.0e-6 |       | 1.6e-5 |
| Naphthalene, 1-methyl-          |         | 1.8e0 | N,J,Q  |       | N,J,Q |        | N,J,Q           |       | N,J,Q | 8.9e-7 |       | 7.0e-6 |
| Tetradecane                     |         |       | N,J,M  | 1.8e1 | N,J,M |        | N,J,M           |       | N,J,M | 6.4e-6 |       | 5.1e-5 |
| Cyclododecane                   |         |       | N,J,M  |       | N,J,M |        | N,J,M           |       | N,J,M | 6.4e-7 |       | 5.1e-6 |
| Hexanedioic acid, bis(2-ethylh) |         |       | N,J,Q  |       | N,J,Q |        | N,J,Q           |       | N,J,Q | 1.1e-6 |       | 9.0e-6 |
| 1,2-Benzenedicarboxylic acid,   |         |       | N,J,Q  |       | N,J,Q |        | N,J,Q           |       | N,J,Q | 9.6e-7 |       | 7.6e-6 |
| Benzo(e)pyrene                  | N,J,Q   | 3.2e0 | D,L,N  | 4.5e0 | D,L,N | 4.5e0  | N,J,Q           | 9.6e1 | N,J,Q | 1.6e-6 | N,J,Q | 1.3e-5 |
| Heptane, 2,3-dimethyl-          |         |       |        |       |       |        |                 |       |       |        |       |        |
| Benzoic acid, methyl ester      |         |       |        |       |       |        |                 |       |       |        |       |        |
| Benzaldehyde, ethyl-            |         |       |        |       |       |        |                 |       |       |        |       |        |
| Pentadecane                     | ł       |       |        |       |       |        |                 |       |       |        |       |        |
| Heptadecane                     | ì       |       |        |       |       |        | İ               |       |       |        |       |        |
| Eicosane                        | ŀ       |       |        |       |       |        |                 |       |       |        |       |        |
| Heneicosane                     |         |       |        |       |       |        |                 |       |       |        |       |        |
| Octodecane                      |         |       | İ      |       |       |        |                 |       |       |        |       |        |
| Phosphine oxide, triphenyl-     |         |       |        |       |       |        |                 |       |       |        |       |        |
| Nonacosane                      | ŀ       |       |        |       |       |        | 1               |       |       |        | 1     |        |
| Hexatriacontane                 |         |       |        |       |       |        |                 |       |       |        |       |        |
| Tetracosane                     |         |       |        |       |       |        |                 |       |       |        | 1     |        |
| Tetratriacontane                |         |       | L      |       |       |        |                 |       |       |        | L     |        |

Table B-4. SVOC-END-2.

## **SVOC SAMPLING DATA SHEET FOR HLLWE TESTS**

| Site:        |        | LILLIANE Office The | C            | 3V00 3AI                  |        |             |                          |           |                        | ***                                   |        |           |                      | I                |              |
|--------------|--------|---------------------|--------------|---------------------------|--------|-------------|--------------------------|-----------|------------------------|---------------------------------------|--------|-----------|----------------------|------------------|--------------|
| Project:     |        | HLLWE Offgas Tie-in | <del> </del> |                           | MA     |             | Nozzie No.               |           |                        |                                       |        | Est. DP:  |                      | Est. Tstack, °F: | 132          |
| Date:        |        | 01-1062-01-0866     |              | ncnes:<br>essure, in. WG: |        | 12<br>-17.5 | Nozzle Siz<br>Pitot No.: | e, in.:   |                        |                                       | 0.3140 |           |                      | Est. vs, ft/s:   | 25.9         |
| Run No.:     |        | 0010-END-2          |              |                           |        |             | Pitot No.:               |           |                        |                                       |        | Est. DH:  | 1.15<br>Temperatur   | Operator(s):     | RW,FE        |
| Run Type:    |        |                     | Est CO2,     |                           |        |             |                          |           |                        |                                       |        |           | Leak Che             | <del></del>      | 80<br>: Pass |
| Pbar., in. I |        | 25.099              | Est. Mois    |                           |        | 1.3%        |                          | NO.       |                        |                                       |        | Pretest   |                      |                  | in. Hg       |
| Tambient,    |        | 75                  | Impinger     | <del> </del>              |        | 2           | Y-factor:                |           |                        |                                       | 1.0328 | 116656    | 0.001                | Pitot            |              |
| DGM vol.     |        | 3.00                |              | Goal (ft <sup>3</sup> ):  |        |             | Min. ending              | g DGM vol | l. (ft <sup>3</sup> ): | · · · · · · · · · · · · · · · · · · · |        | Post-test | 0.001                |                  | in. Hg       |
| Sampling     | Clock  | Velocity            | Meter        | Meter                     |        |             | TEN                      | MPERATURE | (°F)                   |                                       |        | Pump      |                      |                  |              |
| Time         | Time   | ΔΡ                  | ΔН           | Volume                    | Heated |             |                          | ter       |                        | Impinger                              | Aux.   | Vacuum    | %l <sub>i</sub>      | COMMENT          | 's           |
| (min.)       | (24hr) | (in. WG)            | (in. WG)     | (cubic feet)              | Line   | Stack       | In                       | Out       | Filter                 | Exit                                  | (XAD)  | (in. Hg)  |                      |                  |              |
| 0            | 14:00  | 0.14                | 1.30         | 619.354                   | 266    | 132         | 81                       | 76        | 275                    | 55                                    | 64     | 12.5      | -                    |                  |              |
| 10           | 14:10  | 0.14                | 1.30         | 626.430                   | 266    | 132         | 84                       | 77        | 276                    | 52                                    | 58     | 12.5      | 106                  |                  |              |
| 20           | 14:20  | 0.14                | 1.30         | 633.410                   | 266    | 132         | 88                       | 78        | 259                    | 54                                    | 56     | 12.5      | 104                  |                  |              |
| 30           | 14:30  | 0.14                | 1.25         | 640.390                   | 266    | 132         | 90                       | 80        | 260                    | 55                                    | 55     | 12.5      | 104                  |                  |              |
| 40           | 14:40  | 0.14                | 1.20         | 647.200                   | 266    | 132         | 91                       | 81        | 259                    | 55                                    | 55     | 12.1      | 101                  |                  |              |
| 50           | 14:50  | 0.14                | 1.20         | 654.660                   | 266    | 132         | 92                       | 81        | 260                    | 55                                    | 54     | 12.1      | 111                  |                  |              |
| 60           | 15:00  | 0.14                | 1.15         | 661.640                   | 265    | 132         | 93                       | 82        | 260                    | 56                                    | 56     | 11.9      | 103                  |                  |              |
| 70           | 15:10  | 0.14                | 1.15         | 668.610                   | 266    | 132         | 93                       | 82        | 260                    | 56                                    | 57     | 11.9      | 103                  |                  |              |
| 80           | 15:20  | 0.14                | 1.15         | 675.590                   | 266    | 132         | 94                       | 82        | 260                    | 56                                    | 57     | 11.9      | 103                  |                  | ***          |
| 90           | 15:30  | 0.14                | 1.15         | 682.560                   | 266    | 132         | 94                       | 83        | 259                    | <b>5</b> 6                            | 57     | 11.9      | 103                  |                  |              |
| 100          | 15:40  | 0.14                | 1.15         | 689.560                   | 265    | 132         | 95                       | 84        | 259                    | 57                                    | 58     | 11.9      | 103                  |                  |              |
| 110          | 15:50  | 0.14                | 1.15         | 696.570                   | 265    | 132         | 95                       | 84        | 259                    | 57                                    | 59     | 11.9      | 104                  |                  |              |
| 120          | 16:00  | 0.14                | 1.15         | 703.580                   | 265    | 132         | 95                       | 85        | 259                    | 58                                    | 61     | 11.9      | 103                  |                  |              |
| 130          | 16:10  | 0.14                | 1.15         | 710.590                   | 265    | 132         | 95                       | 85        | 259                    | 55                                    | 61     | 11.9      | 103                  |                  |              |
| 140          | 16:20  | 0.14                | 1.14         | 717.620                   | 265    | 132         | 95                       | 85        | 258                    | 53                                    | 59     | 11.9      | 104                  |                  |              |
| 150          | 16:30  | 0.14                | 1.20         | 724.740                   | 265    | 132         | 96                       | 85        | 259                    | 53                                    | 59     | 11.9      | 105                  |                  |              |
| 160          | 16:40  | 0.14                | 1.20         | 731.880                   | 265    | 132         | 96                       | 85        | 258                    | 53                                    | 60     | 11.9      | 105                  |                  |              |
| 170          | 16:50  | 0.14                | 1.20         | 738.740                   | 265    | 132         | 96                       | 86        | 259                    | 54                                    | 60     | 11.9      | 101                  | _                |              |
| 180          | 17:00  | 0.14                | 1.20         | 745.790                   | 265    | 132         | 96                       | 86        | 259                    | 54                                    | 61     | 11.9      | 104                  |                  |              |
| 190          | 17:10  | 0.14                | 1.20         | 752.830                   | 265    | 132         | 96                       | 85        | 259                    | 54                                    | 61     | 11.9      | 104                  |                  |              |
| 195          | 17:15  | 0.14                | 1.20         | 756.352                   | 265    | 132         | 95                       | 86        | 258                    | 54                                    | 62     | 11.9      | 104                  |                  |              |
| Total        | Total  | ΔPavg               | Average      | Total                     |        |             | Average                  | Temperat  | ures (°F)              |                                       |        | Max.      | Ave. %l <sub>i</sub> |                  |              |
| 195          | 3:15   | 0.140               | 1.19         | <b>13</b> 6.998           | 265    | 132         | 93                       | 83        | 261                    | 55                                    | 59     | 12.5      | 104                  |                  |              |

Table B-4. SVOC-END-2.

# 0010 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

| Site:             | HLLWE Offg    | gas Tie-in | 1              | Impinger Box no.: |            | 2                  |            |                    |
|-------------------|---------------|------------|----------------|-------------------|------------|--------------------|------------|--------------------|
| Date:             | 6/19/2001     |            | :              | XAD trap Quanter  | ra No.:    | A-3424             | ·<br>-     |                    |
| Run No.:          | 0010-END-2    |            |                |                   |            |                    |            | _                  |
| Component:        | XAD           | KO-1       | lmp-1          | Imp-2             |            | Acid Scrub Section | n          |                    |
| Туре:             | trap          | short stem | modified       | G-S               | short stem | modified           | modified   |                    |
| Reagent:          | XAD-2         | None       | Organics f     | ree water         | None       | 2N NaOH            | Silica Gel |                    |
| Nominal Contents: | 20 - 40g, dry | Empty      | 100 mL         | 100 mL            | Empty      | 100 mL             | 300-400g   |                    |
| Post-test Wt., g: | 313.3         | 533.9      | 681.7          | 691.6             | 576.5      | 728.6              | 800.7      | Impinger Wt. Gain  |
| Pre-test Wt., g:  | 313.6         | 531.9      | 688.2          | 690.9             | 573.6      | 730.4              | 773.4      | Impinger Wt. Gain  |
| Wt. Gain, g:      | -0.3          | 2.0        | -6.5           | 0.7               | 2.9        | -1.8               | 27.3       | 24.3               |
| Post-test Volume: |               | 0.0        | 100.0          | 100.0             | 0.0        |                    |            | Impinger Vol. Gain |
| Pre-test Volume:  |               | 0.0        | 100.0          | 100.0             | 0.0        |                    |            | Impinger voi. Gain |
| Volume Gain:      |               | 0.0        | 0.0            | 0.0               | 0.0        |                    |            | 0.0                |
| Post-test pH:     |               |            | 6.0            | 6.0               |            | 13.0               |            |                    |
|                   | Filter Lot#   | STL-A4023  | OF water Lot # | QCLAB-1           | NaOH Lot#  | 000381             |            |                    |
| 02%               | 20.6          |            |                |                   | =          |                    | -          |                    |
| CO2%              | 0.0           |            |                |                   |            |                    |            |                    |

Record impinger change-out and other important information below:

Table B-4. SVOC-END-2.

| Project:                           |        | 01-0866 |          |
|------------------------------------|--------|---------|----------|
| Run Date:                          | 6/19/2 |         |          |
| Run Identification:                |        |         |          |
| PARAMETER                          | SYMBOL |         |          |
| Absolute Pressure in the Duct      | Pabs   | in. Hg  | 23.812   |
| Average Duct Gas Temperature       | Ts     | R       | 592      |
| Average Meter Temperature          | Tm     | R       | 547      |
| Average Gas Oxygen Content         | Co2,m  | %       | 20.6     |
| Average Gas Carbon Dioxide Content | Cco2,m | %       | 0.0      |
| Total Impinger Weight Gain (water) | Ww     | grams   | 24.3     |
| Nozzle Area                        | An     | ft²     | 0.000538 |
| Duct Area                          | As     | ft²     | 0.7854   |
| Sample Volume                      | VmStd  | dscf    | 114.799  |
| Sample Volume (SI)                 | VmStdm | dscm    | 3.251    |
| Average Sampling Rate              | Qm     | dscf/m  | 0.589    |
| Volume of Water Vapor              | VwStd  | scf     | 1.146    |
| Volume of Water Vapor (SI)         | VwStdm | scm     | 0.0324   |
| Moisture Fraction                  | Bws    | -       | 0.010    |
| Dry Gas Molecular Weight           | Md     | g/g-mol | 28.82    |
| Wet Gas Molecular Weight           | Ms     | g/g-mol | 28.72    |
| Gas Velocity at Nozzle             | vn     | ft/s    | 25.0     |
| Gas Velocity at Nozzle (SI)        | vnm    | m/s     | 7.62     |
| Average Gas Velocity               | vncor  | ft/s    | 21.09    |
| Dry Offgas Flow Rate               | Qsd    | dscf/h  | 41,913   |
| Dry Offgas Flow Rate (SI)          | Qsdm   | dscm/h  | 1,186.9  |
| Actual Offgas Flow Rate            | Q      | acf/h   | 59,641   |
| Intermediate Isokinetic Rate       | li     | %       | 104.2    |
| Final Isokinetic Rate              | i .    | %       | 103.9    |

Table B-4. SVOC-END-2.

Project:

01-1062-01-0866

Run Date: Run Identification: Run Type: Lab Report Date: Lab Report Status: (preliminary or

6/19/2001 0010-END-2 Test 8/28/2001

**RESULTS** 

|                             | T       | CO    | CENT | RATION         | S   |                |          | MA             | SS F | LOW RAT | ES   |       |
|-----------------------------|---------|-------|------|----------------|-----|----------------|----------|----------------|------|---------|------|-------|
|                             | Actua   |       |      | ndard          |     | Standard       |          |                |      |         |      |       |
|                             | (µg/acı | m)    | (µg  | /scm)          | μg  | (dscm)         | μ        | g/min          | gra  | ms/sec  |      | lb/h  |
| Acenaphthene                | <       | 2.1e0 | <    | 3.0e0          | <   | 3.0e0          | <        | 6.0e1          | <    | 9.9e-7  | <    | 7.9e- |
| Acenaphthylene              | <       | 2.1e0 | <    | 2.9e0          | <   | 2.9e0          | <        | 5.8e1          | <    | 9.6e-7  | <    | 7.6e- |
| Acetophenone                | <,J     | 8.0e0 | <,J  | 1.1e1          | <,J | 1.1e1          | <,J      | 2.3e2          | <,J  | 3.8e-6  | <,J  | 3.0e- |
| Aniline                     | <       | 2.4e1 | <    | 3.4e1          | <   | 3.4e1          | <        | 6.7e2          | <    | 1.1e-5  | <    | 8.9e- |
| Anthracene                  | <       | 2.1e0 | <    | 2.9e0          | <   | 2.9e0          | <        | 5.8e1          | <    | 9.6e-7  | <    | 7.6e- |
| Benzidine                   | <       | 1.4e2 | <    | 2.0e2          | <   | 2.1e2          | <        | 4.1e3          | <    | 6.8e-5  | <    | 5.4e- |
| Benzoic acid                | E       |       | lε   | 8.2e2          | Ε   | 8.3e2          | E        | 1.6e4          | Ε    | 2.7e-4  | Ε    | 2.2e- |
| Benzo(a)anthracene          | <       | 2.6e0 | <    | 3.7e0          | <   | 3.7e0          | <        | 7.3e1          | <    | 1.2e-6  | <    | 9.7e- |
| Benzo(a)pyrene              | <       | 2.8e1 | <    | 4.0e1          | <   | 4.0e1          | <        | 7.9e2          | <    | 1.3e-5  | <    | 1.0e- |
| Benzo(b)fluoranthene        | <       | 6.5e1 | <    | 9.1e1          | <   | 9.2e1          | <        | 1.8e3          | <    | 3.0e-5  | <    | 2.4e- |
| Benzo(g,h,i)perylene        | <       | 3.7e1 | <    | 5.2e1          | <   | 5.2e1          | <        | 1.0e3          | <    | 1.7e-5  | <    | 1.4e- |
| Benzo(k)fluoranthene        | <       | 9.3e1 | <    | 1.3e2          | <   | 1.3e2          | <        | 2.6e3          | <    | 4.4e-5  | <    | 3.5e- |
| Benzyl alcohol              | <       | 1.2e2 | <    | 1.7e2          | <   | 1.8e2          | <        | 3.5e3          | <    | 5.8e-5  | <    | 4.6e- |
| ois(2-Chloroethoxy)methane  | <       | 2.2e0 | <    | 3.0e0          | <   | 3.1e0          | <        | 6.1e1          | <    | 1.0e-6  | <    | 8.0e- |
| ois(2-Chloroethyl)ether     | <       | 2.4e0 | <    | 3.4e0          | <   | 3.4e0          | <        | 6.7e1          | <    | 1.1e-6  | <    | 8.9e- |
| ois(2-Ethylhexyl)phthalate  | <,J     | 3.5e1 | <,J  | 4.9e1          | <.J | 4.9e1          | <,J      | 9.7e2          | <.J  | 1.6e-5  | <, j | 1.3e- |
| 4-Bromophenyl-phenylether   | <       | 2.0e0 | <    | 2.9e0          | <   | 2.9e0          | <        | 5.7e1          | <    | 9.5e-7  | <    | 7.6e- |
| Butylbenzylphthalate        | <       | 2.8e0 | <    | 4.0e0          | <   | 4.0e0          | <        | 7.9e1          | <    | 1.3e-6  | <    | 1.0e- |
| Carbazole                   | <       | 2.8e0 | <    | 4.0e0          | <   | 4.0e0          | <        | 7.9e1          | <    | 1.3e-6  | <    | 1.0e- |
|                             | <       | 3.7e0 | <    | 5.2e0          | <   | 5.2e0          | <        | 1.0e2          |      | 1.7e-6  |      | 1.4e  |
| 4-Chloro-3-methylphenol     | <       | 1.9e1 | <    | 2.7e1          | <   | 2.8e1          | <        | 5.5e2          |      | 9.1e-6  |      | 7.2e  |
| 4-Chloroaniline             | <       | 2.0e0 | <    | 2.8e0          | <   | 2.9e0          | <        |                | <    | 9.4e-7  | <    | 7.5e- |
| 2-Chloronaphthalene         | <       | 2.4e0 | <    | 3.4e0          | <   | 3.4e0          | <        | 6.7e1          |      | 1.1e-6  |      | 8.9e  |
| 2-Chlorophenol              | <       | 2.4e0 | <    | 3.4e0          | <   | 3.4e0          | <        | 6.7e1          | <    | 1.1e-6  |      | 8.9e  |
| 4-Chlorophenyl phenyl ether | <       |       | <    | 3.7e0          | <   | 3.7e0          | <        | 7.3e1          | 1.   | 1.2e-6  |      | 9.7e  |
| Chrysene                    | 1       | 2.6e0 | 1    | 3.7e0          | <,J | 3.1e0          | <.J      | 6.1e2          | l    | 1.0e-5  |      | 8.0e- |
| Di-n-butylphthalate         | < J     | 2.2e1 | <,J  | 4.9e1          | 1 ' | 4.9e1          | 1 '      | 9.7e2          |      | 1.6e-5  | 1 '  | 1.3e- |
| Di-n-octylphthalate         | <,J     | 3.5e1 | <,J  |                | <,J | 5.2e1          | <,J<br>< | 1.0e3          |      | 1.7e-5  |      | 1.4e  |
| Dibenz(a,h)anthracene       | <       | 3.7e1 | <    | 5.2e1<br>3.4e0 | <   | 3.4e0          | <        | 6.7e1          |      | 1.1e-6  |      | 8.9e  |
| Dibenzofuran                | <       | 2.4e0 | <    |                | <   | 3.4e0<br>3.4e0 | <        | 6.7e1          |      | 1.1e-6  | ı    | 8.9e  |
| 1,2-Dichlorobenzene         | <       | 2.4e0 | <    | 3.4e0          | <   | 3.4e0<br>3.7e0 | <        | 7.3e1          | <    | 1.2e-6  |      | 9.7e  |
| 1,3-Dichlorobenzene         | < .     | 2.6e0 | <    | 3.7e0          |     |                |          |                | ı    |         |      | 1.7e  |
| 1,4-Dichlorobenzene         | <,J     | 4.5e0 | <,J  | 6.4e0          | <,J | 6.5e0          | <,J      | 1.3e2          | _    | 2.1e-6  |      | 8.9e  |
| 3,3'-Dichlorobenzidine      | <       | 2.4e1 | <    | 3.4e1          | <   | 3.4e1          | <        | 6.7e2          | < <  | 1.1e-5  |      | 1.0e- |
| 2,4-Dichlorophenol          | <       | 2.8e0 | <    | 4.0e0          | <   | 4.0e0          | <        | 7.9e1          | ŀ    | 1.3e-6  | 1    |       |
| Diethylphthalate            | <       | 3.2e0 | <    | 4.6e0          | <   | 4.6e0          | <        | 9.1e1          |      | 1.5e-6  | 1    | 1.2e  |
| Dimethyl phthalate          | <       | 2.1e0 |      | 2.9e0          | <   | 3.0e0          | <        | 5.8e1          |      | 9.7e-7  |      | 7.7e  |
| 2,4-Dimethylphenol          | <       | 1.3e1 | <    | 1.8e1          | <   | 1.8e1          | <        | 3.6e2          | ł .  | 6.0e-6  | 1    | 4.7e  |
| 4,6-Dinitro-2-methylphenol  | <       | 2.8e1 | <    | 4.0e1          | <   | 4.0e1          | <        | 7.9 <b>e</b> 2 |      | 1.3e-5  | 1    | 1.0e  |
| 2,4-Dinitrophenol           | <       | 5.8e1 | <    | 8.2e1          | <   | 8.3e1          | <        | 1.6e3          |      | 2.7e-5  | 1    | 2.2e  |
| 2,4-Dinitrotoluene          | <       | 2.8e0 | <    | 4.0e0          | <   | 4.0e0          | <        | 7.9e1          |      | 1.3e-6  | _    | 1.0e  |
| 2,6-Dinitrotoluene          | <       | 2.6e0 | <    | 3.7e0          | <   | 3.7e0          | <        | 7.3e1          | 1    | 1.2e-6  |      | 9.7e  |
| 1,2-Diphenylhydrazine       | <       | 2.1e0 | <    | 3.0e0          | <   | 3.0e0          | <        | 6.0e1          | 1    | 9.9e-7  |      | 7.9e  |
| Fluoranthene                | <       | 2.2e0 | <    | 3.0e0          | <   | 3.1e0          | <        | 6.1e1          | 1    | 1.0e-6  |      | 8.0e  |
| Fluorene                    | <       | 2.2e0 | <    | 3.0e0          | <   | 3.1e0          | <        | 6.1e1          |      | 1.0e-6  |      | 8.0e  |
| Hexachlorocyclopentadiene   | <       | 3.5e1 | <    | 4.9e1          | <   | 4.9e1          | <        | 9.7e2          |      | 1.6e-5  |      | 1.3e  |
| Hexachlorobenzene           | <       | 2.4e0 | <    | 3.4e0          | <   | 3.4e0          |          | 6.7 <b>e</b> 1 |      | 1.1e-6  |      | 8.9e  |
| Hexachlorobutadiene         | <       | 3.2e0 | <    | 4.6e0          | <   | 4.6e0          | <        | 9.1e1          | <    | 1.5e-6  |      | 1.2e  |
| Hexachloroethane            | < <     | 3.5e0 | <    | 4.9e0          | <   | 4.9e0          | <        | 9.7e1          | <    | 1.6e-6  |      | 1.3e  |
| Indeno(1,2,3-cd)pyrene      | <       | 3.2e1 | <    | 4.6e1          | <   | 4.6e1          | <        | 9.1 <b>e</b> 2 |      | 1.5e-5  |      | 1.2e  |
| Isophorone                  | <       | 2.2e0 | <    | 3.0e0          | <   | 3.1e0          | <        | 6.1e1          |      | 1.0e-6  |      | 8.0e  |
| 2-Methylnaphthalene         | <       | 2.2e0 | <    | 3.0e0          | <   | 3.1e0          | <        | 6.1e1          | <    | 1.0e-6  |      | 8.0e  |
| 2-Methylphenol              | <       | 1.0e1 | <    | 1.4e1          | <   | 1.4e1          | <        | 2.9e2          | <    | 4.8e-6  | <    | 3.8e  |

Table B-4. SVOC-END-2.

Run Date:

Project: 01-1062-01-0866

Run Identification: Run Type: Lab Report Date: Lab Report Status: (preliminary or final)

6/19/2001 0010-END-2 Test 8/28/2001 Final

### **RESULTS**

| final)                          |          | WASS SLOW DATES |     |          |      |                 |     |        |     |         |     |        |
|---------------------------------|----------|-----------------|-----|----------|------|-----------------|-----|--------|-----|---------|-----|--------|
|                                 |          | CON             |     | TRATION: |      | MASS FLOW RATES |     |        |     |         |     |        |
|                                 | Actual   |                 |     | tandard  |      | Standard        |     |        |     |         |     |        |
|                                 | (µg/acm  | )               | ()  | µg/scm)  | (µ   | g/dscm)         | μ   | rg/min | gr  | ams/sec | l   | lb/h   |
| 3-Methylphenol & 4-Methylphenol | <        | 7.4e0           | <   | 1.0e1    | <    | 1.0e1           | <   | 2.1e2  | <   | 3.4e-6  | <   | 2.7e-5 |
| N-Nitroso-di-n-propylamine      |          | 2.4e0           |     | 3.4e0    |      | 3.4e0           | <   | 6.7e1  | <   | 1.1e-6  | <   | 8.9e-6 |
| N-Nitrosodimethylamine          |          | 2.4e0           | <   | 3.4e0    |      | 3.4e0           | <   | 6.7e1  | <   | 1.1e-6  | <   | 8.9e-6 |
| N-Nitrosodiphenylamine          |          | 3.2e0           | <   | 4.6e0    | ł    | 4.6e0           | <   | 9.1e1  | <   | 1.5e-6  | <   | 1.2e-5 |
| Naphthalene                     |          | 2.4e0           | <   | 3.4e0    |      | 3.4e0           | <   | 6.7e1  | <   | 1.1e-6  | <   | 8.9e-6 |
| 2-Nitroaniline                  | < :      | 2.4e0           | <   | 3.4e0    | <    | 3.4e0           | <   | 6.7e1  | <   | 1.1e-6  | <   | 8.9e-6 |
| 3-Nitroaniline                  | <        | 3.9e0           | <   | 1.2e1    | <    | 1.3e1           | <   | 2.5e2  | <   | 4.2e-6  |     | 3.3e-5 |
| 4-Nitroaniline                  | <        | 7.8e0           | <   | 1.1e1    | <    | 1.1e1           | <   | 2.2e2  | <   | 3.7e-6  | <   | 2.9e-5 |
| Nitrobenzene                    | <,J :    | 2.6e0           | <,J | 3.7e0    | ر >  | 3.7e0           | <,J | 7.3e1  | <,J | 1.2e-6  | <,J | 9.7e-6 |
| 2-Nitrophenol                   | 1        | 1,1e1           | <,J | 1.6e1    | <,J  | 1.6e1           | <,J | 3.1e2  | <,J | 5.2e-6  | <,J | 4.1e-5 |
| 4-Nitrophenol                   |          | 1.2e1           | <,J | 1.7e1    | <, J | 1.7e1           | <,J | 3.3e2  | <,J | 5.6e-6  | <,J | 4.4e-5 |
| 2,2'-Oxybis(1-chloropropane)    |          | 3.0e0           | <   | 4.3e0    | <    | 4.3e0           | <   | 8.5e1  | <   | 1.4e-6  | <   | 1.1e-5 |
| Pentachlorobenzene              | < :      | 2.2e0           | <   | 3.0e0    | <    | 3.1e0           | <   | 6.1e1  | <   | 1.0e-6  | <   | 8.0e-6 |
| Pentachloronitrobenzene         | < :      | 2.4e0           | <   | 3.4e0    |      | 3.4e0           | <   | 6.7e1  | <   | 1.1e-6  | <   | 8.9e-6 |
| Pentachlorophenol               | < 1      | 3.0e1           | <   | 1.1e2    | <    | 1.1e2           | <   | 2.3e3  | <   | 3.8e-5  | <   | 3.0e-4 |
| Phenanthrene                    | 1        | 2.1e0           | <   | 3.0e0    | <    | 3.0e0           | <   | 6.0e1  | <   | 9.9e-7  | <   | 7.9e-6 |
| Phenol                          | <,J      | 3.4e0           | <,J | 1.2e1    | <,J  | 1.2e1           | <,J | 2.4e2  | <,J | 4.0e-6  | <,J | 3.1e-5 |
| Pyrene                          | < :      | 2.2e0           | <   | 3.0e0    | <    | 3.1e0           | <   | 6.1e1  | <   | 1.0e-6  | <   | 8.0e-6 |
| Pyridine                        | < :      | 3.7e0           | <   | 5.2e0    | <    | 5.2e0           | <   | 1.0e2  | <   | 1.7e-6  | <   | 1.4e-5 |
| 1,2,4,5-Tetrachlorobenzene      | < :      | 2.4e0           | <   | 3.4e0    | <    | 3.4e0           | <   | 6.7e1  | <   | 1.1e-6  | <   | 8.9e-6 |
| 1.2.4-Trichlorobenzene          | <        | 2.6e0           | <   | 3.7e0    | <    | 3.7e0           | <   | 7.3e1  | <   | 1.2e-6  | <   | 9.7e-6 |
| 2,4,5-Trichlorophenol           | < !      | 5.4e0           | <   | 7.6e0    | <    | 7.7e0           | <   | 1.5e2  | <   | 2.5e-6  | <   | 2.0e-5 |
| 2,4,6-Trichlorophenol           | < :      | 3.5e0           | <   | 4.9e0    | <    | 4.9e0           | <   | 9.7e1  | <   | 1.6e-6  | <   | 1.3e-5 |
| TICs                            |          |                 |     |          |      |                 |     |        |     |         |     |        |
| 3-Hexanone                      | N,J,     | 1.5e1           | N,J | 2.1e1    | N,J  | 2.2e1           | N,J | 4.3e2  | N,J | 7.1e-6  | N,J | 5.6e-5 |
| Benzaldehyde                    |          | 1.6e2           | N,J | 2.2e2    | N,J  | 2.2e2           | N,J | 4.4e3  | N,J | 7.4e-5  | N,J | 5.9e-4 |
| 2-Cyclohexene-1-one, 3-methyl-  |          | .9e-1           | N,J | 9.7e-1   | N,J  | 9.8e-1          | N,J | 1.9e1  | N,J | 3.2e-7  | N,J | 2.6e-6 |
| Formic acid, phenylmethyl ester |          | 2.1e1           |     | 2.9e1    | N,J  | 2.9e1           | N,J | 5.8e2  | N,J | 9.6e-6  | N,J | 7.6e-5 |
| Benzaldehyde, ethyl-            | N,J,     | 1.3e1           | N,J | 1.9e1    | N,J  | 1.9e1           | N,J | 3.7e2  | N,J | 6.2e-6  | N,J | 4.9e-5 |
| Dodecane                        |          | 3.0e0           | N,J | 1.1e1    | N,J  | 1.1e1           | N,J | 2.3e2  | N,J | 3.8e-6  | N,J | 3.0e-5 |
| Tridecane                       |          | 4.5e0           | N,J | 6.4e0    | N,J  | 6.5e0           | N,J | 1.3e2  | N,J | 2.1e-6  | N,J | 1.7e-5 |
| 2,4-Hexadiene                   | N,J, €   | 3.1e0           | N,J | 8.5e0    | N,J  | 8.6e0           | N,J | 1.7e2  | N,J | 2.8e-6  | N,J | 2.3e-5 |
| 2,5-Diethylphenol               | N,J, 2   | 2.2e1           | N,J | 3.0e1    | N,J  | 3.1e1           | N,J | 6.1e2  | N,J | 1.0e-5  | N,J | 8.0e-5 |
| Tetradecane                     | N,J, 2   | 2.1e1           | N,J | 3.0e1    | N,J  | 3.0e1           | N,J | 6.0e2  | N,J | 1.0e-5  | N,J | 8.0e-5 |
| Hexatriacontane                 | N,J,     | 1.2e0           | N,J | 1.7e0    | N,J  | 1.8e0           | N,J | 3.5e1  | N,J | 5.8e-7  | N,J | 4.6e-6 |
| Phosphoric acid tributyl ester  | N,J, :   | 5.2e0           | N,J | 7.3e0    | N,J  | 7.4e0           | N,J | 1.5e2  | N,J | 2.4e-6  | N,J | 1.9e-5 |
| Cyclododecane                   | N,J, 2   | 2.8e0           | N,J | 4.0e0    | N,J  | 4.0e0           | N,J | 7.9e1  | N,J | 1.3e-6  | N,J | 1.0e-5 |
| Pentadecane                     | N,J, 9   | .7e-1           | N,J | 1.4e0    | N,J  | 1.4e0           | N,J | 2.7e1  | N,J | 4.6e-7  | N,J | 3.6e-6 |
| Heneicosane                     | N,J, :   | 2.0e0           | N,J | 2.8e0    | N,J  | 2.8e0           | N,J | 5.5e1  | N,J | 9.2e-7  | N,J | 7.3e-6 |
| Tetracosane                     | N,J, -   | 5.6e0           | N,J | 7.9e0    | N,J  | 8.0e0           | N,J | 1.6e2  | N,J | 2.6e-6  | N,J | 2.1e-5 |
| Pentacosane                     | N,J, 8   | 3.0e0           | N,J | 1.1e1    | Ñ,Ĵ  | 1.1e1           | N,J | 2.3e2  | N,J | 3.8e-6  | N,J | 3.0e-5 |
| Hexacosane                      | N,J,     | 1.4e1           | N,J | 1.9e1    | N,J  | 2.0e1           | N,J | 3.9e2  | N,J | 6.5e-6  | N,J | 5.2e-5 |
| Heptacosane                     | N,J,     | 1.8e1           | N,J | 2.5e1    | N,J  | 2.6e1           | N,J | 5.1e2  | N,J | 8.4e-6  | N,J | 6.7e-5 |
| Hexatriacontane                 | N,J, 4   | 1.3e1           | N,J | 6.1e1    | N,J  | 6.2e1           | N,J | 1.2e3  | N,J |         | N,J | 1.6e-4 |
| Eicosane                        | N,J, 4   | 1.1e0           | N,J | 5.8e0    | N,J  | 5.8e0           | N,J | 1.2e2  | N,J | 1.9e-6  | N,J | 1.5e-5 |
| Furan, 2,5-dimethyl-            |          |                 |     |          |      |                 |     |        |     |         |     |        |
| Heptane, 2,5-dimethyl-          |          |                 |     | į        |      |                 |     |        |     |         |     |        |
| Heptane, 2,3-dimethyl-          |          |                 |     |          |      |                 |     |        |     |         |     |        |
| Benzoic acid, methyl ester      |          |                 |     |          | "    |                 |     |        |     |         |     |        |
| Heptadecane                     |          |                 |     |          |      |                 |     |        |     |         |     |        |
| Octodecane                      |          |                 |     |          |      |                 |     |        |     |         |     |        |
| Phosphine oxide, triphenyl-     |          |                 |     |          |      |                 |     |        |     |         |     |        |
| Nonacosane                      |          |                 |     |          |      |                 |     |        |     |         |     |        |
| Tetratriacontane                |          |                 |     |          | L    |                 |     | ,,     |     |         |     |        |
| - Ciratriacontante              | <u> </u> |                 |     |          |      |                 |     |        |     |         |     |        |

| Table B-5. 0031-STRT-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                              |                                                      |                               |                                           |                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------|-------------------------------------------|------------------------------------|--|
| VOST SAMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PLING DAT                                                    | A SHEF                                                                                       | <u></u>                                              |                               |                                           |                                    |  |
| Site: HLLWE Offgas Tie-in Run No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0031-S1                                                      |                                                                                              | Meter Box N                                          | lo.:                          | 1 & 2                                     |                                    |  |
| Project: 01-1062-01-0866 Run Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tes                                                          |                                                                                              | Y-factor:                                            |                               |                                           | 4/1.005                            |  |
| Date: 6/20/2001 Pbar., in. Hg:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.29                                                        |                                                                                              | Operator:                                            |                               |                                           | /FE/JA                             |  |
| Date. 0/20/2001   Foar., III. Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.2                                                         | <u> </u>                                                                                     | Toberaior.                                           |                               | 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \   | ,                                  |  |
| VOST Tube Leak Check Sampling Sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mpling                                                       | Probe                                                                                        | Condenser                                            | Meter                         | Meter                                     | Pump                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ime                                                          | Temp.                                                                                        | Temp.                                                | Temp.                         | Volume                                    | Vacuum                             |  |
| Numbers (L/min) (in. Hg) (L/min) (24 hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (min.)                                                       | (°C)                                                                                         | (°C)                                                 | (°C)                          | (L)                                       | (in. Hg)                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 130                                                                                          | 5.0                                                  | 15                            | 0.000                                     | 4.5                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 130                                                                                          | 5.0                                                  | 17                            | 2.884                                     | 4.5                                |  |
| I TOTAL CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONT | description of the second                                    | 130                                                                                          | 4.0                                                  | 17                            | 6.083                                     | 4.5                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 130                                                                                          | 5.0                                                  | 19                            | 9.194                                     | 4.7                                |  |
| A-3361 8:25<br>8:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              | 130                                                                                          | 5.0                                                  | 19                            | 12.439                                    | 4.7                                |  |
| 8:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                           | 130                                                                                          | 5.0                                                  | 21                            | 15.653                                    | 4.7                                |  |
| 8:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                           | 130                                                                                          | 5.0                                                  | 21                            | 18.725                                    | 4.7                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 130                                                                                          | 6.0                                                  | 22                            | 21.483                                    | 4.3                                |  |
| 8:45<br>8:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | decision of the second                                       | 130                                                                                          | 6.0                                                  | 22                            | 24.230                                    | 4.3                                |  |
| Post-test 8:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | 130                                                                                          | 0.0                                                  |                               | 24.230                                    | Max:                               |  |
| 0.003 5.5 Total 0:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                           | 130                                                                                          | 5.1                                                  | 19                            | ∠4.∠3U                                    | Max: 4.7                           |  |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                              |                                                      |                               | 0.000                                     | 7.5                                |  |
| Set 2 Pretest Target: 9:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              | 130                                                                                          | 7.0                                                  | 22                            | 0.000                                     | 7.5<br>11.0                        |  |
| A-3362 0.007 16 1L/MIN 9:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | 130                                                                                          | 6.0                                                  | 23                            | 3.574                                     |                                    |  |
| A-3363 9:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | 130                                                                                          | 6.0                                                  | 24                            | 8.376                                     | 12.5<br>12.5                       |  |
| A-3364 9:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | 130                                                                                          | 6.0                                                  | 26                            | 13.373                                    |                                    |  |
| 9:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              | 130                                                                                          | 8.0                                                  | 25                            | 18.381                                    | 12.5                               |  |
| 9:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                           | 130                                                                                          | 8.0                                                  | 25                            | 23.393                                    | 12.5                               |  |
| Post-test 9:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | 130                                                                                          | 8.0                                                  | 25                            | 24.020                                    | 12.5                               |  |
| 0.007 16 Total 0:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26                                                           | 400                                                                                          | <b> </b>                                             | 0.4                           | 24.020                                    | Max:                               |  |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                            | 130                                                                                          | 7.0                                                  | 24                            |                                           | 12.5                               |  |
| Set 3 Pretest Target: 9:48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              | 130                                                                                          | 10.0                                                 | 27                            | 0.000                                     | 9.5                                |  |
| A-3365 0.007 16 9:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              | 130                                                                                          | 8.0                                                  | 28                            | 5.031                                     | 9.5                                |  |
| A-3366 9:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | 130                                                                                          | 8.0                                                  | 28                            | 10.566                                    | 10.0                               |  |
| A-3337 10:03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | 130                                                                                          | 8.0                                                  | 28                            | 15.901                                    | 9.0                                |  |
| 10:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | 130                                                                                          | 8.0                                                  | 29                            | 21.074                                    | 9.0                                |  |
| Post-test 10:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 130                                                                                          | 8.0                                                  | 29                            | 24.202                                    | 9.0                                |  |
| 0.004 16 Total 0:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23                                                           | 400                                                                                          |                                                      |                               | 24.202                                    | Max:                               |  |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              | 130                                                                                          | 8.3                                                  | 28                            |                                           | 10.0                               |  |
| Set 4         Pretest         Target:         10:23           10:23         10:28         10:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 130                                                                                          | 13.0                                                 | 29                            | 0.000                                     | 12.7                               |  |
| A-3368 0.005 16 10:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | 130                                                                                          | 9.0                                                  | 29                            | 4.833                                     | 12.7                               |  |
| A-3369 10:33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | 130                                                                                          | 7.0                                                  | 30                            | 9.742                                     | 12.7                               |  |
| A-3370 10:38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | 130                                                                                          | 7.0                                                  | 30                            | 14.662                                    | 12.7                               |  |
| 10:43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | 130                                                                                          | 7.0                                                  | 30                            | 19.598                                    | 12.8                               |  |
| Post-test 10:48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 130                                                                                          | 7.0                                                  | 31                            | 24.544<br>24.544                          | 12.8                               |  |
| 0.002 16 Total 0:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                           |                                                                                              |                                                      |                               | . /4.5441                                 | Max:                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2003)                                                       | 400                                                                                          | 0.0                                                  | 20                            |                                           | 40.0                               |  |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L                                                            | 130                                                                                          | 8.3                                                  | 30                            | 2.1011                                    | 12.8                               |  |
| Condensate Average Tenax R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L                                                            | Anasor                                                                                       | 8.3<br>b Rinse:                                      | 30                            | 21.011                                    | 12.8                               |  |
| Condensate A-3371 Average Tenax R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | linse:                                                       | Anasorl<br>NA                                                                                | b Rinse:                                             | 30                            |                                           | 12.8                               |  |
| Condensate A-3371 NA Final Condensate Volume: Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rinse:<br>inse Vol.:                                         | Anasorl<br>NA<br>Anasorb                                                                     | b Rinse:  Rinse Vol.:                                | 30                            |                                           | 12.8                               |  |
| Condensate Tenax R A-3371 NA Final Condensate Volume: Tenax R 40 mL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rinse:<br>linse Vol.;<br>mL                                  | Anasorl<br>NA<br>Anasorb<br>NA                                                               | b Rinse:                                             | 30                            |                                           | 12.8                               |  |
| Condensate A-3371 Final Condensate Volume: 40 mL Average  Tenax R NA Tenax R NA ADDIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rinse:<br>inse Vol.:<br>mL<br>TONAL INP                      | Anasorl<br>NA<br>Anasorb<br>NA<br>UTS                                                        | b Rinse:<br>Rinse Vol.:<br>mL                        |                               |                                           | America<br>View<br>Line - Williams |  |
| Condensate A-3371 Final Condensate Volume: 40 mL ADDIT Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kinse:<br>inse Vol.:<br>mL<br>IONAL INP<br>Units             | Anasorl<br>NA<br>Anasorb<br>NA<br>UTS<br>Set 1                                               | b Rinse:  Rinse Vol.:  mL  Set 2                     | Set 3                         | Set 4                                     | Average                            |  |
| Average   Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rinse:<br>inse Vol.:<br>mL<br>TONAL INP<br>Units<br>%        | Anasorl<br>NA<br>Anasorb<br>NA<br>UTS<br>Set 1<br>20.5                                       | Rinse Vol.: mL Set 2 20.5                            | Set 3<br>20.5                 | Set 4<br>20.5                             | Average 20.5                       |  |
| Average   Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inse Vol.: mL TONAL INP Units % dscm/sec                     | Anasorb<br>NA<br>Anasorb<br>NA<br>UTS<br>Set 1<br>20.5<br>0.330                              | b Rinse:  Rinse Vol.: mL  Set 2  20.5 0.330          | Set 3                         | Set 4<br>20.5                             | Average 20.5                       |  |
| Average   Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inse Vol.: mL TONAL INP Units % dscm/sec                     | Anasori<br>NA<br>Anasorb<br>NA<br>UTS<br>Set 1<br>20.5<br>0.330<br>PARAMI                    | Rinse Vol.:<br>mL<br>Set 2<br>20.5<br>0.330<br>ETERS | Set 3<br>20.5<br>0.330        | Set 4<br>20.5<br>0.330                    | Average 20.5 0.330                 |  |
| Average   Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inse Vol.:  mL  TONAL INP  Units  dscm/sec  AMPLING I        | Anasori<br>NA<br>Anasori<br>NA<br>UTS<br>Set 1<br>20.5<br>0.330<br>PARAMI<br>Set 1           | Set 2 20.5 0.330 ETERS Set 2                         | Set 3 20.5 0.330 Set 3        | Set 4<br>20.5<br>0.330                    | Average 20.5 0.330 Net             |  |
| Average   Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inse Vol.: mL TONAL INP Units % dscm/sec                     | Anasori<br>NA<br>Anasorb<br>NA<br>UTS<br>Set 1<br>20.5<br>0.330<br>PARAMI                    | Set 2 20.5 0.330 ETERS Set 2                         | Set 3<br>20.5<br>0.330        | Set 4<br>20.5<br>0.330                    | Average 20.5 0.330                 |  |
| Average   Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inse Vol.: mL IONAL INP Units % dscm/sec AMPLING I Units dsL | Anasori<br>NA<br>Anasori<br>NA<br>UTS<br>Set 1<br>20.5<br>0.330<br>PARAME<br>Set 1<br>20.508 | Set 2 20.5 0.330 ETERS Set 2 20.116                  | Set 3 20.5 0.330 Set 3 20.008 | Set 4<br>20.5<br>0.330<br>Set 4<br>20.179 | Average 20.5 0.330  Net 80.810     |  |
| Average   Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inse Vol.:  mL  TONAL INP  Units  dscm/sec  AMPLING I        | Anasori<br>NA<br>Anasori<br>NA<br>UTS<br>Set 1<br>20.5<br>0.330<br>PARAMI<br>Set 1           | Set 2 20.5 0.330 ETERS Set 2 20.116                  | Set 3 20.5 0.330 Set 3 20.008 | Set 4<br>20.5<br>0.330                    | Average<br>20.5<br>0.330<br>Net    |  |

| Table B-5. 0031-STRT-1.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | T                                      |    |           |                  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|----|-----------|------------------|
| 1401C B-3. 0031-311(1-1.    | CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NCENTRATIONS                              |                                        |    |           |                  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er dry standard cub                       | oic meter                              |    |           |                  |
| Project:                    | 0866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab Report Date:                          | 08/20/01                               |    |           |                  |
| Run Date:                   | 6/20/2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lab Report Status:                        | Final                                  |    |           |                  |
| Run Identification:         | 0031-STRT-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                        |    |           |                  |
| Analyte                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    |           | n Total          |
|                             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                        |    | Flag<br>B | μg/dscm<br>8.9e1 |
| Acetone                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <u> </u>  | 3.5e1            |
| Acrylonitrile               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    |           |                  |
| Benzene                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | MARKY                                  |    | <         | 4.9e0            |
| Bromobenzene                | 5.5.10.5.5.40.000 (ATT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                        |    |           | 1.5e0            |
| Bromochloromethane          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne at 1 to P / P                          |                                        |    |           | 1.9e0            |
| Bromodichloromethane        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.5e0            |
| Bromoform                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <u> </u>  | 2.2e0            |
| Bromomethane                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <,J       | 2.1e0            |
| 2-Butanone                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <,J       | 1.1e1            |
| n-Butylbenzene              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    |           | 1.9e0            |
| sec-Butylbenzene            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.1e0            |
| tert-Butylbenzene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.7e0            |
| Carbon disulfide            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.2e1            |
| Carbon tetrachloride        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 2.0e0            |
| Chlorobenzene               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.2e0            |
| Chlorodibromomethane        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.9e0            |
| Chloroethane                | THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S |                                           |                                        |    | <,J       | 2.0e0            |
| Chloroform                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <,J       | 3.0e0            |
| Chloromethane               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | J         | 1.5e1            |
| 2-Chlorotoluene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 7.3e-1           |
| 4-Chlorotoluene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    |           | 7.3e-1           |
| 1,2-Dibromo-3-chloropropane |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 3.3e0            |
| 1,2-Dibromoethane           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                        |    | <         | 2.5e0            |
| Dibromomethane              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 2.1e0            |
| 1,2-Dichlorobenzene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 2.2e0            |
| 1,3-Dichlorobenzene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.2e0            |
| 1,4-Dichlorobenzene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.7e0            |
| Dichlorodifluoromethane     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 245 A - 5                               |                                        |    | _ <       | 3.2e0            |
| 1,1-Dichloroethane          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.9e0            |
| 1,2-Dichloroethane          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        | ,, | <,J       | 2.0e0            |
| 1,1-Dichloroethene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <,J       | 2.0e0            |
| cis-1,2-Dichloroethene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.9e0            |
| trans-1,2-Dichloroethene    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 41 - 1000 1100 1100 1100 1100 1100 1100 |                                        |    | <         | 2.1e0            |
| 1,2-Dichloropropane         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.6e0            |
| 1,3-Dichloropropane         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 2.1e0            |
| 2,2-Dichloropropane         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 2.0e0            |
| 1,1-Dichloropropene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 2.2e0            |
| cis-1,3-Dichloropropene     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.6e0            |
| trans-1,3-Dichloropropene   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.9e0            |
| Ethylbenzene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.2e0            |
| Hexachlorobutadiene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        | ,  | <         | 2.7e0            |
| 2-Hexanone                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 6.9e0            |
| Isopropylbenzene            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 8.7e-1           |
| p-Isopropyltoluene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 1.4e0            |
| Methylene chloride          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | E,B       | 2.2e2            |
| 4-Methyl-2-pentanone        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | ······································ | -  | <         | 7.3e0            |
| Naphthalene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 2.6e0            |
| n-Propylbenzene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |    | <         | 8.3e-1           |

| Table B-5. 0031-STRT-1.     |                                          |                                |          |           |         |
|-----------------------------|------------------------------------------|--------------------------------|----------|-----------|---------|
|                             |                                          | NCENTRATION<br>per dry standar | meter    | <br>-     |         |
| Project:                    | 0866                                     | Lab Report Dat                 | 08/20/01 |           |         |
| Run Date:                   | 6/20/2001                                | Lab Report Sta                 | Final    |           |         |
| Run Identification:         | 0031-STRT-1                              | ,                              |          |           |         |
| Analyte                     |                                          |                                |          | <br>l l   | n Total |
|                             |                                          |                                | <br>     | <br>Flag  | μg/dscm |
| Styrene                     |                                          |                                | <br>     | <br><     | 9.7e-1  |
| 1,1,1,2-Tetrachloroethane   |                                          |                                | <br>     | <br><     | 1.2e0   |
| 1,1,2,2-Tetrachloroethane   |                                          |                                | <br>     | <br><     | 2.7e0   |
| Tetrachloroethene           |                                          |                                | <br>     | <br><     | 1.9e0   |
| Toluene                     |                                          |                                | <br>     | <br><,J   | 2.4e0   |
| 1,2,3-Trichlorobenzene      |                                          |                                | <br>     | <br><     | 2.6e0   |
| 1,2,4-Trichlorobenzene      |                                          |                                | <br>     | <br><     | 2.7e0   |
| 1,1,1-Trichloroethane       |                                          |                                | <br>     | <br><     | 2.4e0   |
| 1,1,2-Trichloroethane       |                                          |                                | <br>     | <br><     | 2.1e0   |
| Trichloroethene             |                                          |                                | <br>     | <br><     | 2.0e0   |
| Trichlorofluoromethane      |                                          |                                | <br>     | <br><,J   | 2.0e0   |
| 1,2,3-Trichloropropane      |                                          |                                | <br>***  | <br><     | 3.0e0   |
| 1,2,4-Trimethylbenzene      |                                          |                                | <br>     | <br><     | 1.2e0   |
| 1,3,5-Trimethylbenzene      |                                          |                                | <br>     | <         | 7.3e-1  |
| Vinyl chloride              |                                          |                                | <br>     | <br><,J   | 1.6e0   |
| m-Xylene & p-Xylene         |                                          |                                | <br>     | <br><     | 5.4e0   |
| o-Xylene                    |                                          |                                | <br>     | <br><     | 9.5e-1  |
| TICS                        |                                          |                                | <br>     | <br>      |         |
| Hexane, 2-methyl-           |                                          |                                | <br>     | <br>N,J,M | 2.1e0   |
| Pentane, 2,3-dimethyl-      |                                          |                                |          | <br>N,J,M | 2.2e0   |
| Butane, 1-chloro-           | ***                                      |                                | <br>     | <br>N,J,M |         |
| Hexane, 3-methyl-           | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                                | <br>     | <br>N,J,M | 4.7e0   |
| Cyclohexene                 |                                          |                                | <br>     | <br>N,J,M | 1.2e0   |
| 1-Heptene                   |                                          |                                |          | N,J,M     | 6.7e-1  |
| Cyclohexane, methyl-        |                                          |                                | <br>     | <br>N,J,M | 1.4e0   |
| Hexane, 2,4-dimethyl-       |                                          |                                | <br>     | <br>N,J,M | 1.4e0   |
| Cyclopentane, ethyl-        |                                          |                                | <br>     | <br>N,J,M | 3.5e-1  |
| Octane                      |                                          |                                |          | <br>N,J,M | 3.3e-1  |
| Decane                      |                                          |                                | <br>     | <br>N,J,M | 1.5e0   |
| Undecane                    |                                          |                                | <br>     | <br>N,J,M | 1.2e1   |
| Undecane, 5-methyl-         |                                          | AA - METTER                    | <br>     | <br>N,J,M | 7.9e0   |
| Decane, 2,9-dimethyl-       |                                          |                                |          | <br>N,J,M | 7.9e-1  |
| Dodecane                    |                                          |                                | <br>     | <br>N,J,M | 3.8e2   |
| Undecane, 2,6-dimethyl-     |                                          |                                | <br>     | <br>N,J,M | 1.4e0   |
| Cyclohexane, hexyl-         |                                          |                                |          | N,J,M     | 7.3e-1  |
| Tridecane                   |                                          |                                |          | N,J,M     | 3.5e1   |
| Tetradecane                 |                                          |                                |          | <br>N,J,M | 1.1e1   |
| Pentane, 3,3-dimethyl-      |                                          |                                | <br>     |           |         |
| Pentane, 3-ethyl-           |                                          |                                | <br>     | <br>      |         |
| Cyclopentane, 1,2-dimethyl- |                                          |                                |          |           |         |

| Table B-11. 0031-STRT-1     | MASS FLOW RATE                           |              |                  |
|-----------------------------|------------------------------------------|--------------|------------------|
|                             | grams per second                         |              |                  |
| Project:                    | 01-1062-01-086 Lab Report Date: 08/20/01 |              |                  |
| Run Date:                   | 6/20/2001 Lab Report Status: Final       |              |                  |
| Run Identification:         | 0031-STRT-1                              |              | <del></del>      |
| Analyte                     |                                          | Flag         | n Total<br>g/sec |
| A 1                         |                                          | B            | 2.9e-5           |
| Acetone                     |                                          | <u> </u>     | 1.1e-5           |
| Acrylonitrile               |                                          |              | 1.6e-6           |
| Benzene                     |                                          |              | 4.9e-7           |
| Bromobenzene                |                                          |              | 6.1e-7           |
| Bromochloromethane          |                                          |              | 4.9e-7           |
| Bromodichloromethane        |                                          |              | 7.3e-7           |
| Bromoform                   |                                          |              | 6.9e-7           |
| Bromomethane                |                                          | <,J          | 3.6e-6           |
| 2-Butanone                  |                                          | <u>``,</u> ` | 6.1e-7           |
| n-Butylbenzene              |                                          |              | 3.5e-7           |
| sec-Butylbenzene            |                                          | <            | 5.7e-7           |
| tert-Butylbenzene           |                                          |              |                  |
| Carbon disulfide            |                                          |              | 4.0e-6           |
| Carbon tetrachloride        |                                          | <            | 6.5e-7           |
| Chlorobenzene               |                                          | <u> </u>     | 3.9e-7           |
| Chlorodibromomethane        |                                          | <u> </u>     | 6.1e-7           |
| Chloroethane                |                                          | <,J          | 6.5e-7           |
| Chloroform                  |                                          | <,J          | 9.8e-7           |
| Chloromethane               |                                          | J            | 4.9e-6           |
| 2-Chlorotoluene             |                                          |              | 2.4e-7           |
| 4-Chlorotoluene             |                                          | . <          | 2.4e-7           |
| 1,2-Dibromo-3-chloropropane | )                                        | <            | 1.1e-6           |
| 1,2-Dibromoethane           |                                          | <            | 8.2e-7           |
| Dibromomethane              |                                          | <            | 6.9e-7           |
| 1,2-Dichlorobenzene         |                                          | <            | 7.3e-7           |
| 1,3-Dichlorobenzene         |                                          | <            | 4.1e-7           |
| 1,4-Dichlorobenzene         |                                          | <            | 5.7e-7           |
| Dichlorodifluoromethane     |                                          | <            | 1.1e-6           |
| 1,1-Dichloroethane          |                                          | <            | 6.1e-7           |
| 1,2-Dichloroethane          |                                          | <,J          | 6.5e-7           |
| 1,1-Dichloroethene          |                                          | <,J          | 6.5e-7           |
| cis-1,2-Dichloroethene      |                                          | <            | 6.1e-7           |
| trans-1,2-Dichloroethene    |                                          | <            | 6.9e-7           |
| 1,2-Dichloropropane         |                                          | <            | 5.3e-7           |
| 1,3-Dichloropropane         |                                          | <            | 6.9e-7           |
| 2,2-Dichloropropane         |                                          | <            | 6.5e-7           |
| 1,1-Dichloropropene         |                                          | <            | 7.3e-7           |
| cis-1,3-Dichloropropene     |                                          | <            | 5.3e-7           |
| trans-1,3-Dichloropropene   |                                          | <            | 6.1e-7           |
| Ethylbenzene                |                                          | <            | 3.8e-7           |
| Hexachlorobutadiene         |                                          | <            | 9.0e-7           |
| 2-Hexanone                  |                                          | <            | 2.3e-6           |
| Isopropylbenzene            |                                          | <            | 2.9e-7           |
| p-Isopropyltoluene          |                                          | <            | 4.5e-7           |
| Methylene chloride          |                                          | E,B          | 7.3e-5           |
| 4-Methyl-2-pentanone        |                                          | <            | 2.4e-6           |
| Naphthalene                 |                                          | <            | 8.6e-7           |
| n-Propylbenzene             |                                          | <            | 2.7e-7           |

| Table B-11. 0031-STRT-1     | .   !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |          |       |        |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-------|--------|
| THE DITTO OF STREET         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ASS FLOW RATE      | L:       |       |        |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rams per second    |          |       |        |
| Project:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lab Report Date:   | 08/20/01 |       |        |
| Run Date:                   | 6/20/2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lab Report Status: | Final    |       |        |
| Run Identification: Analyte | 0031-STRT-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |          | Rur   | Total  |
| Analyte                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | Flag  | g/sec  |
| Styrene                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 3.2e-7 |
| 1,1,1,2-Tetrachloroethane   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 4.0e-7 |
| 1,1,2,2-Tetrachloroethane   | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |          | <     | 9.0e-7 |
| Tetrachloroethene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 6.1e-7 |
| Toluene                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <,J   | 7.8e-7 |
| 1,2,3-Trichlorobenzene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 8.6e-7 |
| 1,2,4-Trichlorobenzene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 9.0e-7 |
| 1,1,1-Trichloroethane       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 7.8e-7 |
| 1,1,2-Trichloroethane       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 6.9e-7 |
| Trichloroethene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 6.5e-7 |
| Trichlorofluoromethane      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <,J   | 6.5e-7 |
| 1,2,3-Trichloropropane      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 9.8e-7 |
| 1,2,4-Trimethylbenzene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 4.1e-7 |
| 1,3,5-Trimethylbenzene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 2.4e-7 |
| Vinyl chloride              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <,J   | 5.3e-7 |
| m-Xylene & p-Xylene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 1.8e-6 |
| o-Xylene                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | <     | 3.1e-7 |
| TICS                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          |       |        |
| Hexane, 2-methyl-           | All Ale The State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State |                    |          | N,J,M | 6.9e-7 |
| Pentane, 2,3-dimethyl-      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , ,, , ,           |          | N,J,M | 7.3e-7 |
| Butane, 1-chloro-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 2.3e-7 |
| Hexane, 3-methyl-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 1.6e-6 |
| Cyclohexene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 4.1e-7 |
| 1-Heptene                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 2.2e-7 |
| Cyclohexane, methyl-        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 4.5e-7 |
| Hexane, 2,4-dimethyl-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 4.5e-7 |
| Cyclopentane, ethyl-        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 1.1e-7 |
| Octane                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 1.1e-7 |
| Decane                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 4.9e-7 |
| Undecane                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 4.1e-6 |
| Undecane, 5-methyl-         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 2.6e-6 |
| Decane, 2,9-dimethyl-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 2.6e-7 |
| Dodecane                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 1.3e-4 |
| Undecane, 2,6-dimethyl-     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 4.5e-7 |
| Cyclohexane, hexyl-         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 2.4e-7 |
| Tridecane                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 1.1e-5 |
| Tetradecane                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | N,J,M | 3.8e-6 |
| Pentane, 3,3-dimethyl-      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          |       |        |
| Pentane, 3-ethyl-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          |       |        |
| Cyclopentane, 1,2-dimethyl- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          |       |        |

| Site:<br>Project:                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ID-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | İ                |                                                                                                    | i<br>i                                                                          |                                                                                                       |                                                                                                                       |                                                      |                                                                |                                                                               |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------|
| Project:                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VO               | ST SAM                                                                                             | LING DAT                                                                        | A SHEE                                                                                                | Т                                                                                                                     |                                                      |                                                                | •                                                                             |
| Project:                                                     | HIIWE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Offgas Tie-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                                                                    | 0031-E                                                                          |                                                                                                       | Meter Box N                                                                                                           | lo.:                                                 |                                                                | 1                                                                             |
|                                                              | 01-1062-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Run Type:        |                                                                                                    | Te                                                                              |                                                                                                       | Y-factor:                                                                                                             | -                                                    | 0.                                                             | 998                                                                           |
| Date:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /20/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pbar., in. H     | a.                                                                                                 | 25.2                                                                            |                                                                                                       | Operator:                                                                                                             |                                                      |                                                                | FE,JA                                                                         |
| Date.                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 0011, 1111    | 9'                                                                                                 |                                                                                 |                                                                                                       | 1-1-1-1-1                                                                                                             |                                                      |                                                                |                                                                               |
| VOST Tube                                                    | Leak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampling         | Sar                                                                                                | npling                                                                          | Probe                                                                                                 | Condenser                                                                                                             | Meter                                                | Meter                                                          | Pump                                                                          |
| Sample                                                       | Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | @ vacuum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rate             |                                                                                                    | ime                                                                             | Temp.                                                                                                 | Temp.                                                                                                                 | Temp.                                                | Volume                                                         | Vacuum                                                                        |
| Numbers                                                      | (L/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (in. Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (L/min)          | (24 hr)                                                                                            | (min.)                                                                          | (°C)                                                                                                  | (°C)                                                                                                                  | (°C)                                                 | (L)                                                            | (in. Hg)                                                                      |
| Set 1                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | etest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Target:          | 14:00                                                                                              | 0                                                                               | 130                                                                                                   | 11.0                                                                                                                  | 31                                                   | 0.000                                                          | 13.0                                                                          |
| A-3409                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                |                                                                                                    | 5                                                                               | 130                                                                                                   | 10.0                                                                                                                  | 31                                                   | 4.788                                                          | 13.0                                                                          |
| A-3410                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 14:10                                                                                              | 10                                                                              | 130                                                                                                   | 10.0                                                                                                                  | 31                                                   | 9.586                                                          | 13.0                                                                          |
| A-3411                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 14:15                                                                                              | 15                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 33                                                   | 14.413                                                         | 13.0                                                                          |
| A-3411                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 14:20                                                                                              | 20                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 33                                                   | 19.260                                                         | 13.0                                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 14:25                                                                                              | 25                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 34                                                   | 24.164                                                         | 13.0                                                                          |
|                                                              | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total            | 0:25                                                                                               |                                                                                 | 100                                                                                                   |                                                                                                                       | <u> </u>                                             | 24.164                                                         | Max:                                                                          |
|                                                              | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average          | 0.20                                                                                               |                                                                                 | 130                                                                                                   | 10.7                                                                                                                  | 32                                                   |                                                                | 13.0                                                                          |
| C-4.7                                                        | D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | etest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Target:          | 14:36                                                                                              | 0                                                                               | 130                                                                                                   | 10.0                                                                                                                  | 34                                                   | 0.000                                                          | 12.0                                                                          |
| Set 2                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1              |                                                                                                    |                                                                                 | 130                                                                                                   | 10.0                                                                                                                  | 35                                                   | 4.994                                                          | 12.0                                                                          |
| A-3412                                                       | 0.000_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ļ <u>'</u>       | 14:41                                                                                              | 10                                                                              | 130                                                                                                   | 10.0                                                                                                                  | 35                                                   | 10.001                                                         | 12.0                                                                          |
| A-3413                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 14:46                                                                                              | 15                                                                              | 130                                                                                                   | 10.0                                                                                                                  | 35                                                   | 15.128                                                         | 12.0                                                                          |
| A-3414                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | !<br><del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | j —              | 14:51                                                                                              | 20                                                                              | 130                                                                                                   | 10.0                                                                                                                  | 36                                                   | 20.296                                                         | 12.0                                                                          |
| l                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 15:00                                                                                              | 24                                                                              | 130                                                                                                   | 10.0                                                                                                                  | 35                                                   | 24.452                                                         | 12.0                                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T-4-1            |                                                                                                    |                                                                                 | 130                                                                                                   | 10.0                                                                                                                  | 33                                                   | 24.452                                                         | Max:                                                                          |
|                                                              | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total            | 0:24                                                                                               |                                                                                 | 130                                                                                                   | 10.0                                                                                                                  | 35                                                   | 24.402                                                         | 12.0                                                                          |
| <u> </u>                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average          | 45.40                                                                                              | ^                                                                               | 130                                                                                                   | 12.0                                                                                                                  | 35<br>35                                             | 0.000                                                          | 5.0                                                                           |
| Set 3                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | etest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Target:          | 15:10                                                                                              | 0                                                                               |                                                                                                       |                                                                                                                       |                                                      |                                                                | 5.0                                                                           |
| A-3415                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                |                                                                                                    | 5                                                                               | 130                                                                                                   | 11.0                                                                                                                  | 35                                                   | 1.909                                                          |                                                                               |
| A-3416                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 15:20                                                                                              | 10                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 35                                                   | 3.721                                                          | 5.0                                                                           |
| A-3417                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 15:25                                                                                              | 15                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 35                                                   | 5.650                                                          | 5.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 15:30                                                                                              | 20                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 35                                                   | 7.605                                                          | 5.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 15:35                                                                                              | 25                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 35                                                   | 9.514                                                          | 5.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 15:40                                                                                              | 30                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 35                                                   | 11.410                                                         | 5.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 15:45                                                                                              | 35                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 35                                                   | 13.348                                                         | 5.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 15:50                                                                                              | 40                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 35                                                   | 15.321                                                         | 5.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 15:55                                                                                              | 45                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 35                                                   | 17.238                                                         | 5.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 16:00                                                                                              | 50                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 35                                                   | 19.154                                                         | 5.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 16:05                                                                                              | 55                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 35                                                   | 21.118                                                         | 5.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 16:10                                                                                              | 60                                                                              | 130                                                                                                   | 12.0                                                                                                                  | 35                                                   | 23.165                                                         | 5.0                                                                           |
|                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 16:15                                                                                              | 65                                                                              | 130                                                                                                   | 12.0                                                                                                                  | 35                                                   | 24.206                                                         | 5.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total            | 1:05                                                                                               | 65                                                                              |                                                                                                       |                                                                                                                       |                                                      | 24.206                                                         | Max:                                                                          |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average          |                                                                                                    |                                                                                 | 130                                                                                                   | 11.2                                                                                                                  | 35                                                   |                                                                | 5.0                                                                           |
| Set 4                                                        | l .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | etest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Target:          | 16:29                                                                                              | 0                                                                               | 130                                                                                                   | 11.0                                                                                                                  | 31                                                   | 0.000                                                          | 4.0                                                                           |
| A-3418                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |                                                                                                    | 5                                                                               | 130                                                                                                   | 11.0                                                                                                                  | 31                                                   | 2.646                                                          | 4.0                                                                           |
| A-3419                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 16:39                                                                                              | 10                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 31                                                   | 5.400                                                          | 4.0                                                                           |
| A-3420                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                | 16:44                                                                                              | 1                                                                               | 130                                                                                                   | 11.0                                                                                                                  | 32                                                   | 7.965                                                          | 4.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 16:49                                                                                              |                                                                                 | 130                                                                                                   | 11.0                                                                                                                  | 33                                                   | 10.607                                                         | 4.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 16:54                                                                                              |                                                                                 | 130                                                                                                   | 11.0                                                                                                                  | 33                                                   | 13.270                                                         | 4.0                                                                           |
| 1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>         | 16:59                                                                                              |                                                                                 | 130                                                                                                   | 11.0                                                                                                                  | 34                                                   | 15.873                                                         | 4.0                                                                           |
| 1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                | 17:04                                                                                              | 35                                                                              | 130                                                                                                   | 11.0                                                                                                                  | 34                                                   | 18.500                                                         | 4.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                    |                                                                                 |                                                                                                       |                                                                                                                       |                                                      |                                                                |                                                                               |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 17:09                                                                                              | 40                                                                              | 130                                                                                                   | 12.0                                                                                                                  | 34                                                   | 21.135                                                         | 4.0                                                                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 17:09<br>17:14                                                                                     | 40<br>45                                                                        | 130<br>130                                                                                            | 12.0<br>11.0                                                                                                          | 34<br>35                                             | 21.135<br>23.825                                               | 4.0<br>4.0                                                                    |
|                                                              | Po:<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | st-test<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 17:09<br>17:14<br>17:15                                                                            | 40<br>45<br>46                                                                  | 130                                                                                                   | 12.0                                                                                                                  | 34                                                   | 21.135<br>23.825<br>24.404                                     | 4.0<br>4.0<br>4.0                                                             |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total            | 17:09<br>17:14                                                                                     | 40<br>45<br>46                                                                  | 130<br>130                                                                                            | 12.0<br>11.0<br>11.0                                                                                                  | 34<br>35<br>35                                       | 21.135<br>23.825                                               | 4.0<br>4.0<br>4.0<br>Max:                                                     |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total<br>Average | 17:09<br>17:14<br>17:15<br>0:46                                                                    | 40<br>45<br>46<br>46                                                            | 130<br>130<br>130<br>130                                                                              | 12.0<br>11.0<br>11.0                                                                                                  | 34<br>35                                             | 21.135<br>23.825<br>24.404                                     | 4.0<br>4.0<br>4.0                                                             |
| Condensate                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 17:09<br>17:14<br>17:15                                                                            | 40<br>45<br>46<br>46                                                            | 130<br>130<br>130<br>130                                                                              | 12.0<br>11.0<br>11.0                                                                                                  | 34<br>35<br>35                                       | 21.135<br>23.825<br>24.404                                     | 4.0<br>4.0<br>4.0<br>Max:                                                     |
| Condensate<br>A-3421                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 17:09<br>17:14<br>17:15<br>0:46                                                                    | 40<br>45<br>46<br>46                                                            | 130<br>130<br>130<br>130<br>Anasori<br>NA                                                             | 12.0<br>11.0<br>11.0<br>11.1<br>5 Rinse:                                                                              | 34<br>35<br>35                                       | 21.135<br>23.825<br>24.404                                     | 4.0<br>4.0<br>4.0<br>Max:                                                     |
|                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 17:09<br>17:14<br>17:15<br>0:46<br>Tenax R<br>NA<br>Tenax R                                        | 40<br>45<br>46<br>46<br><b>Rinse:</b>                                           | 130<br>130<br>130<br>130<br>Anasori<br>NA<br>Anasorb                                                  | 12.0<br>11.0<br>11.0<br>11.1<br>b Rinse:                                                                              | 34<br>35<br>35                                       | 21.135<br>23.825<br>24.404                                     | 4.0<br>4.0<br>4.0<br>Max:                                                     |
| A-3421<br>Final Conder                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 17:09<br>17:14<br>17:15<br>0:46<br>Tenax R<br>NA<br>Tenax R<br>NA                                  | 40<br>45<br>46<br>46<br>Rinse:                                                  | 130<br>130<br>130<br>130<br>Anasori<br>NA<br>Anasorb<br>NA                                            | 12.0<br>11.0<br>11.0<br>11.1<br>5 Rinse:                                                                              | 34<br>35<br>35                                       | 21.135<br>23.825<br>24.404                                     | 4.0<br>4.0<br>4.0<br>Max:                                                     |
| A-3421<br>Final Conder                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 17:09<br>17:14<br>17:15<br>0:46<br>Tenax R<br>NA<br>Tenax R<br>NA                                  | 40<br>45<br>46<br>46<br><b>Rinse:</b>                                           | 130<br>130<br>130<br>130<br>Anasori<br>NA<br>Anasorb<br>NA                                            | 12.0<br>11.0<br>11.0<br>11.1<br>b Rinse:                                                                              | 34<br>35<br>35<br>33                                 | 21.135<br>23.825<br>24.404<br>24.404                           | 4.0<br>4.0<br>4.0<br>Max:<br>4.0                                              |
| A-3421<br>Final Conder                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 17:09<br>17:14<br>17:15<br>0:46<br>Tenax R<br>NA<br>Tenax R<br>NA                                  | 40<br>45<br>46<br>46<br>Linse:<br>inse Vol.:<br>mL<br>IONAL INP                 | 130<br>130<br>130<br>130<br>Anasorl<br>NA<br>Anasorb<br>NA<br>UTS<br>Set 1                            | 12.0<br>11.0<br>11.0<br>11.1<br>5 Rinse:<br>9 Rinse Vol.:<br>mL                                                       | 34<br>35<br>35<br>33<br>33                           | 21.135<br>23.825<br>24.404<br>24.404                           | 4.0<br>4.0<br>4.0<br>Max:                                                     |
| A-3421<br>Final Conder                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>ume:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average          | 17:09<br>17:14<br>17:15<br>0:46<br>Tenax R<br>NA<br>Tenax R<br>NA<br>ADDIT<br>Symbol<br>Co2        | 40<br>45<br>46<br>46<br>kinse:<br>inse Vol.:<br>mL<br>IONAL INP<br>Units<br>%   | 130<br>130<br>130<br>130<br>Anasort<br>NA<br>Anasort<br>NA<br>UTS<br>Set 1<br>20.5                    | 12.0<br>11.0<br>11.0<br>11.1<br>5 Rinse:<br>9 Rinse Vol.:<br>mL<br>Set 2<br>20.5                                      | 34<br>35<br>35<br>33<br>33<br>Set 3<br>20.5          | 21.135<br>23.825<br>24.404<br>24.404<br>Set 4<br>20.5          | 4.0<br>4.0<br>4.0<br>Max:<br>4.0<br>Average<br>20.5                           |
| A-3421<br>Final Conder<br>40                                 | 0.000  nsate VolumL  Oxygen 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>ume:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average          | 17:09<br>17:14<br>17:15<br>0:46<br>Tenax R<br>NA<br>Tenax R<br>NA<br>ADDIT<br>Symbol               | 40<br>45<br>46<br>46<br>Linse:<br>inse Vol.:<br>mL<br>IONAL INP                 | 130<br>130<br>130<br>130<br>Anasort<br>NA<br>Anasort<br>NA<br>UTS<br>Set 1<br>20.5                    | 12.0<br>11.0<br>11.0<br>11.1<br>5 Rinse:<br>9 Rinse Vol.:<br>mL<br>Set 2<br>20.5                                      | 34<br>35<br>35<br>33<br>33                           | 21.135<br>23.825<br>24.404<br>24.404<br>Set 4<br>20.5          | 4.0<br>4.0<br>4.0<br>Max:<br>4.0                                              |
| A-3421<br>Final Conder<br>40<br>Average Dry                  | 0.000  nsate VolumL  Oxygen 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>ume:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average          | 17:09<br>17:14<br>17:15<br>0:46<br>Tenax R<br>NA<br>Tenax R<br>NA<br>ADDIT<br>Symbol<br>Co2<br>Qsd | 40<br>45<br>46<br>46<br>kinse:<br>inse Vol.:<br>mL<br>IONAL INP<br>Units<br>%   | 130<br>130<br>130<br>130<br>Anasort<br>NA<br>Anasort<br>NA<br>UTS<br>Set 1<br>20.5<br>0.330           | 12.0<br>11.0<br>11.0<br>11.1<br>b Rinse:<br>c Rinse Vol.:<br>mL<br>Set 2<br>20.5<br>0.330                             | 34<br>35<br>35<br>33<br>33<br>Set 3<br>20.5          | 21.135<br>23.825<br>24.404<br>24.404<br>Set 4<br>20.5          | 4.0<br>4.0<br>4.0<br>Max:<br>4.0<br>Average<br>20.5                           |
| A-3421<br>Final Conder<br>40<br>Average Dry                  | 0.000  nsate VolumL  Oxygen 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>ume:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average          | 17:09<br>17:14<br>17:15<br>0:46<br>Tenax R<br>NA<br>Tenax R<br>NA<br>ADDIT<br>Symbol<br>Co2<br>Qsd | 40 45 46 46  Linse: inse Vol.: mL IONAL INP Units % dscm/sec                    | 130<br>130<br>130<br>130<br>Anasort<br>NA<br>Anasort<br>NA<br>UTS<br>Set 1<br>20.5<br>0.330           | 12.0<br>11.0<br>11.0<br>11.1<br>b Rinse:<br>c Rinse Vol.:<br>mL<br>Set 2<br>20.5<br>0.330                             | 34<br>35<br>35<br>33<br>33<br>Set 3<br>20.5          | 21.135<br>23.825<br>24.404<br>24.404<br>Set 4<br>20.5<br>0.330 | 4.0<br>4.0<br>4.0<br>Max:<br>4.0<br>Average<br>20.5                           |
| A-3421<br>Final Conder<br>40<br>Average Dry<br>Process Gas F | 0.000  nsate VolumL  Oxygen ( Flow (dry, §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>ume:<br>Concentratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average          | 17:09<br>17:14<br>17:15<br>0:46<br>Tenax R<br>NA<br>Tenax R<br>NA<br>ADDIT<br>Symbol<br>Co2<br>Qsd | 40 45 46 46  Linse: inse Vol.: mL IONAL INP Units % dscm/sec                    | 130<br>130<br>130<br>130<br>Anasort<br>NA<br>Anasort<br>NA<br>UTS<br>Set 1<br>20.5<br>0.330<br>PARAME | 12.0<br>11.0<br>11.0<br>11.1<br>b Rinse:<br>D Rinse Vol.:<br>mL<br>Set 2<br>20.5<br>0.330<br>ETERS                    | 34<br>35<br>35<br>33<br>33<br>Set 3<br>20.5<br>0.330 | 21.135<br>23.825<br>24.404<br>24.404<br>Set 4<br>20.5<br>0.330 | 4.0<br>4.0<br>4.0<br>Max:<br>4.0<br>Average<br>20.5<br>0.330                  |
| A-3421<br>Final Conder<br>40<br>Average Dry                  | nsate VolumL Oxygen (Grow (dry, State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and Stat | 5  Concentration STP) @ 68°F  andard Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average          | 17:09 17:14 17:15 0:46 Tenax R NA Tenax R NA ADDIT Symbol Co2 Qsd _ATED S Symbol                   | 40 45 46 46  linse:  inse Vol.: mL  IONAL INP  Units % dscm/sec  AMPLING  Units | 130<br>130<br>130<br>130<br>Anasort<br>NA<br>Anasort<br>NA<br>UTS<br>Set 1<br>20.5<br>0.330<br>PARAME | 12.0<br>11.0<br>11.0<br>11.1<br>b Rinse:<br>D Rinse Vol.:<br>mL<br>Set 2<br>20.5<br>0.330<br>ETERS                    | 34<br>35<br>35<br>33<br>33<br>Set 3<br>20.5<br>0.330 | 21.135<br>23.825<br>24.404<br>24.404<br>Set 4<br>20.5<br>0.330 | 4.0<br>4.0<br>4.0<br>Max:<br>4.0<br>Average<br>20.5<br>0.330                  |
| A-3421 Final Conder 40  Average Dry Process Gas F            | 0.000  nsate VolumL  Oxygen ( Flow (dry, \$  ume @ Starry*Pbar*V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5  Concentration STP) @ 68°F  andard Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concent | Average  CALCUI  | 17:09 17:14 17:15 0:46 Tenax R NA Tenax R NA ADDIT Symbol Co2 Qsd _ATED S Symbol                   | 40 45 46 46  linse:  inse Vol.: mL  IONAL INP  Units % dscm/sec  AMPLING  Units | 130<br>130<br>130<br>130<br>Anasort<br>NA<br>Anasort<br>NA<br>UTS<br>Set 1<br>20.5<br>0.330<br>PARAME | 12.0<br>11.0<br>11.0<br>11.1<br>b Rinse:<br>D Rinse Vol.:<br>mL<br>Set 2<br>20.5<br>0.330<br>ETERS<br>Set 2<br>19.629 | 34<br>35<br>35<br>33<br>33<br>Set 3<br>20.5<br>0.330 | 21.135<br>23.825<br>24.404<br>24.404<br>Set 4<br>20.5<br>0.330 | 4.0<br>4.0<br>4.0<br>Max:<br>4.0<br>Average<br>20.5<br>0.330<br>Net<br>78.355 |

| Table B-6. 0031-END-1.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NOENTRATIONS                           |                                                                            |            |                    |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|------------|--------------------|
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NCENTRATIONS<br>er dry standard cubi   | ic meter                                                                   |            |                    |
| Project:                    | 01-1062-01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lab Report Date:                       | 08/20/01                                                                   |            |                    |
| Run Date:                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lab Report Status:                     | Final                                                                      |            |                    |
| Run Identification:         | 0031-END-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                            | Г Б        | n Total            |
| Analyte                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | Flag       | n rotai<br>μg/dscn |
| Acetone                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ************************************** |                                                                            | В          | 9.2e1              |
| Acrylonitrile               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            |            | 3.6e1              |
| Benzene                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | - ·        | 3.1e0              |
| Bromobenzene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.5e0              |
| Bromochloromethane          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.9e0              |
| Bromodichloromethane        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.5e0              |
| Bromoform                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 2.3e0              |
| Bromomethane                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <,J        | 2.9e0              |
| 2-Butanone                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | ,,,<br><,J | 1.1e1              |
| n-Butylbenzene              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | own e                                                                      | <          | 1.9e0              |
| sec-Butylbenzene            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ··· ·· · · - · · · · · · · · · · · · · |                                                                            | <          | 1.1e0              |
| tert-Butylbenzene           | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                                            | <          | 1.8e0              |
| Carbon disulfide            | Committee and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the |                                        |                                                                            | <          | 1.5e1              |
| Carbon tetrachloride        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 2.0e0              |
| Chlorobenzene               | 777 - 1870/1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <,J        | 1.2e0              |
| Chlorodibromomethane        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.9e0              |
| Chloroethane                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | - Address and Address Conf. (Market Conf.) (1) (1) (1) (1) (1) (1) (1) (1) | <,J        | 2.6e0              |
| Chloroform                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 5.1e0              |
| Chloromethane               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 3.7e1              |
| 2-Chlorotoluene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 7.5e-1             |
| 4-Chlorotoluene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 7.5e-1             |
| 1,2-Dibromo-3-chloropropane |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 3.6e0              |
| 1,2-Dibromoethane           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 2.6e0              |
| Dibromomethane              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 2.2e0              |
| 1,2-Dichlorobenzene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 2.3e0              |
| 1,3-Dichlorobenzene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.3e0              |
| 1,4-Dichlorobenzene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.8e0              |
| Dichlorodifluoromethane     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <,J        | 2.0e0              |
| 1,1-Dichloroethane          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.9e0              |
| 1,2-Dichloroethane          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <,J        | 2.0e0              |
| 1,1-Dichloroethene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <,J        | 2.3e0              |
| cis-1,2-Dichloroethene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.9e0              |
| trans-1,2-Dichloroethene    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 2.0e0              |
| 1,2-Dichloropropane         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mar. 1                                 |                                                                            | <,J        | 1.7e0              |
| 1,3-Dichloropropane         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 2.2e0              |
| 2,2-Dichloropropane         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 2.0e0              |
| 1,1-Dichloropropene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 2.3e0              |
| cis-1,3-Dichloropropene     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.7e0              |
| trans-1,3-Dichloropropene   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.9e0              |
| Ethylbenzene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.2e0              |
| Hexachlorobutadiene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 2.8e0              |
| 2-Hexanone                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 7.1e0              |
| Isopropylbenzene            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 8.9e-1             |
| p-Isopropyltoluene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 1.4e0              |
| Methylene chloride          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | В          | 2.2e1              |
| 4-Methyl-2-pentanone        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <<         | 7.5e0              |
| Naphthalene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                            | <          | 2.7e0              |

| Table B-6. 0031-END-1.           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |         |
|----------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|
| · ·                              |                                    | ONCENTRATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | '     | 1       |
|                                  |                                    | per dry standard cub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |         |
| Project:                         | 01-1062-01-                        | Lab Report Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 08/20/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |         |
| Run Date:<br>Run Identification: | 6/20/2001<br>0031-END-1            | Lab Report Status:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |         |
| Analyte                          | 003 I-END-1                        | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rui   | n Total |
| Analyte                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Flag  | μg/dscm |
| n-Propylbenzene                  |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 8.4e-1  |
| Styrene                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 1.0e0   |
| 1,1,1,2-Tetrachloroethane        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 1.3e0   |
| 1,1,2,2-Tetrachloroethane        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 2.8e0   |
| Tetrachloroethene                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 1.9e0   |
| Toluene                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <,J   | 3.6e0   |
| 1,2,3-Trichlorobenzene           |                                    | mana Man of Miles of a Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communi |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 2.7e0   |
| 1,2,4-Trichlorobenzene           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 2.8e0   |
| 1,1,1-Trichloroethane            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 2.4e0   |
| 1,1,2-Trichloroethane            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 2.2e0   |
| Trichloroethene                  |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE  | <     | 2.0e0   |
| Trichlorofluoromethane           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <,J   | 2.0e0   |
| 1,2,3-Trichloropropane           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 3.1e0   |
| 1,2,4-Trimethylbenzene           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 1.3e0   |
| 1,3,5-Trimethylbenzene           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 7.5e-1  |
| Vinyl chloride                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <,J   | 2.3e0   |
| m-Xylene & p-Xylene              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <     | 5.6e0   |
| o-Xylene                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <,J   | 1.0e0   |
| TICs                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |         |
| Pentane, 3,3-dimethyl-           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 7.5e-1  |
| Hexane, 2-methyl-                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 4.0e0   |
| Pentane, 2,3-dimethyl-           |                                    | As Adribu V 1 18 Lores, your generality page species or species or species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 4.0e-1  |
| Hexane, 3-methyl-                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 9.7e0   |
| Cyclohexene                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 4.6e-1  |
| Cyclobutane, ethenyl-            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 1.5e0   |
| Cyclopentane, 1,2-dimethyl-, t   |                                    | ALL SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AND THE SECTION AN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 1.0e0   |
| Cyclohexane, methyl-             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 2.6e0   |
| Hexane, 2,4-dimethyl-            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 2.3e0   |
| Cyclopentane, ethyl-             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 5.2e-1  |
| Methane, trichloronitro-         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 4.6e0   |
| Benzonitrile                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 2.4e0   |
| Undecane                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 6.4e0   |
| Undecane, 5-methyl-              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N,J,M | 2.3e0   |
| Dodecane                         | Martin Address Charles Charles Co. | A BANK IN A BANK CHIEF CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF TH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 3.3e2   |
| Tridecane                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 4.0e1   |
| Tetradecane                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 | N,J,M | 1.3e1   |
| Hexadecane                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N,J,M | 2.7e0   |
| Pentane, 3-ethyl-                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |         |
| Cyclopentane, 1,2-dimethyl-      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |         |
| - j - p - marroy rje amioarji    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |         |

| Table B-9. 0031-END-1.      | gr                        | ASS FLOW RATE ams per second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                  |
|-----------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|
| Project:                    | 01-1062-01-0866           | Lab Report Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 08/20/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                  |
| Run Date:                   | 6/20/2001                 | Lab Report Status:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                  |
| Run Identification:         | 0031-END-1                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | . T. (-1         |
| Analyte                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rur<br>  Flag | n Total<br>g/sec |
| Acetone                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B             | 3.0e-5           |
|                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 1.2e-5           |
| Acrylonitrile               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1.0e-6           |
| Benzene<br>Bromobenzene     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 5.0e-7           |
| Bromochloromethane          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A DESCRIPTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY  |               | 6.3e-7           |
|                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 5.0e-7           |
| Bromodichloromethane        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>`</u>      | 7.6e-7           |
| Bromoform                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·             | 9.7e-7           |
| Bromomethane                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J           | 3.7e-6           |
| 2-Butanone                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J           |                  |
| n-Butylbenzene              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < <           | 6.3e-7<br>3.6e-7 |
| sec-Butylbenzene            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>-</u>      |                  |
| tert-Butylbenzene           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l             | 5.9e-7           |
| Carbon disulfide            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 5.0e-6           |
| Carbon tetrachloride        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      | 6.7e-7           |
| Chlorobenzene               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J           | 4.0e-7           |
| Chlorodibromomethane        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 6.3e-7           |
| Chloroethane                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J           | 8.4e-7           |
| Chloroform                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAP-W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b></b> <     | 1.7e-6           |
| Chloromethane               | DAMAGE IN THE THE THE THE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 1.2e-5           |
| 2-Chlorotoluene             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 2.5e-7           |
| 4-Chlorotoluene             |                           | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 2.5e-7           |
| 1,2-Dibromo-3-chloropropane |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 1.2e-6           |
| 1,2-Dibromoethane           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 8.4e-7           |
| Dibromomethane              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Aller Part Tarre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _ <           | 7.2e-7           |
| 1,2-Dichlorobenzene         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 7.6e-7           |
| 1,3-Dichlorobenzene         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 4.2e-7           |
| 1,4-Dichlorobenzene         | , ,                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 5.9e-7           |
| Dichlorodifluoromethane     | A189                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J           | 6.7e-7           |
| 1,1-Dichloroethane          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 6.3e-7           |
| 1,2-Dichloroethane          |                           | MARATE TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J           | 6.7e-7           |
| 1,1-Dichloroethene          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <,J           | 7.6e-7           |
| cis-1,2-Dichloroethene      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | <             | 6.3e-7           |
| trans-1,2-Dichloroethene    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 6.7e-7           |
| 1,2-Dichloropropane         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J           | 5.5e-7           |
| 1,3-Dichloropropane         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A SANSKI - V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <             | 7.2e-7           |
| 2,2-Dichloropropane         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 6.7e-7           |
| 1,1-Dichloropropene         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 7.6e-7           |
| cis-1,3-Dichloropropene     |                           | AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPER |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 5.5e-7           |
| trans-1,3-Dichloropropene   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 6.3e-7           |
| Ethylbenzene                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 3.9e-7           |
| Hexachlorobutadiene         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 9.3e-7           |
| 2-Hexanone                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 2.4e-6           |
| Isopropylbenzene            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 2.9e-7           |
| p-Isopropyltoluene          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 4.6e-7           |
| Methylene chloride          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В             | 7.2e-6           |
| 4-Methyl-2-pentanone        | 12002374                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 2.5e-6           |
| Naphthalene                 |                           | - ALLONDO TOTAL PORTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 8.8e-7           |

| Table B-9. 0031-END-1.                          |         |                                       |
|-------------------------------------------------|---------|---------------------------------------|
| MASS FLOW RATE                                  |         |                                       |
| Project: 01-1062-01-086\( Lab \) Report Date: 0 | 8/20/01 |                                       |
| Run Date: 6/20/2001 Lab Report Status:          | Final   |                                       |
| Run Identification: 0031-END-1                  |         |                                       |
| Analyte                                         | Rur     | n Total                               |
|                                                 | Flag    | g/sec                                 |
| n-Propylbenzene                                 | <       | 2.8e-7                                |
| Styrene                                         | <       | 3.3e-7                                |
| 1,1,1,2-Tetrachloroethane                       | <       | 4.2e-7                                |
| 1,1,2,2-Tetrachloroethane                       | <       | 9.3e-7                                |
| Tetrachloroethene                               | <       | 6.3e-7                                |
| Toluene                                         | <,J     | 1.2e-6                                |
| 1,2,3-Trichlorobenzene                          | <       | 8.8e-7                                |
| 1,2,4-Trichlorobenzene                          | <       | 9.3e-7                                |
| 1,1,1-Trichloroethane                           | <       | 8.0e-7                                |
| 1,1,2-Trichloroethane                           | <       | 7.2e-7                                |
| Trichloroethene                                 | <       | 6.7e-7                                |
| Trichlorofluoromethane                          | <,J     | 6.7e-7                                |
| 1,2,3-Trichloropropane                          | <       | 1.0e-6                                |
| 1,2,4-Trimethylbenzene                          | <       | 4.2e-7                                |
| 1,3,5-Trimethylbenzene                          | <       | 2.5e-7                                |
| Vinyl chloride                                  |         | 7.6e-7                                |
| m-Xylene & p-Xylene                             | <       | 1.9e-6                                |
| o-Xylene                                        | <,J     | 3.3e-7                                |
| TICs                                            |         |                                       |
| Pentane, 3,3-dimethyl-                          | N,J,M   | 2.5e-7                                |
| Hexane, 2-methyl-                               | N,J,M   | 1.3e-6                                |
| Pentane, 2,3-dimethyl-                          | N,J,M   | 1.3e-7                                |
| Hexane, 3-methyl-                               | N,J,M   | 3.2e-6                                |
| Cyclohexene                                     | N,J,M   | 1.5e-7                                |
| Cyclobutane, ethenyl-                           | N,J,M   | 5.0e-7                                |
| Cyclopentane, 1,2-dimethyl-, t                  | N,J,M   | 3.3e-7                                |
| Cyclohexane, methyl-                            | N,J,M   | 8.4e-7                                |
| Hexane, 2,4-dimethyl-                           | N,J,M   | 7.6e-7                                |
| Cyclopentane, ethyl-                            | N,J,M   | 1.7e-7                                |
| Methane, trichloronitro-                        | N,J,M   | 1.5e-6                                |
| Benzonitrile                                    | N,J,M   | 8.0e-7                                |
| Undecane                                        | N,J,M   | 2.1e-6                                |
| Undecane, 5-methyl-                             | N,J,M   | 7.6e-7                                |
| Dodecane                                        | N,J,M   | 1.1e-4                                |
| Tridecane                                       | N,J,M   | 1.3e-5                                |
| Tetradecane                                     | N,J,M   | 4.2e-6                                |
| Hexadecane                                      | N,J,M   | 8.8e-7                                |
| Pentane, 3-ethyl-                               |         |                                       |
| Cyclopentane, 1,2-dimethyl-                     |         | · · · · · · · · · · · · · · · · · · · |

| Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Table B-7.            | 0031-STK                              | 1-2.       | VO       | ST SAM        | PLING DAT  | TA SHEF       | T           | 1      |             |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|------------|----------|---------------|------------|---------------|-------------|--------|-------------|----------------|
| Project   01-1062-01-0866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Site                  | HLLWE Offe                            | nas Tie-in |          | OT OAIII      |            |               |             | No.:   |             | 2              |
| Date   Gol2   Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                       |            |          |               |            |               |             |        | 1           |                |
| VOST Tube   Leak Check   Sampling   Sampling   Sampling   Sampling   Sampling   Sampling   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   Temp.   T   |                       |                                       |            |          |               |            |               |             |        |             |                |
| Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Note   Sample   Not   |                       |                                       |            | ,        | <u> </u>      |            |               | 4.7.4       |        |             |                |
| Numbers   Curimin   (n. Hg)   Curimin   (24 hr)   (min.)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (**C)   (   | VOST Tube             | Leak C                                | Check      | Sampling | Sa            | mpling     | Probe         | Condenser   | Meter  | Meter       | Pump           |
| Set 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample                | Rate (                                | @ vacuum   | Rate     |               |            |               |             |        | Volume      | Vacuum         |
| A-3379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Numbers               |                                       |            | (L/min)  | (24 hr)       | (min.)     | (°C)          |             | (°C)   | . ,         | (in. Hg)       |
| A-3380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Set 1                 |                                       | est        | Target:  |               |            |               |             |        |             | 6.0            |
| A-3381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 0.008                                 | 6          | 1        |               |            |               |             |        |             | 6.0            |
| Set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                       |            |          |               |            |               |             |        |             | 5.0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A-3381                |                                       |            |          |               |            |               |             |        |             | 5.0            |
| Residence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ľ                     |                                       |            |          |               |            |               |             |        |             | 5.0            |
| Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Residence   Res    |                       |                                       |            |          |               |            |               |             |        |             | 5.0            |
| Residence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                       |            |          |               |            |               |             |        |             | 5.0<br>5.0     |
| Post-test   Pretest   Pr   |                       |                                       |            |          |               | 4          |               |             |        |             | 5.0            |
| Post-test   9:05   50   130   9:0   26   21:274   10:007   6   9:12   57   130   9:0   26   23:388   10:007   6   9:12   57   130   9:0   26   24:311   10:008   10:00   22   3:46   10:008   10:00   22   3:46   10:008   10:00   22   3:46   10:008   10:008   10:00   22   3:46   10:008   10:008   10:00   22   3:46   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   10:008   1   |                       | ·                                     |            |          |               |            |               |             |        |             | 5.0            |
| Post-test   Q-007   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                       |            |          | ·             |            |               |             |        |             | 5.0            |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | Post-                                 | tact       |          |               |            |               |             |        |             | 5.0            |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                       |            |          |               |            |               |             |        |             | 5.0            |
| Set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | İ                     | 1-                                    |            | Total    |               |            |               |             |        |             | Max:           |
| Set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                       |            |          |               |            | 130           | 8.1         | 23     | l i         | 6.0            |
| A-3382 A-3383 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3384 A-3385 A-3387 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3486 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A-3484 A  | Set 2                 | Pret                                  | est        |          | 9:27          | 0          | 1             |             |        | 0.000       | 6.0            |
| A-3384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                       |            | 1        |               |            |               |             |        |             | 6.0            |
| A-3384  A-3384  A-3384  A-3384  A-3384  A-3384  A-3384  A-3384  A-3386  A-3387  A-3387  A-3387  A-3388  A-3387  A-3388  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3389  A-3380  A-3389  A-388  A-388  B-0003  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008  B-0008   |                       |                                       |            |          |               |            |               |             | 22     |             | 6.0            |
| Post-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A-3384                | •                                     |            |          | 9:42          | 15         | 130           | 11.0        | 24     | 9.148       | 4.0            |
| Post-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                       |            |          |               | 20         | 130           |             |        |             | 4.5            |
| Post-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                       |            |          |               |            |               |             |        |             | 4.5            |
| Post-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ                     |                                       |            |          |               |            |               |             |        | 4           | 4.5            |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                       |            |          |               |            |               |             |        |             | 4.5            |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                       |            |          |               |            |               |             |        | 1           | 4.5            |
| New Pretest   Target:   10:19   0   130   11.2   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 0.000                                 | 15         |          |               |            | 130           | 11.0        | 27     | <del></del> | 4.5            |
| Set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                       |            |          | 0:41          | 41         |               |             |        | 24.060      | Max:           |
| A-3385 A-3386 A-3387 A-3387 A-3387 A-3387 A-3387 A-3387 A-3388 A-3387 A-3387 A-3387 A-3387 A-3388 A-3387 A-3387 A-3387 A-3388 A-3387 A-3387 A-3388 A-3387 A-3387 A-3387 A-3388 A-3387 A-3388 A-3388 A-3388 A-34 A-348 A-348 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 A-3488 |                       |                                       |            |          |               |            |               |             |        |             | 6.0            |
| A-3386 A-3387 A-3387 A-3387 A-3388 A-3387 A-3388 A-3389 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-340 A-34 |                       |                                       |            | Target:  |               |            |               |             |        |             | 5.0            |
| A-3387  A-3387    10:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 0.006                                 | 15         |          |               |            |               |             |        |             | 5.0            |
| 10:39   20   130   10.0   31   10.751     10:44   25   130   10.0   31   12.879     10:49   30   130   10.0   31   19.033     Post-test   10:59   40   130   11.0   32   21.853     0.006   15   11:04   45   130   11.0   32   24.106     Total   0:45   45   35   30   10.0   31   20.04     Average   130   10.2   31     Set 4   Pretest   Target:   11:12   0   130   10.0   31   2.904     A-3388   0.003   15   11:17   5   130   10.0   31   5.259     A-3389   11:27   15   130   10.0   31   5.259     A-3390   11:37   25   130   10.0   31   10.780     11:32   20   130   10.0   31   10.780     11:32   20   130   10.0   31   10.780     11:37   25   130   10.0   31   10.780     11:47   35   130   10.0   31   10.780     11:47   35   130   10.0   31   10.786     Post-test   11:52   40   130   10.0   31   20.786     Post-test   11:52   40   130   10.1   31     Post-test   10.003   15   Total   0:40   40     Average   130   10.1   31     Post-test   10.003   15   Total   0:40   40     Average   130   10.1   31     Post-test   10.003   15   Total   0:40   40     Average   130   10.1   31     Post-test   10.003   15   Total   0:40   40     Average   130   10.1   31     Post-test   10.003   10.0   30   0.003     Average   10.003   15   Total   0:40   40     Average   10.003   15   Total   0:40   40     Average   10.003   15   Total   0:40   40     Average   10.003   15   Total   0:40   40     Average   10.003   15   Total   0:40   40     Average   10.003   15   10.003   10.003   10.003     A mL                                                                                                                                                                                                                                                                                      |                       | ļ                                     |            |          |               |            |               |             |        |             | 5.0<br>5.0     |
| 10:44   25   130   10.0   31   12.879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-3387                |                                       |            |          |               |            |               |             |        |             | 5.0            |
| 10:49   30   130   10.0   31   16.204     10:54   35   130   10.0   31   19.033     Post-test   10:59   40   130   11.0   32   21.853     0.006   15   11:04   45   130   11.0   32   24.106     Total   0:45   45   130   10.2   31     Average   130   10.2   31     A-3388   0.003   15   11:17   5   130   10.0   31   2.904     A-3389   15   11:22   10   130   10.0   31   2.904     A-3389   11:22   10   130   10.0   31   2.904     A-3389   11:27   15   130   10.0   31   7.951     A-3390   11:27   15   130   10.0   31   10.780     A-3390   11:37   25   130   10.0   31   13.986     A-3391   11:42   30   130   10.0   31   16.832     A-3391   Average   11:52   40   130   11.0   32   24.240     Average   130   10.1   31   20.786     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1   31     Average   130   10.1    |                       | -                                     |            | l        |               |            |               |             |        |             | 5.0            |
| No.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                       |            | <u> </u> |               |            |               |             |        |             | 5.0            |
| Post-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                       |            |          |               |            |               |             |        |             | 5.0            |
| Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | Post-                                 | test       |          |               |            |               |             |        |             | 5.0            |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                       |            |          |               |            |               |             |        | I I         | 5.0            |
| Set 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                       |            | Total    |               |            |               |             |        |             | Max:           |
| Set 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                       |            |          |               |            | 130           | 10.2        | 31     |             | 5.0            |
| A-3388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Set 4                 | Prete                                 | est        |          | 11:12         | 0          |               |             | -      | 0.000       | 5.0            |
| A-3390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                       |            |          |               |            | 130           | 10.0        | 31     | 2.904       | 5.0            |
| A-3390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                       |            |          |               |            | 130           |             |        |             | 5.0            |
| 11:37   25   130   10.0   31   13.986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                       |            |          | 11:27         | 15         |               | 10.0        |        | 7.951       | 5.0            |
| 11:42   30   130   10.0   31   16.832     11:47   35   130   10.0   31   20.786     Post-test   11:52   40   130   11.0   32   24.240     0.003   15   Total   0:40   40     24.240   N     Average   130   10.1   31     Condensate   Tenax Rinse: Anasorb Rinse:     A-3391   NA   NA   NA     Final Condensate Volume: Anasorb Rinse Vol.:   NA   mL     40 mL   NA   mL   NA   mL     ADDITIONAL INPUTS     Symbol   Units   Set 1   Set 2   Set 3   Set 4   Average Dry Oxygen Concentration   Co2   %   20.5   20.5   20.5     Process Gas Flow (dry, STP) @ 68°F   Qsd   dscm/sec   0.330   0.330   0.330     CALCULATED SAMPLING PARAMETERS     Symbol   Units   Set 1   Set 2   Set 3   Set 4   Is     Sample Volume @ Standard Conditions   VmStd   dsL   20.383   20.059   19.662   19.777     VmStd=17.647 * Y * Pbar * Vm/(Fm + 460)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                       |            |          |               |            |               |             |        |             | 5.0            |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                       |            |          |               |            |               |             |        |             | 5.0            |
| Post-test   0.003   15   Total   0:40   40   130   11.0   32   24.240   Na   130   10.1   31   24.240   Na   130   10.1   31   24.240   Na   130   10.1   31   24.240   Na   130   10.1   31   24.240   Na   130   10.1   31   24.240   Na   130   10.1   31   24.240   Na   130   10.1   31   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240   Na   24.240    |                       |                                       |            |          |               |            |               |             |        |             | 5.0            |
| O.003   15   Total   O:40   40   130   10.1   31   O:40   Mayerage   O:40   Average   O:40   Average   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:40   O:   |                       |                                       |            |          |               |            |               |             |        |             | 5.0            |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                       |            |          |               |            | 130           | 11.0        | 32     |             | 5.0            |
| Condensate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 0.003                                 | 15         |          | 0:40          | 40         | 400           |             |        | 24.240      | Max:           |
| A-3391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | · · · · · · · · · · · · · · · · · · · |            | Average  |               |            |               |             | 31     |             | 5.0            |
| Symbol   Units   Set 1   Set 2   Set 3   Set 4   Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A-3391<br>Final Conde | nsate Volum                           | ie:        |          | NA<br>Tenax R | inse Vol.: | NA<br>Anasorb | Rinse Vol.: |        |             | j.             |
| Average Dry Oxygen Concentration   Co2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                       |            |          | ADDIT         | IONAL INP  | UTS           |             |        |             |                |
| Process Gas Flow (dry, STP) @ 68°F   Qsd   dscm/sec   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330   0.330    |                       |                                       |            |          |               |            |               |             |        |             | Average        |
| CALCULATED SAMPLING PARAMETERS           Symbol         Units         Set 1         Set 2         Set 3         Set 4         I           Sample Volume @ Standard Conditions         VmStd         dsL         20.383         20.059         19.662         19.777           VmStd=17.647 * Y * Pbar * Vm/(Fm + 460)         VmStd         VmS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |            | on       |               |            |               |             |        |             | 20.5           |
| Symbol Units   Set 1   Set 2   Set 3   Set 4   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Process Gas F         | low (dry, STP                         | ) @ 68°F   |          |               |            |               |             | 0.330  | 0.330       | 0.330          |
| Sample Volume @ Standard Conditions   VmStd   dsL   20.383   20.059   19.662   19.777   VmStd=17.647 * Y * Pbar * Vm/(Fm + 460)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |            | CALCUL   |               |            |               |             |        |             |                |
| VmStd=17.647 * Y * Pbar * Vm/(Fm + 460)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                       |            |          |               |            |               |             |        |             | Net            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |            |          | VmStd         | dsL        | 20.383        | 20.059      | 19.662 | 19.777      | 79.881         |
| A A. t I O I De te O A factoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |            |          |               | 1 1        | C 10-         | 0.50-       | 0.500  | 0.000       | 0.500          |
| Avg. Actual Sampling Rate, Qm=Vm/min Qm L/min 0.427 0.587 0.536 0.606 Avg. Sampling Rate, QmStd=VmStd/min QmStd dsL/min 0.358 0.489 0.437 0.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |            |          |               |            |               |             |        |             | 0.539<br>0.445 |

| CC           | NCENTRATIONS      |                                                             |                                                                                                                  |                                                                                                    |
|--------------|-------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| micrograms p | er dry standard c |                                                             |                                                                                                                  |                                                                                                    |
|              |                   |                                                             |                                                                                                                  |                                                                                                    |
|              | Lab Report Status | : Final                                                     |                                                                                                                  |                                                                                                    |
| 0031-STRT-2  |                   |                                                             | Pu                                                                                                               | n Total                                                                                            |
|              |                   |                                                             | E .                                                                                                              | μg/dscm                                                                                            |
|              |                   |                                                             |                                                                                                                  | 6.3e1                                                                                              |
|              |                   |                                                             | < .                                                                                                              | 3.5e1                                                                                              |
|              |                   |                                                             |                                                                                                                  | 2.8e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.5e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.9e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.5e0                                                                                              |
| -            |                   |                                                             |                                                                                                                  | 2.3e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.9e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.1e1                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.9e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.1e0                                                                                              |
|              |                   | All a V II W W                                              |                                                                                                                  | 1.8e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.6e1                                                                                              |
|              |                   |                                                             |                                                                                                                  | 2.0e0                                                                                              |
|              |                   | 3000 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                    |                                                                                                                  | 1.2e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.9e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 2.1e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 4.1e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.5e1                                                                                              |
|              |                   |                                                             |                                                                                                                  | 7.4e-1                                                                                             |
|              |                   | 4 - 100000 577                                              |                                                                                                                  | 7.4e-1                                                                                             |
|              |                   |                                                             |                                                                                                                  | 3.5e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 2.5e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 2.1e0                                                                                              |
|              |                   | A - AN I MINE                                               |                                                                                                                  | 2.3e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.3e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.8e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 2.5e0                                                                                              |
|              |                   |                                                             |                                                                                                                  |                                                                                                    |
|              |                   |                                                             |                                                                                                                  | 1.9e0<br>2.0e0                                                                                     |
|              |                   |                                                             |                                                                                                                  | 2.0e0<br>2.0e0                                                                                     |
|              |                   |                                                             |                                                                                                                  | 1.9e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 2.0e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.6e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 2.1e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 2.1e0<br>2.0e0                                                                                     |
|              |                   |                                                             |                                                                                                                  | 2.3e0                                                                                              |
|              |                   |                                                             |                                                                                                                  |                                                                                                    |
|              |                   |                                                             |                                                                                                                  | 1.6e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.9e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 1.2e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 2.8e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 7.0e0                                                                                              |
|              |                   |                                                             |                                                                                                                  | 8.8e-1                                                                                             |
|              |                   |                                                             | <                                                                                                                | 1.4e0                                                                                              |
|              |                   |                                                             |                                                                                                                  |                                                                                                    |
|              |                   |                                                             | <,B                                                                                                              | 1.4e1<br>7.4e0                                                                                     |
|              | micrograms p      | 01-1062-01- Lab Report Date:<br>6/21/2001 Lab Report Status | micrograms per dry standard cubic meter 01-1062-01- Lab Report Date: 08/20/01 6/21/2001 Lab Report Status: Final | Micrograms   Per dry standard cubic meter   101-1062-01-   Lab Report Date: 08/20/01   1031-STRT-2 |

| Table B-7. 0031-STRT-2.     |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |         |
|-----------------------------|--------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|
|                             | -                        | ONCENTRATIONS         | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |         |
|                             | micrograms               | per dry standard cubi | ic meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |         |
| Project:                    | 01-1062-01-              | Lab Report Date:      | 08/20/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |         |
| Run Date:                   | 6/21/2001<br>0031-STRT-2 | Lab Report Status:    | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |         |
| Run Identification: Analyte | 0031-31K1-2              | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Run            | Total   |
| Analyte                     |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | μg/dscm |
| n-Propylbenzene             |                          | _                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <              | 8.3e-1  |
| Styrene                     |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <              | 9.8e-1  |
| 1,1,1,2-Tetrachloroethane   |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 1.3e0   |
| 1,1,2,2-Tetrachloroethane   |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <              | 2.8e0   |
| Tetrachloroethene           |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <              | 1.9e0   |
| Toluene                     |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <,J            | 3.8e0   |
| 1,2,3-Trichlorobenzene      |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <<             | 2.6e0   |
| 1,2,4-Trichlorobenzene      |                          |                       | M W T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <              | 2.8e0   |
| 1,1,1-Trichloroethane       |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <              | 2.4e0   |
| 1,1,2-Trichloroethane       |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <              | 2.1e0   |
| Trichloroethene             |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <              | 2.0e0   |
| Trichlorofluoromethane      |                          |                       | - 444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>&lt;</b> ,J | 2.0e0   |
| 1,2,3-Trichloropropane      |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>       | 3.0e0   |
| 1,2,4-Trimethylbenzene      |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _<             | 1.3e0   |
| 1,3,5-Trimethylbenzene      |                          |                       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <              | 7.4e-1  |
| Vinyl chloride              |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <,J            | 1.6e0   |
| m-Xylene & p-Xylene         |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _ <            | 5.5e0   |
| o-Xylene                    |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <              | 9.8e-1  |
| TICs                        |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>       |         |
| Hexane, 2-methyl-           |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 3.8e0   |
| Pentane, 2,3-dimethyl-      |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 1.4e0   |
| Hexane, 3-methyl-           |                          |                       | AND NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N,J,M          | 3.4e0   |
| Pentane, 3-ethyl-           |                          |                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N,J,M          | 4.3e-1  |
| Cyclohexene                 |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 2.3e0   |
| Cyclopentane, 1,2-dimethyl- |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 6.6e-1  |
| Cyclohexane, methyl-        |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 2.5e0   |
| Hexane, 2,4-dimethyl-       |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 2.5e0   |
| Cyclopentane, ethyl-        |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 4.5e-1  |
| Benzonitrile                |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 9.0e-1  |
| Tridecane                   |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 1.0e0   |
| Undecane                    |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 3.0e0   |
| Decane, 2,2,5-trimethyl-    |                          |                       | CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE | N,J,M          | 7.5e-1  |
| Undecane, 5-methyl-         |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 2.6e0   |
| Dodecane                    |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 2.8e2   |
| Dodecane, 6-methyl-         |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 6.5e-1  |
| Undecane, 2,6-dimethyl-     |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 5.8e-1  |
| Tridecane                   |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 3.0e1   |
| Tetradecane                 |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N,J,M          | 1.2e1   |
| Pentane, 3,3-dimethyl-      | *                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |         |

| Table B-7. 0031-STRT-2.     |             |                                         |          |       |                 |
|-----------------------------|-------------|-----------------------------------------|----------|-------|-----------------|
|                             |             | ASS FLOW RATE                           | ; I      |       |                 |
|                             |             | rams per second                         | 08/20/01 |       |                 |
| Project:<br>Run Date:       | 6/21/2001   | 6Lab Report Date:<br>Lab Report Status: | Final    |       |                 |
| Run Identification:         | 0031-STRT-2 | Lab Report Status.                      | Tilla    |       |                 |
| Analyte                     |             |                                         |          | Rur   | Total           |
| •                           |             |                                         |          | Flag  | g/sec           |
| Acetone                     | - downers   |                                         |          | J,B   | 2.1e-5          |
| Acrylonitrile               |             |                                         |          | <     | 1.2e-5          |
| Benzene                     |             |                                         |          | _ <,J | 9.1e-7          |
| Bromobenzene                |             |                                         |          | <     | 5.0e-7          |
| Bromochloromethane          | MARKET TO   |                                         |          | <     | 6.2e-7          |
| Bromodichloromethane        |             |                                         |          | <     | 5.0e-7          |
| Bromoform                   |             |                                         |          | <     | 7.4e-7          |
| Bromomethane                |             |                                         |          | <,J   | 6.2e-7          |
| 2-Butanone                  |             |                                         |          | <,J   | 3.7e-6          |
| n-Butylbenzene              |             |                                         |          | <     | 6.2e-7          |
| sec-Butylbenzene            |             |                                         |          | <     | 3.5e-7          |
| tert-Butylbenzene           |             |                                         |          | <     | 5.8e-7          |
| Carbon disulfide            |             |                                         |          | <<    | 5.4e-6          |
| Carbon tetrachloride        |             |                                         |          | <     | 6.6e-7          |
| Chlorobenzene               |             |                                         |          | <     | 3.9e-7          |
| Chlorodibromomethane        |             |                                         |          | <     | 6.2e-7          |
| Chloroethane                |             |                                         |          | <,J   | 7.0e-7          |
| Chloroform                  |             |                                         |          | <     | 1.4e-6          |
| Chloromethane               |             |                                         |          | <,J   | 5.0e-6          |
| 2-Chlorotoluene             |             |                                         |          | <     | 2.4e-7          |
| 4-Chlorotoluene             |             |                                         |          | <     | 2.4e-7          |
| 1,2-Dibromo-3-chloropropane |             |                                         |          | <     | 1.2e-6          |
| 1,2-Dibromoethane           |             |                                         |          | <     | 8.3e-7          |
| Dibromomethane              |             |                                         |          | <     | 7.0e-7          |
| 1,2-Dichlorobenzene         |             |                                         |          | <     | 7.4e-7          |
| 1,3-Dichlorobenzene         |             |                                         |          | <     | 4.1e-7          |
| 1,4-Dichlorobenzene         |             |                                         |          | <     | 5.8e-7          |
| Dichlorodifluoromethane     |             |                                         |          | <     | 8.3e-7          |
| 1,1-Dichloroethane          |             |                                         |          | <     | 6.2e-7          |
| 1,2-Dichloroethane          |             |                                         | - 1 Nov  | <     | 6.6e-7          |
| 1,1-Dichloroethene          |             |                                         |          | <,J   | 6.6 <b>e-</b> 7 |
| cis-1,2-Dichloroethene      |             |                                         |          | <     | 6.2e-7          |
| trans-1,2-Dichloroethene    |             |                                         |          | <     | 6.6e-7          |
| 1,2-Dichloropropane         |             |                                         |          | <     | 5.4e-7          |
| 1,3-Dichloropropane         |             |                                         |          | <     | 7.0e-7          |
| 2,2-Dichloropropane         |             |                                         |          | <     | 6.6e-7          |
| 1,1-Dichloropropene         |             |                                         |          | <     | 7.4e-7          |
| cis-1,3-Dichloropropene     |             |                                         |          | <     | 5.4e-7          |
| trans-1,3-Dichloropropene   |             |                                         |          | <     | 6.2e-7          |
| Ethylbenzene                |             |                                         |          | <     | 3.8e-7          |
| Hexachlorobutadiene         |             |                                         |          | <     | 9.1e-7          |
| 2-Hexanone                  |             |                                         |          | <     | 2.3e-6          |
| Isopropylbenzene            |             |                                         |          | <     | 2.9e-7          |
| p-Isopropyltoluene          |             | 1000                                    |          | <     | 4.5 <b>e-</b> 7 |
| Methylene chloride          |             |                                         |          | <,B   | 4.5e-6          |
| 4-Methyl-2-pentanone        |             |                                         |          | <     | 2.4 <b>e-</b> 6 |
| Naphthalene                 |             |                                         |          | <     | 8.7e-7          |

| Table B-7. 0031-STRT-2.     |                                          |             |                |
|-----------------------------|------------------------------------------|-------------|----------------|
|                             | MASS FLOW RATE grams per second          |             |                |
| Project:                    | 01-1062-01-086 Lab Report Date: 08/20/01 |             |                |
| Run Date:                   | 6/21/2001 Lab Report Status: Final       |             |                |
| Run Identification:         | 0031-STRT-2                              |             |                |
| Analyte                     |                                          | Run<br>Flag | Total<br>g/sec |
| n-Propylbenzene             |                                          | - r lag     | 2.7e-7         |
| Styrene                     |                                          | <           | 3.2e-7         |
| 1,1,1,2-Tetrachloroethane   |                                          | <           | 4.1e-7         |
| 1,1,2,2-Tetrachloroethane   |                                          | <           | 9.1e-7         |
| Tetrachloroethene           |                                          | <           | 6.2e-7         |
| Toluene                     |                                          | <,J         | 1.2e-6         |
| 1,2,3-Trichlorobenzene      |                                          | <           | 8.7e-7         |
| 1,2,4-Trichlorobenzene      |                                          | <           | 9.1e-7         |
| 1,1,1-Trichloroethane       |                                          | <           | 7.8e-7         |
| 1,1,2-Trichloroethane       |                                          | <           | 7.0e-7         |
| Trichloroethene             |                                          | <           | 6.6e-7         |
| Trichlorofluoromethane      |                                          | <,J         | 6.6e-7         |
| 1,2,3-Trichloropropane      |                                          | <           | 9.9e-7         |
| 1,2,4-Trimethylbenzene      |                                          | <           | 4.1e-7         |
| 1,3,5-Trimethylbenzene      |                                          | <           | 2.4e-7         |
| Vinyl chloride              |                                          | <,J         | 5.4e-7         |
| m-Xylene & p-Xylene         |                                          | <           | 1.8e-6         |
| o-Xylene                    |                                          | <           | 3.2e-7         |
| TICs                        |                                          |             |                |
| Hexane, 2-methyl-           |                                          | N,J,M       | 1.2e-6         |
| Pentane, 2,3-dimethyl-      |                                          | N,J,M       | 4.5e-7         |
| Hexane, 3-methyl-           |                                          | N,J,M       | 1.1e-6         |
| Pentane, 3-ethyl-           |                                          | N,J,M       | 1.4e-7         |
| Cyclohexene                 |                                          | N,J,M       | 7.4e-7         |
| Cyclopentane, 1,2-dimethyl- |                                          | N,J,M       | 2.2e-7         |
| Cyclohexane, methyl-        |                                          | N,J,M       | 8.3e-7         |
| Hexane, 2,4-dimethyl-       |                                          | N,J,M       | 8.3e-7         |
| Cyclopentane, ethyl-        |                                          | N,J,M_      | 1.5e-7         |
| Benzonitrile                |                                          | N,J,M       | 3.0e-7         |
| Tridecane                   |                                          | N,J,M       | 3.4e-7         |
| Undecane                    |                                          | N,J,M       | 9.9e-7         |
| Decane, 2,2,5-trimethyl-    | 44.40                                    | N,J,M       | 2.5e-7         |
| Undecane, 5-methyl-         |                                          | N,J,M       | 8.7e-7         |
| Dodecane                    |                                          | N,J,M       | 9.1e-5         |
| Dodecane, 6-methyl-         |                                          | N,J,M       | 2.1e-7         |
| Undecane, 2,6-dimethyl-     |                                          | N,J,M       | 1.9e-7         |
| Tridecane                   |                                          | N,J,M       | 9.9e-6         |
| Tetradecane                 |                                          | N,J,M       | 4.0e-6         |
| Pentane, 3,3-dimethyl-      |                                          |             |                |

| Table B-8.                  | 0031-EN         | ND-2.                |                  |                 |               |                     |                    |                     |                  |                      |
|-----------------------------|-----------------|----------------------|------------------|-----------------|---------------|---------------------|--------------------|---------------------|------------------|----------------------|
|                             |                 |                      | VO               | ST SAME         | LING DAT      | A SHEE              |                    |                     |                  |                      |
| Site:                       |                 | Offgas Tie-in        | Run No.:         |                 | 0031-E        |                     | Meter Box N        | lo.:                |                  | 2                    |
| Project:                    | 01-1062-        | 1000                 | Run Type:        |                 | Te            |                     | Y-factor: 1.005    |                     |                  |                      |
| Date:                       | 21-             | Jun-01               | Pbar., in. H     | g:              | 25.2          | 10                  | Operator: fe/rw    |                     |                  |                      |
| VOCETI                      |                 | l. Ob set            | I Oii            | Car             | lina          | Drobo               | Candanaar          | Motor               | Meter            | Pump                 |
| VOST Tube                   |                 | k Check              | Sampling<br>Rate |                 | npling<br>ime | Probe               | Condenser<br>Temp. | Meter<br>Temp.      | Volume           | Vacuum               |
| Sample<br>Numbers           | Rate<br>(L/min) | @ vacuum<br>(in. Hg) | (L/min)          | (24 hr)         | (min.)        | Temp.               | (°C)               | (°C)                | (L)              | (in. Hg)             |
| Set 1                       | ,               | retest               | Target:          | 13:50           |               | 130                 | 14.0               | 36                  | 0.000            | 5.0                  |
| A-3428                      | 0.003           | 15                   | 1                | 13:55           | 5             | 130                 | 15.0               | 36                  | 2.913            | 5.0                  |
| A-3429                      | 0.000           |                      |                  | 14:00           | 10            | 130                 | 15.0               | 36                  | 5.730            | 4.5                  |
| A-3430                      |                 | 1                    |                  | 14:05           | 15            | 130                 | 16.0               | 36                  | 8.442            | 4.5                  |
|                             |                 |                      |                  | 14:10           | 20            | 130                 | 17.0               | 36                  | 11.143           | 4.5                  |
|                             |                 |                      |                  | 14:15           | 25            | 130                 | 14.0               | 36                  | 13.890           | 4.5                  |
|                             |                 |                      |                  | 14:20           | 30            | 130                 | 13.0               | 37                  | 16.475           | 4.5                  |
|                             |                 |                      |                  | 14:25           | 35            | 130                 | 13.0               | 37                  | 19.112           | 4.5                  |
| ł                           |                 | ·                    |                  | 14:30           | 40            | 130                 | 12.0               | 37                  | 21.676<br>24.121 | 4.5<br>4.5           |
|                             |                 | st-test              | Total            | 14:35<br>0:45   | 45<br>45      | 130                 | 12.0               | 37                  | 24.121           | Max:                 |
|                             | 0.000           | 15                   | Average          | 0.43            | 40            | 130                 | 14.1               | 36                  | 24.12.1          | 5.0                  |
| Set 2                       | P               | retest               | Target:          | 14:45           | 0             | 130                 | 14.0               | 37                  | 0                | 4.7                  |
| A-3431                      | 0.003           | 15                   | 1 1              |                 | 5             | 130                 | 13.0               | 37                  | 2.884            | 4.8                  |
| A-3432                      |                 | t                    | <u> </u>         | 14:55           | 10            | 130                 | 12.0               | 37                  | 5.986            | 4.8                  |
| A-3433                      |                 |                      |                  | 15:00           | 15            | 130                 | 13.0               | 37                  | 8.994            | 4.8                  |
|                             |                 |                      |                  | 15:05           | 20            | 130                 | 14.0               | 37                  | 12.108           | 4.8                  |
|                             |                 |                      |                  | 15:10           | 25            | 130                 | 13.0               | 38                  | 16.982           | 4.8                  |
|                             |                 |                      |                  | 15:15           | 30            | 130                 | 14.0               | 37                  | 18.303           | 4.8                  |
|                             |                 | L                    |                  | 15:20           | 35            | 130                 | 13.0               | 37                  | 21.394           | 4.8                  |
| ,                           |                 | st-test              | T-4-1            | 15:25           | 40<br>40      | 130                 | 13.0               | 37                  | 25.561<br>25.561 | 4.8<br>Max:          |
|                             | 0,000           | 15                   | Total<br>Average | 0:40            | 40            | 130                 | 13.2               | 37                  | 20.001           | 4.8                  |
| Set 3                       |                 | retest               | Target:          | 15:34           | 0             | 130                 | 15.0               | 37                  | 0.000            | 4.8                  |
| A-3434                      | 0.000           | 15                   | Target.          | 15:39           | 5             | 130                 | 14.0               | 37                  | 3.251            | 4.8                  |
| A-3435                      | 0.000           | 15                   |                  | 15:44           | 10            | 130                 | 13.0               | 38                  | 6.003            | 4.8                  |
| A-3436                      |                 | ·                    |                  | 15:49           | 15            | 130                 | 13.0               | 38                  | 9.136            | 4.8                  |
|                             |                 |                      |                  | 15:54           | 20            | 130                 | 14.0               | 38                  | 11.487           | 4.8                  |
|                             |                 |                      |                  | 15:59           | 25            | 130                 | 14.0               | 38                  | 13.953           | 4.8                  |
|                             |                 |                      |                  | 16:04           |               | 130                 | 14.0               | 38                  | 16.616           | 4.8                  |
|                             |                 | į                    |                  | 16:09           | 35            | 130                 | 14.0               | 38                  | 19.331           | 4.8                  |
|                             |                 | l                    |                  | 16:14           | 40            | 130                 | 14.0               | 38                  | 22.039           | 4.8                  |
|                             |                 | st-test              | T-4-1            | 16:18           | 44            | 130                 | 14.0               | 38                  | 24.214<br>24.214 | 4.8<br>Max:          |
|                             | 0.006           | 15                   | Total<br>Average | 0:44            | 44            | 130                 | 13.9               | 38                  | 24.214           | 4.8                  |
| Set 4                       | D               | retest               | Target:          | 16:26           | 0             | 130                 | 15.0               | 38                  | 0.000            | 4.0                  |
| A-3437                      | 0.006           | 15                   | raiget.          | 16:31           | 5             | 130                 | 15.0               | 38                  | 2.624            | 4.0                  |
| A-3438                      |                 | 10                   |                  | 16:36           | 10            | 130                 | 15.0               | 38                  | 5.801            | 4.0                  |
| A-3439                      |                 |                      |                  | 16:41           |               | 130                 | 15.0               | 38                  | 8.223            | 4.0                  |
|                             |                 | T                    |                  | 16:46           | 20            | 130                 | 15.0               | 39                  | 10.998           | 4.0                  |
| ]                           |                 |                      |                  | 16:51           | 25            | 130                 | 15.0               | 39                  | 13.737           | 4.0                  |
|                             |                 | !                    |                  | 16:56           | 30            | 130                 | 15.0               | 39                  | 16.501           | 4.0                  |
| 1                           |                 |                      |                  | 17:01           | 35            | 130                 | 15.0               | 39                  | 19.272           | 4.0                  |
|                             |                 | at toot              |                  | 17:06           | 40            | 130                 | 15.0               | 40<br>40            | 22.038<br>24.227 | 4.0                  |
|                             | 0.006           | st-test<br>15        | Total            | 17:10<br>0:44   | 44            | 130                 | 15.0               | 40                  | 24.227           | Max:                 |
|                             | 0.000           | 10                   | Average          | U.44            |               | 130                 | 15.0               | 39                  | -7.22            | 4.0                  |
| Condensate                  |                 |                      | Avelage          | Tenax R         | inse:         |                     | Rinse:             |                     | [                |                      |
| A-3440                      | •               |                      |                  | NA              |               | NA                  |                    |                     |                  |                      |
| Final Conder                | nsate Volu      | ıme:                 |                  |                 | inse Vol.:    |                     | Rinse Vol.:        |                     |                  |                      |
|                             | mL              |                      |                  | NA              | mL            | NA                  | mL                 |                     |                  |                      |
|                             |                 |                      |                  |                 | ONAL INP      |                     |                    |                     |                  |                      |
|                             |                 |                      |                  | Symbol          | Units         | Set 1               | Set 2              | Set 3               | Set 4            | Average              |
| Average Dry                 |                 |                      | <u> </u>         | Co2             | <u>%</u>      | 20.5                |                    | 20.5                |                  | 20.5                 |
| Process Gas F               | low (dry, S     | TP) @ 68°F           |                  | Qsd             | dscm/sec      | 0.330               |                    | 0.330               | 0.330            | 0.330                |
|                             | ŗ               |                      | CALCUL           |                 | AMPLING F     |                     |                    | Ca4 2               | Cat 4            | Not                  |
| Cample Valu                 | ma @ St-        | andard Candi         | tions            | Symbol<br>VmStd | Units<br>dsL  | <b>Set 1</b> 19.344 | Set 2<br>20.452    | <b>Set 3</b> 19.331 | Set 4<br>19.280  | <b>Net</b><br>78.406 |
| Sample Volu<br>VmStd=17.647 |                 | unuaru CONGI         | 110113           | viiiolu         | usL           | 13.344              | 20.402             | 15.331              | 19.200           | 7 0.400              |
| Avg. Actual S               |                 |                      | n/min            | Qm              | L/min         | 0.536               | 0.639              | 0.550               | 0.551            | 0.569                |
| Avg. Samplir                | na Rate. C      | mStd=VmSt            | d/min            | QmStd           | dsL/min       | 0.430               |                    | 0.439               |                  | 0.455                |
|                             |                 |                      |                  |                 |               |                     |                    | · · · · · ·         |                  |                      |

| Table B-8. 0031-END-2.                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|
| CONCENTRATIONS                                                         | · ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                 |
| micrograms per dry standard cubi Project: 01-1062-01- Lab Report Date: | os/20/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                 |
| Run Date: 6/21/2001 Lab Report Status:                                 | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                 |
| Run Identification: 0031-END-2                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
| Analyte                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Total           |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flag     | μ <b>g/dscn</b> |
| Acetone                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J,B    | 4.8e1           |
| Acrylonitrile                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 3.6e1           |
| Benzene                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 2.6e0           |
| Bromobenzene                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.5e0           |
| Bromochloromethane                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.9e0           |
| Bromodichloromethane                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1.5e0           |
| Bromoform                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 2.3e0           |
| Bromomethane                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J        | 2.6e0           |
| 2-Butanone                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.1e1           |
| n-Butylbenzene                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.9e0           |
| sec-Butylbenzene                                                       | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA | <        | 1.1e0           |
| tert-Butylbenzene                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.8e0           |
| Carbon disulfide                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 8.2e0           |
| Carbon tetrachloride                                                   | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <,J      | 2.0e0           |
| Chlorobenzene                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J      | 1.2e0           |
| Chlorodibromomethane                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.9e0           |
| Chloroethane                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J      | 2.0e0           |
| Chloroform                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 5.0e0           |
| Chloromethane                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J      | 3.2e1           |
| 2-Chlorotoluene                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 7.5e-1          |
| 4-Chlorotoluene                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 7.5e-1          |
| 1,2-Dibromo-3-chloropropane                                            | . , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <        | 3.4e0           |
| 1,2-Dibromoethane                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 2.6e0           |
| Dibromomethane                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 2.2e0           |
| 1,2-Dichlorobenzene                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 2.3e0           |
| 1,3-Dichlorobenzene                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> | 1.3e0           |
| 1,4-Dichlorobenzene                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.8e0           |
| Dichlorodifluoromethane                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J      | 2.0e0           |
| 1,1-Dichloroethane                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.9e0           |
| 1,2-Dichloroethane                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 2.0e0           |
| 1,1-Dichloroethene                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J      | 2.0e0           |
| cis-1,2-Dichloroethene                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.9e0           |
| trans-1,2-Dichloroethene                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 2.2e0           |
| 1,2-Dichloropropane                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.7e0           |
| 1,3-Dichloropropane                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 2.2e0           |
| 2,2-Dichloropropane                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 2.0e0           |
| 1,1-Dichloropropene                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 2.3e0           |
| cis-1,3-Dichloropropene                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.7e0           |
| trans-1,3-Dichloropropene                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.9e0           |
| Ethylbenzene                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.2e0           |
| Hexachlorobutadiene                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 2.9e0           |
| 2-Hexanone                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 7.1e0           |
| Isopropylbenzene                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 8.9e-1          |
| p-Isopropyltoluene                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <        | 1.4e0           |
| Methylene chloride                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J,B    | 5.5e0           |

| Table B-8. 0031-END-2.         |                                       |                                           |                      |       |                 |
|--------------------------------|---------------------------------------|-------------------------------------------|----------------------|-------|-----------------|
|                                |                                       | NCENTRATIONS                              |                      |       |                 |
| Decision                       | micrograms p<br>01-1062-01-           | per dry standard cubi<br>Lab Report Date: | ic meter<br>08/20/01 |       |                 |
| Project:<br>Run Date:          | 6/21/2001                             | Lab Report Status:                        | Final                |       |                 |
| Run Identification:            | 0031-END-2                            | Lab report otatas.                        | T III GI             |       |                 |
| Analyte                        |                                       |                                           |                      | Rur   | Total           |
|                                |                                       |                                           |                      | Flag  | μ <b>g/dscm</b> |
| 4-Methyl-2-pentanone           |                                       |                                           |                      | <     | 7.5e0           |
| Naphthalene                    |                                       |                                           |                      | <     | 2.7e0           |
| n-Propylbenzene                |                                       |                                           |                      | <     | 8.4e-1          |
| Styrene                        |                                       |                                           |                      | <     | 9.9e-1          |
| 1,1,1,2-Tetrachloroethane      |                                       |                                           |                      | <     | 1.3e0           |
| 1,1,2,2-Tetrachloroethane      |                                       |                                           |                      | <     | 2.9e0           |
| Tetrachloroethene              |                                       |                                           |                      | <     | 1.9e0           |
| Toluene                        |                                       |                                           |                      | <,J   | 2.3e0           |
| 1,2,3-Trichlorobenzene         |                                       |                                           |                      |       | 2.7e0           |
| 1,2,4-Trichlorobenzene         |                                       |                                           |                      | <     | 2.9e0           |
| 1,1,1-Trichloroethane          |                                       |                                           |                      | <     | 2.4e0           |
| 1,1,2-Trichloroethane          |                                       |                                           |                      | <     | 2.2e0           |
| Trichloroethene                |                                       |                                           |                      | <     | 2.0e0           |
| Trichlorofluoromethane         |                                       |                                           |                      | <,J   | 2.0e0           |
| 1,2,3-Trichloropropane         |                                       |                                           |                      | <     | 3.1e0           |
| 1,2,4-Trimethylbenzene         |                                       |                                           |                      | <     | 1.3e0           |
| 1,3,5-Trimethylbenzene         |                                       |                                           |                      | . <   | 7.5e-1          |
| Vinyl chloride                 |                                       |                                           |                      | <,J   | 2.2e0           |
| m-Xylene & p-Xylene            |                                       |                                           |                      | <     | 5.6e0           |
| o-Xylene                       |                                       |                                           |                      | <,J   | 9.8e-1          |
| TICs                           |                                       |                                           |                      |       |                 |
| Hexane, 2-methyl-              |                                       |                                           |                      | N,J,M | 3.1e0           |
| Pentane, 2,3-dimethyl-         |                                       |                                           |                      | N,J,M | 1.8e0           |
| Hexane, 3-methyl-              |                                       |                                           |                      | N,J,M | 4.3e0           |
| Pentane, 3-ethyl-              |                                       |                                           |                      | N,J,M | 4.1e-1          |
| Cyclohexene                    |                                       |                                           |                      | N,J,M | 3.3e-1          |
| Cyclopentane, 1,2-dimethyl-, t |                                       |                                           |                      | N,J,M | 3.8e-1          |
| Cyclohexane, methyl-           |                                       |                                           |                      | N,J,M | 1.5e0           |
| Hexane, 2,4-dimethyl-          |                                       |                                           |                      | N,J,M | 1.2e0           |
| Benzonitrile                   |                                       |                                           |                      | N,J,M | 6.0e-1          |
| Undecane                       |                                       |                                           |                      | N,J,M | 1.5e0           |
| Undecane, 5-methyl-            | ·                                     |                                           |                      | N,J,M | 2.3e0           |
| Dodecane                       |                                       |                                           |                      | N,J,M | 2.2e2           |
| Undecane, 2,6-dimethyl-        |                                       |                                           |                      | N,J,M | 1.1e0           |
| Tridecane                      |                                       |                                           |                      | N,J,M | 4.0e1           |
| Tetradecane                    |                                       |                                           |                      | N,J,M | 1.8e1           |
| Cyclopentane, ethyl-           |                                       |                                           |                      |       |                 |
| Pentane, 3,3-dimethyl-         | · · · · · · · · · · · · · · · · · · · |                                           |                      |       |                 |

| Table B-8. 0031-END-2.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|
| 1 aut D-0. 0031-END-2.       | MASS FLOW RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
|                              | grams per second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
|                              | -0866 Lab Report Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 08/20/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |        |
| Run Date: 6/21/200           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |        |
| Run Identification: 0031-END | J-Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D             | Total  |
| Analyte                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flag          | g/sec  |
| Acetone                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J,B         | 1.6e-5 |
| Acrylonitrile                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ \ \ \ \ \ \ | 1.2e-5 |
| Benzene                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \ \ <         | 8.4e-7 |
| Bromobenzene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 5.0e-7 |
| Bromochloromethane           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 6.3e-7 |
| Bromodichloromethane         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 5.0e-7 |
| Bromoform                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 7.6e-7 |
| Bromomethane                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J             | 8.4e-7 |
| 2-Butanone                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 3.7e-6 |
| n-Butylbenzene               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 6.3e-7 |
| sec-Butylbenzene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m raini samai - wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <             | 3.6e-7 |
| tert-Butylbenzene            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 5.9e-7 |
| Carbon disulfide             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 2.7e-6 |
| Carbon tetrachloride         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND DESCRIPTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF | <,J           | 6.7e-7 |
| Chlorobenzene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -, <u>J</u>   | 4.0e-7 |
| Chlorodibromomethane         | 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 6.3e-7 |
| Chloroethane                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A BULL THE THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOT | -,J           | 6.7e-7 |
| Chloroform                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 1.6e-6 |
| Chloromethane                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J           | 1.1e-5 |
| 2-Chlorotoluene              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,0           | 2.5e-7 |
| 4-Chlorotoluene              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 2.5e-7 |
| 1,2-Dibromo-3-chloropropane  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 1.1e-6 |
| 1,2-Dibromoethane            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 8.4e-7 |
| Dibromomethane               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 7.1e-7 |
| 1,2-Dichlorobenzene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 7.6e-7 |
| 1,3-Dichlorobenzene          | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 4.2e-7 |
| 1,4-Dichlorobenzene          | MANUAL (1977)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             | 5.9e-7 |
| Dichlorodifluoromethane      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -,J           | 6.7e-7 |
| 1,1-Dichloroethane           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 6.3e-7 |
| 1,2-Dichloroethane           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 6.7e-7 |
| 1,1-Dichloroethene           | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -,J           | 6.7e-7 |
| cis-1,2-Dichloroethene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 6.3e-7 |
| trans-1,2-Dichloroethene     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ \ \ <       | 7.1e-7 |
| 1,2-Dichloropropane          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |               | 5.5e-7 |
| 1,3-Dichloropropane          | MALAN STARTER STARTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 7.1e-7 |
| 2,2-Dichloropropane          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 6.7e-7 |
| • • •                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 7.6e-7 |
| 1,1-Dichloropropene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 5.5e-7 |
| cis-1,3-Dichloropropene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 6.3e-7 |
| trans-1,3-Dichloropropene    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 3.9e-7 |
| Ethylbenzene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
| Hexachlorobutadiene          | , and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 9.7e-7 |
| 2-Hexanone                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 2.4e-6 |
| Isopropylbenzene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 2.9e-7 |
| p-Isopropyltoluene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <             | 4.6e-7 |
| Methylene chloride           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J,B         | 1.8e-6 |

| Table B-8. 0031-END-2.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|
|                              | MASS FLOW RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                  |
| Project:                     | grams per second 01-1062-01-086\( Lab \) Report Date: 08/20/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                  |
| Run Date:                    | 6/21/2001 Lab Report Status: Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                  |
| Run Identification:          | 0031-END-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                  |
| Analyte                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Total            |
| A Marthall O and a second    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flag           | g/sec            |
| 4-Methyl-2-pentanone         | er e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <              | 2.5e-6<br>8.8e-7 |
| Naphthalene                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 2.8e-7           |
| n-Propylbenzene<br>Styrene   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 3.3e-7           |
| 1,1,1,2-Tetrachloroethane    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 4.2e-7           |
| 1,1,2,2-Tetrachloroethane    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ <            | 9.7e-7           |
| Tetrachloroethene            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <              | 6.3e-7           |
| Toluene                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + `,J          | 7.6e-7           |
| 1,2,3-Trichlorobenzene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ \ \ <        | 8.8e-7           |
| 1,2,4-Trichlorobenzene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>  `</del> | 9.7e-7           |
| 1,1,1-Trichloroethane        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              | 8.0e-7           |
| 1,1,2-Trichloroethane        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>  `</del> | 7.1e-7           |
| Trichloroethene              | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | -              | 6.7e-7           |
| Trichlorofluoromethane       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -,J            | 6.7e-7           |
| 1,2,3-Trichloropropane       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <              | 1.0e-6           |
| 1,2,4-Trimethylbenzene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <              | 4.2e-7           |
| 1,3,5-Trimethylbenzene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <              | 2.5e-7           |
| Vinyl chloride               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J            | 7.1e-7           |
| m-Xylene & p-Xylene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <              | 1.9e-6           |
| o-Xylene                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <,J            | 3.2e-7           |
| TICs                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |
| Hexane, 2-methyl-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 1.0e-6           |
| Pentane, 2,3-dimethyl-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 5.9e-7           |
| Hexane, 3-methyl-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 1.4e-6           |
| Pentane, 3-ethyl-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 1.3e-7           |
| Cyclohexene                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 1.1e-7           |
| Cyclopentane, 1,2-dimethyl-, | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N,J,M          | 1.3e-7           |
| Cyclohexane, methyl-         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 5.0e-7           |
| Hexane, 2,4-dimethyl-        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 4.0e-7           |
| Benzonitrile                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 2.0e-7           |
| Undecane                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N,J,M          | 5.0e-7           |
| Undecane, 5-methyl-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 7.6e-7           |
| Dodecane                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 7.1e-5           |
| Undecane, 2,6-dimethyl-      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 3.5e-7           |
| Tridecane                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 1.3e-5           |
| Tetradecane                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N,J,M          | 5.9e-6           |
| Cyclopentane, ethyl-         | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                |                  |
| Pentane, 3,3-dimethyl-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>        |                  |

Table B-9. 0050-STRT-1.

## 0050 SAMPLING DATA SHEET FOR HLLWE TESTS

| Site:          | HLLWE          | Offgas Tie-in  |       | Sampling       | Location:               | -                      | MAN                  | N-OFG-73           | Nozzle No                | .:              |          | 2-01                        | Est. ΔP:           | 0.15             | Est. Tstack, °F: | 255   |
|----------------|----------------|----------------|-------|----------------|-------------------------|------------------------|----------------------|--------------------|--------------------------|-----------------|----------|-----------------------------|--------------------|------------------|------------------|-------|
| Project:       | 01-            | 1062-01-0866   |       | Duct ID, i     | nches:                  |                        |                      | 12                 | Nozzle Size, in.: 0.3140 |                 |          | Est. K:                     | 6.36               | Est. vs, ft/s:   | 28.4             |       |
| Date:          |                | 6/7/2001       |       | Static Pre     | essure, in.             | WG:                    | G: -17.5             |                    |                          | Pitot No.: JM-2 |          |                             | Est. ∆H:           | 0.95             | Operator(s): FE, | JA,RW |
| Run No.:       | 0              | 050-STRT-1     |       | Est. O2, 9     | <u>%:</u>               |                        |                      | Pitot Coeff.: 0.84 |                          |                 | 0.84     | Est. DGM Temperature, °F 80 |                    |                  |                  |       |
| Run Type:      |                | TEST           |       | Est CO2,       |                         |                        |                      | 0                  | Meter Box                | No.             |          | 2                           | Meter Box          | Leak Ched        |                  |       |
| Phar., in. H   |                | 25.200         |       | Est. Mois      | <del></del>             |                        |                      |                    | ΔH@:                     |                 |          |                             | Pretest            | 0.010            | cfm @ 15 in.     | . Hg  |
| Tambient, °F   |                | 70             |       | Impinger       |                         |                        |                      | 9                  | Y-factor:                |                 | 3.       | 1.0328                      |                    |                  | Pitot:           |       |
| DGM vol. (     | 30ai (m*):     | 3.00           |       | DGM Vol.       | Goal (ft <sup>3</sup> ) | ):                     |                      | 127.080            | Min. endin               | g DGM vol.      | . (ft°): | 819.905                     | Post-test          | 0.010            | cfm @ 11 in.     | . Hg  |
| Sampling       | Clock          | Velocity<br>∆P |       | Meter          | Actual                  | Meter                  |                      |                    | TEMPERA                  | <del>``</del>   |          |                             | Pump               | %I,              | 00111151170      |       |
| Time<br>(min.) | Time<br>(24hr) | ΔΡ<br>(in. WG) |       | ΔH<br>(in. WG) | ΔH<br>(in, WG)          | Volume<br>(cubic feet) | Probe<br>(if heated) | Stack              | In Me                    | ter Out         | Filter   | lmpinger<br>Exit            | Vacuum<br>(in. Hg) | 701 <sub>i</sub> | COMMENTS         |       |
| 0              | 8:00           | 0.170          | 0.412 | 1.27           |                         | 692.825                | 252                  | 133                | 70                       | 61              | 258      | 52                          | 9.1                | -                |                  | -     |
| 10             | 8:10           | 0.170          | 0.412 | 1.28           |                         | 699.423                | 251                  | 134                | 78                       | 64              | 258      | 45                          | 9.2                | 92               |                  |       |
| 20             | 8:20           | 0.170          | 0.412 | 1.29           |                         | 706.640                | 250                  | 134                | 80                       | 67              | 259      | 44                          | 9.6                | 100              |                  |       |
| 30             | 8:30           | 0.160          | 0.400 | 1.21           |                         | 713.400                | 252                  | 134                | . 81                     | 68              | 259      | 44                          | 10.1               | 96               |                  |       |
| 40             | 8:40           | 0.160          | 0.400 | 1.22           |                         | 720.600                | 252                  | 134                | 82                       | 69              | 258      | 45                          | 10.1               | 102              |                  |       |
| 50             | 8:50           | 0.160          | 0.400 | 1.22           |                         | 727.830                | 253                  | 134                | 83                       | 70              | 258      | 45                          | 10.1               | 103              |                  |       |
| 60             | 9:00           | 0.160          | 0.400 | 1.22           |                         | 735.060                | 253                  | 134                | 84                       | 71              | 259      | 46                          | 10.1               | 103              |                  |       |
| 70             | 9:10           | 0.160          | 0.400 | 1.22           |                         | 742.270                | 249                  | 134                | 84                       | 72              | 258      | 47                          | 10.1               | 102              |                  |       |
| 80             | 9:20           | 0.160          | 0.400 | 1.23           |                         | 749.510                | 249                  | 133                | 85                       | 73              | 259      | 47                          | 10.1               | 102              |                  |       |
| 90             | 9:30           | 0.160          | 0.400 | 1.23           |                         | 756.760                | 249                  | 133                | 86                       | 74              | 258      | 48                          | 10.1               | 102              |                  |       |
| 100            | 9:40           | 0.160          | 0.400 | 1.23           |                         | 764.010                | 249                  | 133                | 86                       | 74              | 258      | 49                          | 10.1               | 102              |                  |       |
| 110            | 9:50           | 0.160          | 0.400 | 1.23           |                         | 771.270                | 252                  | 133                | 88                       | 75              | 258      | 49                          | 10.1               | 102              |                  |       |
| 120            | 10:00          | 0.160          | 0.400 | 1.23           |                         | 778.480                | 250                  | 133                | 89                       | 75              | 258      | 49                          | 10.1               | 101              |                  |       |
| 130            | 10:10          | 0.160          | 0.400 | 1.23           |                         | 785.690                | 251                  | 133                | 89                       | 77              | 259      | 51                          | 10.1               | 101              |                  |       |
| 140            | 10:20          | 0.160          | 0.400 | 1.24           |                         | 793.120                | 253                  | 133                | 90                       | 77              | 259      | 51                          | 10.1               | 104              |                  |       |
| 150            | 10:30          | 0.160          | 0.400 | 1.24           |                         | 800.398                | 255                  | 133                | 90                       | 78              | 258      | 52                          | 10.1               | 102              |                  |       |
| 160            | 10:40          | 0.160          | 0.400 | 1.24           |                         | 807.695                | 248                  | 133                | 91                       | 79              | 261      | 52                          | 10.1               | 102              |                  |       |
| 170            | 10:50          | 0.160          | 0.400 | 1.24           |                         | 814.890                | 252                  | 133                | 91                       | 79              | 258      | 53                          | 10.1               | 101              |                  |       |
| 180            | 11:00          | 0.160          | 0.400 | 1.24           |                         | 822.292                | 251                  | 133                | 91                       | 79              | 258      | 53                          | 10.1               | 103              |                  |       |
| Total          | Total          | ΔPavg          |       | Average        |                         | Total                  |                      | Ā١                 | erage Tem                | peratures (     | °F)      |                             | Max.               | Ave. %I          |                  |       |
| 180            | 3:00           | 0.162          | 0.402 | 1.24           |                         | 129.467                | 251                  | 133                | 85                       | 73              | 258      | 49                          | 10.1               | 101              |                  |       |

| Site:                                  | HLLWE Offg  | as Tie-in    |                 | Impinger Box no.:                     | 2      | 9           |                    |                           |                 |
|----------------------------------------|-------------|--------------|-----------------|---------------------------------------|--------|-------------|--------------------|---------------------------|-----------------|
| Date:                                  | 6/7/2001    |              |                 |                                       |        |             |                    |                           |                 |
| Run No.:                               | 0050-STRT-1 |              |                 |                                       |        |             |                    |                           | _               |
| Component:                             | KO-1        | lmp-1        | lmp-2           | lmp-3                                 | Imp-4  |             | Acid Scrub Section | on                        |                 |
| Туре:                                  | short stem  |              | G-S             | mod                                   | dified | short stem  | modified           | modified                  |                 |
| Reagent: None  Nominal Contents: Empty |             | 0.0          | <b>5M</b> H₂SO₄ | 0.1N                                  | NaOH   | None        | <b>2N</b> NaOH     | Silica Gel                |                 |
|                                        |             |              | 100 mL          | 100                                   | ) mL   | Empty       | <b>200</b> mL      | 300-400g                  |                 |
| Post-test Wt., g:                      | 559.8       | 662.0        | 669.7           | 719.5                                 | 680.7  | 582.2       | 694.2              | 791.5                     | Train Wt. Gain  |
| Pre-test Wt., g:                       | 559.9       | 665.3        | 667.4           | 720.1                                 | 680.7  | 566.7       | 709.4              | 766.3                     | Train VVI. Gain |
| Wt. Gain, g:                           | -0.1        | -3.3         | 2.3             | -0.6                                  | 0.0    | 15.5        | -15.2              | 25.2                      | 23.8            |
| Post-test Volume:                      | 0           | 100          | 100             | 100                                   | 100    | 0           |                    |                           | Train Vol. Gain |
| Pre-test Volume:                       | 0           | 100          | 100             | 100                                   | 100    | 0           |                    |                           | Train voi. Gain |
| Volume Gain:                           | 0           | 0            | 0               | 0                                     | 0      | 0           |                    |                           | 0.0             |
| Post-test pH:                          |             |              |                 | 12.0                                  | 13.0   |             | 13.0               |                           |                 |
|                                        |             |              |                 |                                       |        |             |                    |                           | •               |
|                                        |             | Filter Lot # | : T4208E        | H <sub>2</sub> SO <sub>4</sub> Lot #: | 32060  | NaOH Lot #: | QCLAB-381          | DI Water* Lot #:          | QCLAB-01        |
|                                        |             |              |                 |                                       |        |             |                    | <br>* used to dilute acid | and caustic     |

Record impinger change-out and other important information below:

20.5

0

O2%

CO2%

Table B-9. 0050-STRT-1.

| Project:                           | 2-01-0866 |                                       |          |
|------------------------------------|-----------|---------------------------------------|----------|
| Run Date:<br>Run Identification:   |           | /2001<br>STRT-1                       |          |
| PARAMETER                          | SYMBOL    | UNITS                                 |          |
| Absolute Pressure in the Duct      | Pabs      | in. Hg                                | 23.913   |
| Average Duct Gas Temperature       | Ts        | R                                     | 593      |
| Average Meter Temperature          | Tm        | R                                     | 539      |
| Average Gas Oxygen Content         | Co2,m     | %                                     | 20.5     |
| Average Gas Carbon Dioxide Content | Cco2,m    | %                                     | 0.0      |
| Total Impinger Weight Gain (water) | Ww        | grams                                 | 23.8     |
| Nozzle Area                        | An        | ft²                                   | 0.000538 |
| Duct Area                          | As        | ft²                                   | 0.7854   |
| Sample Volume                      | VmStd     | dscf                                  | 110.729  |
| Sample Volume (SI)                 | VmStdm    | dscm                                  | 3.136    |
| Average Sampling Rate              | Qm        | dscf/m                                | 0.615    |
| Volume of Water Vapor              | VwStd     | scf                                   | 1.122    |
| Volume of Water Vapor (SI)         | VwStdm    | scm                                   | 0.0318   |
| Moisture Fraction                  | Bws       | • • • • • • • • • • • • • • • • • • • | 0.010    |
| Dry Gas Molecular Weight           | Md        | g/g-mol                               | 28.82    |
| Wet Gas Molecular Weight           | Ms        | g/g-mol                               | 28.71    |
| Gas Velocity at Nozzle             | vn        | ft/s                                  | 26.8     |
| Gas Velocity at Nozzle (SI)        | vnm       | m/s                                   | 8.18     |
| Average Gas Velocity               | vncor     | ft/s                                  | 22.64    |
| Dry Offgas Flow Rate               | Qsd       | dscf/h                                | 45,066   |
| Dry Offgas Flow Rate (SI)          | Qsdm      | dscm/h                                | 1,276    |
| Actual Offgas Flow Rate            | Q         | acf/h                                 | 64,013   |
| Intermediate Isokinetic Rate       | li        | %                                     | 101.3    |
| Final Isokinetic Rate              | - I       | %                                     | 101.0    |

Table B-9. 0050-STRT-1.

Project: 01-1062-01-0866

Run Date: 6/7/2001 Run Identification: 0050-STRT-1

Run Type:

TEST 9/11/2001

Lab Report Date: Lab Report Status:

Final

### 0050 RESULTS

without blank corrections

| (preliminary or final)  |   | Final              |    |                      |        |                           |   |        |   |           |    |        |
|-------------------------|---|--------------------|----|----------------------|--------|---------------------------|---|--------|---|-----------|----|--------|
|                         |   | CO                 | NC | ENTRATION            |        |                           |   | MA     | S | FLOW RAT  | ES | 3      |
|                         |   | Actual<br>(mg/acm) |    | Standard<br>(mg/scm) |        | Ory Standard<br>(mg/dscm) |   | mg/min |   | grams/sec |    | lb/h   |
| Vapor Phase<br>Species: |   | mg/acm             |    | mg/scm               |        | mg/dscm                   |   |        |   |           |    |        |
| Chloride (as HCl)       | В | 6.5e-1             | В  | 9.2e-1               | B<br>B | ppmv                      | В | 2.0e1  | В | 3.3e-4    | В  | 2.6e-3 |
| Chloride (as Cl2)       | < | mg/acm<br>6.5e-2   | <  | mg/scm<br>9.2e-2     | V V    | ppmv                      |   | 2.0e0  | < | 3.3e-5    | <  | 2.6e-4 |
| Fluoride                | < | mg/acm<br>9.0e-2   | <  | mg/scm<br>1.3e-1     | <      | mg/dscm<br>1.3e-1         | ٧ | 2.7e0  | < | 4.5e-5    | <  | 3.6e-4 |
| Nitrate                 |   | mg/acm<br>2.7e0    |    | mg/scm<br>3.8e0      |        | mg/dscm<br>3.8e0          |   | 8.1e1  |   | 1.4e-3    |    | 1.1e-2 |
| Nitrite                 | < | mg/acm<br>3.6e-1   | <  | mg/scm<br>5.1e-1     | <      | mg/dscm<br>5.1e-1         | < | 1.1e1  | < | 1.8e-4    | <  | 1.4e-3 |
| Total Particulate       |   |                    |    |                      |        |                           | В | 2.4e1  | В | 4.0e-4    | В  | 3.1e-3 |

Table B-10. 0050-END-1.

### 0050 SAMPLING DATA SHEET FOR HLLWE TESTS

|                            | te: HLLWE Offgas Tie-in Sampling Location: MAN-OFG-73 Nozzle No.: 2-01 Est. ΔP: 0.15 Est. Tstack. °F: 255 |                |       |                         |                                     |                 |             |          |                         |             |          |          |                |                      |                 |         |       |
|----------------------------|-----------------------------------------------------------------------------------------------------------|----------------|-------|-------------------------|-------------------------------------|-----------------|-------------|----------|-------------------------|-------------|----------|----------|----------------|----------------------|-----------------|---------|-------|
| Site:                      |                                                                                                           | Offgas Tie-in  |       | Sampling                | Location:                           |                 | MAN         | N-OFG-73 | Nozzle No               | :           |          | 2-01     | Est. ∆P:       | 0.15                 | Est. Tstack, °F | :       | 255   |
| Project:                   | 01-1                                                                                                      | 062-01-0866    |       | Duct ID, i              | nches:                              |                 |             | 12       | Nozzle Siz              | e, in.:     |          | 0.3140   | Est. K:        |                      | Est. vs, ft/s:  |         | 28.5  |
| Date:                      |                                                                                                           | 6/7/2001       |       |                         | essure, in.                         | WG:             |             |          | Pitot No.:              |             |          |          | Est. ∆H:       |                      | Operator(s):    | - 1     | FE/RW |
| Run No.:                   | 0                                                                                                         | 050-END-1      |       | Est. O <sub>2</sub> , 9 |                                     | ·               |             |          | Pitot Coeff             |             |          |          |                | Temperatur           | •               |         | 80    |
| Run Type:                  |                                                                                                           | TEST           |       | Est CO <sub>2</sub> ,   |                                     |                 |             | 0        | Meter Box               | No.         |          |          |                | Leak Che             |                 |         | pass  |
| Phar., in. Ho              |                                                                                                           | 25.200         |       | Est. Mois               |                                     |                 |             |          | ΔH@:                    |             |          |          | Pretest        | 0.000                | cfm @           | 15 in.  | Hg    |
| Tambient, °F<br>DGM vol. 0 |                                                                                                           | 3.00           |       | Impinger                | Box No.:<br>Goal (ft <sup>3</sup> ) |                 |             | 9        | Y-factor:<br>Min. endin | a DCM val   | /£13\.   | 1.0328   |                |                      |                 | Pitot:  |       |
|                            |                                                                                                           |                |       |                         |                                     |                 |             | 127.080  | <u>'</u>                |             | . (IL ). | 953.478  | Post-test      | 0.000                | cfm @           | 7.1 in. | нg    |
| Sampling<br>Time           | Clock<br>Time                                                                                             | Velocity<br>AP |       | Meter<br>ΔΗ             | Actual<br>ΔΗ                        | Meter<br>Volume | Probe       |          |                         | TURE (°F)   | T        | Impinger | Pump<br>Vacuum | %l <sub>i</sub>      | CON             | MENTS   |       |
| (min.)                     | (24hr)                                                                                                    | (in. WG)       |       | (in. WG)                | (in, WG)                            | (cubic feet)    | (if heated) | Stack    | In In                   | eter<br>Out | Filter   | Exit     | (in. Hg)       | 7014                 |                 | AIMENTS | - 1   |
| 0                          | 14:05                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 826.398         | 252         | 133      | 95                      | 82          | 260      | 49       | 7.2            | -                    |                 |         |       |
| 10                         | 14:15                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 833.490         | 260         | 133      | 97                      | 83          | 260      | 52       | 7.2            | 101                  |                 |         |       |
| 20                         | 14:25                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 840.853         | 254         | 133      | 98                      | 84          | 263      | 54       | 7.2            | 105                  |                 |         |       |
| 30                         | 14:35                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 848.132         | 253         | 133      | 99                      | 85          | 261      | 51       | 7.2            | 104                  |                 |         |       |
| 40                         | 14:45                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 855.329         | 253         | 133      | 99                      | 85          | 263      | 53       | 7.2            | 103                  |                 |         |       |
| 50                         | 14:55                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 862.760         | 254         | 133      | 100                     | 87          | 260      | 52       | 7.2            | 106                  |                 |         |       |
| 60                         | 15:05                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 870.115         | 255         | 133      | 99                      | 87          | 261      | 53       | 7.2            | 105                  |                 |         |       |
| 70                         | 15:15                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 877.700         | 255         | 133      | 99                      | 87          | 262      | 53       | 7.2            | 108                  |                 |         |       |
| 80                         | 15:25                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 884.820         | 253         | 133      | 99                      | 87          | 261      | 54       | 7.2            | 101                  |                 |         |       |
| 90                         | 15:35                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 892.187         | 251         | 132      | 100                     | 87          | 261      | 54       | 7.2            | 105                  |                 |         |       |
| 100                        | 15:45                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 899.530         | 251         | 132      | 100                     | 87          | 261      | 55       | 7.2            | 104                  |                 |         |       |
| 110                        | 15:55                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 906.890         | 251         | 132      | 100                     | 87          | 261      | 55       | 7.2            | 105                  |                 |         |       |
| 120                        | 16:05                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 914.230         | 252         | 132      | 101                     | 88          | 261      | 55       | 7.2            | 104                  |                 |         |       |
| 130                        | 16:15                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 921.580         | 252         | 132      | 101                     | 89          | 261      | 55       | 7.2            | 104                  |                 |         |       |
| 140                        | 16:25                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 928.824         | 252         | 133      | 100                     | 88          | 260      | 55       | 7.2            | 103                  |                 |         |       |
| 150                        | 16:35                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 936.310         | 253         | 132      | 101                     | 89          | 261      | 56       | 7.2            | 106                  |                 |         |       |
| 160                        | 16:45                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 943.673         | 253         | 132      | 101                     | 88          | 257      | 52       | 7.2            | 104                  |                 |         |       |
| 170                        | 16:55                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 951.037         | 254         | 133      | 101                     | 89          | 259      | 57       | 7.2            | 104                  |                 |         |       |
| 180                        | 17:05                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 958.412         | 254         | 132      | 101                     | 89          | 259      | 57       | 7.2            | 104                  |                 |         |       |
| 190                        | 17:15                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 965.768         | 254         | 132      | 100                     | 89          | 259      | 57       | 7.2            | 104                  |                 |         |       |
| 195                        | 17:20                                                                                                     | 0.150          | 0.387 | 1.30                    |                                     | 969.463         | 254         | 132      | 100                     | 88          | 260      | 59       | 7.1            | 105                  | END of TEST     |         |       |
| Total                      | Total                                                                                                     | ΔPavg          |       | Average                 | <u> </u>                            | Total           | <u> </u>    | A        | erage Tem               | peratures ( | (°F)     |          | Max.           | Ave. %l <sub>i</sub> |                 |         |       |
| 195                        | 3:15                                                                                                      | 0.150          | 0.387 | 1.30                    |                                     | 143.065         | 253         | 133      | 100                     | 87          | 261      | 54       | 7.2            | 104                  |                 |         |       |

|                                        |            |                    | _          | 9      | mpinger Box no.: | ı     | ffgas Tie-in          | HLLWE O    | Site:             |
|----------------------------------------|------------|--------------------|------------|--------|------------------|-------|-----------------------|------------|-------------------|
|                                        |            |                    |            | a      |                  |       |                       | 6/7/2001   | Date:             |
|                                        |            |                    |            |        |                  |       |                       | 0050-END-1 | Run No.:          |
|                                        | າ          | Acid Scrub Section |            | lmp-4  | lmp-3            | lmp-2 | lmp-1                 | KO-1       | Component:        |
|                                        | modified   | modified           | short stem | lified | mod              | -S    | G                     | short stem | Гуре:             |
|                                        | Silica Gel | <b>2N</b> NaOH     | None       | NaOH   | 0.1N             | H₂SO₄ | 0.05M                 | None       | Reagent:          |
|                                        | 300-400g   | 200 mL             | Empty      | mL     | 100              | ) mL  | al Contents: Empty 10 |            | Nominal Contents: |
| <b>-</b>                               | 792.3      | 689.8              | 568.9      | 702.8  | 695.4            | 670.5 | 660.2                 | 560.0      | Post-test Wt., g: |
| Train Wt. Gain                         | 762.0      | 693.7              | 564.1      | 718.2  | 681.0            | 668.5 | 666.5                 | 559.8      | Pre-test Wt., g:  |
| 26                                     | 30.3       | -3.9               | 4.8        | -15.4  | 14.4             | 2.0   | -6.3                  | 0.2        | Wt. Gain, g:      |
|                                        |            |                    | 0.0        | 100.0  | 100.0            | 100.0 | 100.0                 | NA         | Post-test Volume: |
| Train Vol. Gair                        |            |                    | 0.0        | 100.0  | 100.0            | 100.0 | 100.0                 | NA         | Pre-test Volume:  |
| 20000000000000000000000000000000000000 |            |                    | 0.0        | 0.0    | 0.0              | 0.0   | 0.0                   | 0.0        | Volume Gain:      |
|                                        |            | 12.0               | <b>-</b>   | 12.0   | 13.0             |       |                       |            | Post-test pH:     |

|      | Filter Lot #: T4208E | H <sub>2</sub> SO <sub>4</sub> Lot #: | 328060 NaOH Lot# | 000381 | DI Water* Lot #: QCLAB1           |
|------|----------------------|---------------------------------------|------------------|--------|-----------------------------------|
|      |                      |                                       |                  |        | * used to dilute acid and caustic |
| 02%  | 20.5                 |                                       |                  |        |                                   |
| CO2% | 0                    |                                       |                  |        |                                   |

Record impinger change-out and other important information below:

Table B-10. 0050-END-1.

| Project: 01-1062-01-0866<br>Run Date: 6/7/2001 |        |         |          |  |  |  |  |  |  |  |  |
|------------------------------------------------|--------|---------|----------|--|--|--|--|--|--|--|--|
| Run Date:<br>Run Identification:               | 0050-  |         |          |  |  |  |  |  |  |  |  |
| PARAMETER                                      | SYMBOL |         |          |  |  |  |  |  |  |  |  |
| Absolute Pressure in the Duct                  | Pabs   | in. Hg  | 23.913   |  |  |  |  |  |  |  |  |
| Average Duct Gas Temperature                   | Ts     | R       | 592      |  |  |  |  |  |  |  |  |
| Average Meter Temperature                      | Tm     | R       | 553      |  |  |  |  |  |  |  |  |
| Average Gas Oxygen Content                     | Co2,m  | %       | 20.5     |  |  |  |  |  |  |  |  |
| Average Gas Carbon Dioxide Content             | Cco2,m | %       | 0.0      |  |  |  |  |  |  |  |  |
| Total Impinger Weight Gain (water)             | Ww     | grams   | 26.1     |  |  |  |  |  |  |  |  |
| Nozzle Area                                    | An     | ft²     | 0.000538 |  |  |  |  |  |  |  |  |
| Duct Area                                      | As     | ft²     | 0.7854   |  |  |  |  |  |  |  |  |
| Sample Volume                                  | VmStd  | dscf    | 119.218  |  |  |  |  |  |  |  |  |
| Sample Volume (SI)                             | VmStdm | dscm    | 3.376    |  |  |  |  |  |  |  |  |
| Average Sampling Rate                          | Qm     | dscf/m  | 0.611    |  |  |  |  |  |  |  |  |
| Volume of Water Vapor                          | VwStd  | scf     | 1.231    |  |  |  |  |  |  |  |  |
| Volume of Water Vapor (SI)                     | VwStdm | scm     | 0.0348   |  |  |  |  |  |  |  |  |
| Moisture Fraction                              | Bws    | ı       | 0.010    |  |  |  |  |  |  |  |  |
| Dry Gas Molecular Weight                       | Md     | g/g-mol | 28.82    |  |  |  |  |  |  |  |  |
| Wet Gas Molecular Weight                       | Ms     | g/g-mol | 28.71    |  |  |  |  |  |  |  |  |
| Gas Velocity at Nozzle                         | vn     | ft/s    | 25.8     |  |  |  |  |  |  |  |  |
| Gas Velocity at Nozzle (SI)                    | vnm    | m/s     | 7.87     |  |  |  |  |  |  |  |  |
| Average Gas Velocity                           | vncor  | ft/s    | 21.80    |  |  |  |  |  |  |  |  |
| Dry Offgas Flow Rate                           | Qsd    | dscf/h  | 43,448   |  |  |  |  |  |  |  |  |
| Dry Offgas Flow Rate (SI)                      | Qsdm   | dscm/h  | 1,230    |  |  |  |  |  |  |  |  |
| Actual Offgas Flow Rate                        | Q      | acf/h   | 61,639   |  |  |  |  |  |  |  |  |
| Intermediate Isokinetic Rate                   | li     | %       | 104.4    |  |  |  |  |  |  |  |  |
| Final Isokinetic Rate                          | I      | %       | 104.1    |  |  |  |  |  |  |  |  |

### Table B-10. 0050-END-1.

Project:

01-1062-01-

0866

6/7/2001 Run Date: Run Identification: 0050-END-1

Run Type:

TEST

Lab Report Date: Lab Report Status: 9/11/2001

(preliminary or final)

Final

### 0050 RESULTS

#### • without blank corrections

| (preliminary or linar) | -                                                | CONCENTRATIONS MASS FLOW RATES |     |           |   |             |   |        |     |           |    |        |
|------------------------|--------------------------------------------------|--------------------------------|-----|-----------|---|-------------|---|--------|-----|-----------|----|--------|
|                        |                                                  |                                | )N( | CENTRATIO |   |             |   | M.A    | 155 | FLOW RAT  | ES |        |
|                        |                                                  | Actual                         |     | Standard  | 1 | ry Standard | l |        |     |           |    |        |
|                        |                                                  | (mg/acm)                       |     | (mg/scm)  |   | (mg/dscm)   |   | mg/min | Ç   | grams/sec |    | lb/h   |
| Vapor Phase            |                                                  | mg/acm                         |     | mg/scm    |   | mg/dscm     |   |        |     |           |    |        |
| Species:               |                                                  | _                              |     | -         |   | _           | l |        |     |           |    |        |
| Chloride (as HCl)      | В                                                | 6.1e-1                         | В   | 8.5e-1    | В | 8.6e-1      | В | 1.8e1  | В   | 2.9e-4    | В  | 2.3e-3 |
|                        |                                                  |                                |     |           |   | ppmv        | l |        |     |           |    |        |
|                        | _                                                | <del> </del>                   |     |           | В | 5.7e-1      | 上 |        |     |           |    |        |
| Chloride (as Cl2)      |                                                  | mg/acm                         |     | mg/scm    |   | mg/dscm     | l |        |     |           |    |        |
|                        | В                                                | 1.2e-1                         | В   | 1.7e-1    | В | 1.7e-1      | В | 3.5e0  | В   | 5.8e-5    | В  | 4.6e-4 |
|                        |                                                  |                                |     |           |   | ppmv        | l |        |     |           |    |        |
|                        |                                                  |                                |     |           | В | 5.7e-2      |   |        |     |           |    |        |
| Fluoride               |                                                  | mg/acm                         |     | mg/scm    |   | mg/dscm     |   |        |     |           |    |        |
|                        | <                                                | 8.4e-2                         | <   | 1.2e-1    | < | 1.2e-1      | < | 2.4e0  | <   | 4.0e-5    | <  | 3.2e-4 |
|                        |                                                  |                                |     |           |   |             |   |        |     |           |    |        |
| Nitrate                | $\vdash$                                         | mg/acm                         |     | mg/scm    | - | mg/dscm     | ╁ |        |     |           | -  |        |
|                        |                                                  | 2.2e0                          |     | 3.0e0     |   | 3.1e0       |   | 6.3e1  |     | 1.1e-3    |    | 8.4e-3 |
|                        |                                                  |                                |     |           |   |             |   |        |     |           |    |        |
| Nitrite                | <del>                                     </del> | mg/acm                         |     | mg/scm    | _ | mg/dscm     | ┢ |        | -   | ***       |    |        |
|                        | <                                                | 7.9e-1                         | <   | 1.1e0     | < | 1.1e0       | < | 2.3e1  | <   | 3.8e-4    | <  | 3.1e-3 |
|                        |                                                  |                                |     |           |   |             |   |        |     |           |    |        |
| Total Particulate      | -                                                |                                |     |           |   | *           | - |        |     |           | _  |        |
| Total Particulate      |                                                  |                                |     |           |   |             | В | 1.8e1  | В   | 2.9e-4    | В  | 2.3e-3 |
|                        |                                                  |                                |     |           |   |             |   |        |     | ,         | -  |        |
|                        |                                                  |                                |     |           |   |             |   |        |     |           |    |        |
|                        |                                                  |                                |     |           |   |             |   |        |     |           |    |        |

Table B-11. 0050-STRT-2.

## 0050 SAMPLING DATA SHEET FOR HLLWE TESTS

| Site:                     | HLLWE (        | Offgas Tie-in  |       | Sampling              | Location       | :                      | IAM                  | N-OFG-73 | Nozzle No  | ).:         |             | 2-01             | Est. ∆P:           | 0.15                 | Est. Tstack, °F:           | 133          |
|---------------------------|----------------|----------------|-------|-----------------------|----------------|------------------------|----------------------|----------|------------|-------------|-------------|------------------|--------------------|----------------------|----------------------------|--------------|
| Project:                  |                | 062-01-0866    |       | Duct ID,              |                | -                      |                      | 12       | Nozzle Si  |             |             |                  | Est. K:            |                      | Est. vs, ft/s:             | 26.0         |
| Date:                     |                | 6/11/2001      |       | Static Pre            | essure, in     | . WG:                  |                      | -17.5    | Pitot No.: | ,           |             | <del></del>      | Est. ΔH:           |                      | Operator(s):               | RW, FE       |
| Run No.:                  | 00             | 50-STRT-2      |       | Est. O <sub>2</sub> , | %:             |                        | •                    | 20.5     | Pitot Coef | f.:         |             | 0.84             | Est. DGM           | Temperature, °       | <del></del>                | 80           |
| Run Type:                 |                | TEST           |       | Est CO2,              | %:             |                        | •                    | 0        | Meter Box  | No.         |             | 1                | Pitot Leak         | Check: pass          | X fail                     |              |
| P <sub>bar.</sub> , in. H |                | 25.009         |       | Est. Mois             | st., %:        |                        |                      | 1.3%     | ΔH@:       |             |             | 1.5673           | Meter Box          | Leak Checks:         |                            |              |
| Tambient, °F              |                | 65             |       | Impinger              |                |                        |                      | 8        | Y-factor:  |             |             |                  | Pretest            |                      | 16.5 in. Hg time:          | 7:53         |
| DGM vol.                  | Goal (m²):     | 3.00           |       | DGM vol               | . Goal (ft)    | :                      |                      | 127.080  | Min. endir | ng DGM vo   | l. (ft):    | 1096.725         | Post-test          | 0.000 cfm @          | 7.5 in. Hg time:           | 1140         |
| Sampling                  | Clock          | Velocity       |       | Meter                 | Actual         | Meter                  |                      |          |            | ATURE (°F)  |             |                  | Pump               |                      |                            |              |
| Time<br>(min.)            | Time<br>(24hr) | ΔP<br>(in. WG) |       | ΔH<br>(in. WG)        | ∆H<br>(in, WG) | Volume<br>(cubic feet) | Probe<br>(if heated) | Stack    | ln Me      | eter<br>Out | Filter      | Impinger<br>Exit | Vacuum<br>(in. Hg) | %I <sub>i</sub>      | COMMENTS                   |              |
| 0                         | 7:50           | 0.150          | 0.387 | 1.30                  |                | 969.645                | 253                  | 133      | 63         | 59          | 259         | 51               | 7.5                |                      |                            |              |
| 10                        | 8:00           | 0.150          | 0.387 | 1.20                  |                | 976.751                | 254                  | 133      | 64         | 60          | 259         | 58               | 7.5                | 107                  |                            |              |
| 20                        | 8:10           | 0.150          | 0.387 | 1.20                  |                | 983.261                | 258                  | 133      | 74         | 62          | 259         | 48               | 7.5                | 97                   |                            |              |
| 30                        | 8:20           | 0.150          | 0.387 | 1.20                  |                | 990.326                | 259                  | 133      | 79         | 63          | 259         | 48               | 7.5                | 104                  |                            |              |
| 40                        | 8:30           | 0.150          | 0.387 | 1.25                  |                | 997.109                | 259                  | 133      | 78         | 66          | 260         | 50               | 7.5                | 100                  |                            |              |
| 52                        | 8:42           | 0.150          | 0.387 | 1.25                  |                | 1,006.398              | 259                  | 133      | 78         | 68          | 260         | 52               | 7.5                | 114                  | Shut down train, operation | ns is having |
| 52                        | 9:20           | 0.150          | 0.387 | 1.25                  |                | 1,006.398              | 254                  | 133      | 76         | 69          | 262         | 51               | 7.5                |                      | instrumentation problems   |              |
| 62                        | 9:30           | 0.150          | 0.387 | 1.25                  |                | 1,014.129              | 257                  | 133      | 86         | 71          | 261         | 47               | 7.5                | 113                  | Restart train at 0920.     |              |
| 72                        | 9:40           | 0.150          | 0.387 | 1.25                  |                | 1,020.596              | 257                  | 133      | 87         | 73          | 261         | 51               | 7.5                | 94                   |                            |              |
| 82                        | 9:50           | 0.150          | 0.387 | 1.28                  |                | 1,029.962              | 257                  | 133      | 88         | 74          | 262         | 53               | 7.5                | 136                  |                            |              |
| 92                        | 10:00          | 0.150          | 0.387 | 1.25                  |                | 1,035.175              | 257                  | 133      | 88         | 75          | 261         | 54               | 7.5                | 75                   |                            |              |
| 102                       | 10:10          | 0.150          | 0.387 | 1.25                  |                | 1,042.451              | 257                  | 133      | 89         | 76          | 260         | 54               | 7.5                | 105                  |                            |              |
| 112                       | 10:20          | 0.150          | 0.387 | 1.25                  |                | 1,049.745              | 258                  | 133      | 90         | 77          | 260         | 55               | 7.5                | 105                  |                            |              |
| 122                       | 10:30          | 0.150          | 0.387 | 1.25                  |                | 1,056.999              | 258                  | 133      | 90         | 77          | 262         | 55               | 7.5                | 105                  |                            |              |
| 132                       | 10:40          | 0.150          | 0.387 | 1.25                  |                | 1,064.621              | 258                  | 133      | 90         | 77          | 262         | 55               | 7.5                | 110                  |                            |              |
| 142                       | 10:50          | 0.150          | 0.387 | 1.25                  |                | 1,071.645              | 254                  | 133      | 92         | 79          | 261         | 56               | 7.5                | 101                  |                            |              |
| 152                       | 11:00          | 0.150          | 0.387 | 1.25                  |                | 1,078.976              | 255                  | 133      | 92         | 79          | <b>2</b> 62 | 56               | 7.5                | 105                  |                            |              |
| 162                       | 11:10          | 0.150          | 0.387 | 1.25                  |                | 1,086.382              | 250                  | 133      | 92         | 80          | 260         | 56               | 7.5                | 106                  |                            |              |
| 172                       | 11:20          | 0.150          | 0.387 | 1.25                  |                | 1,093.731              | 250                  | 133      | 92         | 80          | 260         | 57               | 7.5                | 106                  |                            | ,            |
| 182                       | 11:30          | 0.150          | 0.387 | 1.25                  |                | 1,100.084              | 248                  | 133      | 93         | 81          | 261         | 57               | 7.5                | 91                   |                            |              |
| Total                     | Total          | $\Delta Pavg$  |       | Average               |                | Total                  |                      | A        | erage Ten  | peratures   | (°F)        | 1                | Max.               | Ave. %I <sub>i</sub> |                            |              |
| 182                       | 3:02           | 0.150          | 0.387 | 1.25                  |                | 130.439                | 256                  | 133      | 84         | 72          | 261         | 53               | 7.5                | 104                  |                            |              |

| Site:                  | HLLWE C     | ffgas Tie-in | lı    | mpinger Box no.: |        |            |                    |            |                 |
|------------------------|-------------|--------------|-------|------------------|--------|------------|--------------------|------------|-----------------|
| Date:                  | 6/11/2001   |              |       |                  |        |            |                    |            |                 |
| Run No.:               | 0050-STRT-2 |              |       |                  |        |            |                    |            |                 |
| Component:             | KO-1        | lmp-1        | lmp-2 | lmp-3            | lmp-4  |            | Acid Scrub Section | n          |                 |
| Туре:                  | short stem  | G            | -S    | mo               | dified | short stem | modified           | modified   |                 |
| Reagent:               | None        | 0.05M        | H₂SO₄ | 0.1N             | NaOH   | None       | 2N NaOH            | Silica Gel |                 |
| ominal Contents: Empty |             | 100          | mL    | 10               | 0 mL   | Empty      | <b>200</b> mL      | 300-400g   |                 |
| Post-test Wt., g:      | 571.9       | 725.0        | 677.4 | 698.2            | 711.1  | 571.5      | 706.2              | 807.5      | Train Wt. Gain  |
| Pre-test Wt., g:       | 571.8       | 730.6        | 671.9 | 699.3            | 712.9  | 586.1      | 706.1              | 780.0      | Train Wt. Gain  |
| Wt. Gain, g:           | 0.1         | -5.6         | 5.5   | -1.1             | -1.8   | -14.6      | 0.1                | 27.5       | 10.1            |
| Post-test Volume:      | 0.0         | 100.0        | 100.0 | 100.0            | 100.0  | 0.0        |                    |            | Train Vol. Gain |
| Pre-test Volume:       | 0.0         | 100.0        | 100.0 | 100.0            | 100.0  | 0.0        |                    |            | Train voi. Gain |
| Volume Gain:           | 0.0         | 0.0          | 0.0   | 0.0              | 0.0    | 0.0        |                    |            | 0.0             |
| Post-test pH:          |             |              |       | 13.0             | 13.0   |            | 14.0               |            |                 |

|      |      | Filter Lot #: T4208E | H <sub>2</sub> SO <sub>4</sub> Lot #: | 328060 | DI Water* Lot #: QCLAB-1          |
|------|------|----------------------|---------------------------------------|--------|-----------------------------------|
|      |      |                      |                                       |        | * used to dilute acid and caustic |
| O2%  | 20.5 |                      |                                       |        |                                   |
| CO2% | 0    |                      |                                       |        |                                   |

Record impinger change-out and other important information below:

Table B-11. 0050-STRT-2.

| Project:                           | 01-1062 | -01-0866       |          |
|------------------------------------|---------|----------------|----------|
| Run Date:                          |         |                |          |
| Run Identification: PARAMETER      | SYMBOL  | TRT-2<br>UNITS |          |
| Absolute Pressure in the Duct      | Pabs    | in. Hg         | 23.722   |
| Average Duct Gas Temperature       | Ts      | R              | 593      |
| Average Meter Temperature          | Tm      | R              | 538      |
| Average Gas Oxygen Content         | Co2,m   | %              | 20.5     |
| Average Gas Carbon Dioxide Content | Cco2,m  | %              | 0.0      |
| Total Impinger Weight Gain (water) | Ww      | grams          | 10.1     |
| Nozzie Area                        | An      | ft²            | 0.000538 |
| Duct Area                          | As      | ft²            | 0.7854   |
| Sample Volume                      | VmStd   | dscf           | 110.880  |
| Sample Volume (SI)                 | VmStdm  | dscm           | 3.140    |
| Average Sampling Rate              | Qm      | dscf/m         | 0.609    |
| Volume of Water Vapor              | VwStd   | scf            | 0.476    |
| Volume of Water Vapor (SI)         | VwStdm  | scm            | 0.0135   |
| Moisture Fraction                  | Bws     | •              | 0.004    |
| Dry Gas Molecular Weight           | Md      | g/g-mol        | 28.82    |
| Wet Gas Molecular Weight           | Ms      | g/g-mol        | 28.77    |
| Gas Velocity at Nozzle             | vn      | ft/s           | 25.9     |
| Gas Velocity at Nozzle (SI)        | vnm     | m/s            | 7.90     |
| Average Gas Velocity               | vncor   | ft/s           | 21.87    |
| Dry Offgas Flow Rate               | Qsd     | dscf/h         | 43,468   |
| Dry Offgas Flow Rate (SI)          | Qsdm    | dscm/h         | 1,231    |
| Actual Offgas Flow Rate            | Q       | acf/h          | 61,842   |
| Intermediate Isokinetic Rate       | li      | %              | 104.6    |
| Final Isokinetic Rate              | I       | %              | 103.7    |

## Table B-11. 0050-STRT-2.

01-1062-01-Project:

0866

Run Date: 6/11/2001

Run Identification: 0050-STRT-2 Run Type:

**TEST** 9/11/2001

Lab Report Date: Lab Report Status: (preliminary or final)

Final

### 0050 RESULTS

• without blank corrections

| (preliminary or final)  | , |                  | WASS FLOW DATES |                  |   |                           |   |        |    |           |    |             |
|-------------------------|---|------------------|-----------------|------------------|---|---------------------------|---|--------|----|-----------|----|-------------|
|                         | L | cc               | )NC             | CENTRATIO        |   |                           |   | MA     | SS | FLOW RAT  | ES |             |
|                         |   | Actual           |                 | Standard         | D | ry Standard               | l |        |    |           |    |             |
|                         |   | (mg/acm)         |                 | (mg/scm)         |   | (mg/dscm)                 |   | mg/min | Ç  | grams/sec |    | lb/h        |
| Vapor Phase<br>Species: |   | mg/acm           |                 | mg/scm           |   | mg/dscm                   |   |        |    |           |    |             |
| Chloride (as HCl)       | В | 6.5e-1           | В               | 9.2e-1           | В | 9.2e-1<br>ppmv            | В | 1.9e1  | В  | 3.2e-4    | В  | 2.5e-3      |
|                         |   |                  |                 |                  | В | 6.1 <u>e-1</u>            |   |        |    | ·         |    |             |
| Chloride (as Cl2)       | ٧ | mg/acm<br>6.3e-2 | <               | mg/scm<br>8.9e-2 |   | mg/dscm<br>8.9e-2<br>ppmv |   | 1.8e0  | <  | 3.0e-5    | <  | 2.4e-4      |
| Clueride                | _ | malaam           | _               | mg/scm           | < | 3.0e-2<br>mg/dscm         | ┞ |        | ļ  |           | _  | <del></del> |
| Fluoride                | < | mg/acm<br>8.5e-2 | <               | 1.2e-1           | < | 1.2e-1                    | < | 2.5e0  | <  | 4.1e-5    | <  | 3.3e-4      |
| Nitrate                 |   | mg/acm<br>1.9e0  |                 | mg/scm<br>2.7e0  |   | mg/dscm<br>2.7e0          |   | 5.6e1  |    | 9.4e-4    |    | 7.4e-3      |
| Nitrite                 | < | mg/acm<br>3.6e-1 | <               | mg/scm<br>5.1e-1 | < | mg/dscm<br>5.1e-1         | < | 1.0e1  | <  | 1.7e-4    | <  | 1.4e-3      |
| Total Particulate       |   |                  |                 |                  |   |                           |   | 7.2e0  |    | 1.2e-4    |    | 9.5e-4      |

Table B-12. 0050-END-2.

## 0050 SAMPLING DATA SHEET FOR HLLWE TESTS

| Site:                      | HLLWE (       | Offgas Tie-in  |       | Sampling              | Location              | :               | 1AM         | N-OFG-73 | Nozzle No               | D.:                |         | 2-01     | Est. ∆P:       | 0.15                 | Est. Tstack, °F:  | 133   |
|----------------------------|---------------|----------------|-------|-----------------------|-----------------------|-----------------|-------------|----------|-------------------------|--------------------|---------|----------|----------------|----------------------|-------------------|-------|
| Project:                   | 01-10         | 062-01-0866    |       | Duct ID,              | inches:               |                 | ,           | 12       | Nozzle Siz              | ze, in.:           |         | 0.3140   |                | 7.66                 | Est. vs, ft/s:    | 26.0  |
| Date:                      |               | 6/11/2001      |       | Static Pro            | essure, in            | . WG:           |             | -17.5    | Pitot No.:              |                    |         |          | Est. ∆H:       |                      | Operator(s):      | FE/RW |
| Run No.:                   |               | 050-END-2      |       | Est. O <sub>2</sub> , |                       |                 |             | 20.5     | Pitot Coef              |                    |         |          |                | Temperature, °l      |                   | 80    |
| Run Type:                  |               | TEST           |       | Est CO <sub>2</sub> , |                       |                 |             | 0        | Meter Box               | No.                |         |          |                | Check: pass          |                   | PASS  |
| Pbar., in. H               |               | 24.975         |       | Est. Mois             |                       |                 |             |          | ΔH@:                    |                    |         |          |                | Leak Checks:         |                   |       |
| Tambient, °F<br>DGM vol. 0 |               | 70<br>3.00     |       |                       | Box No.:<br>Goal (ft) |                 |             | 9        | Y-factor:<br>Min. endir | on DOM voi         | (66).   |          | Pretest        |                      | 15.0 in. Hg time: | 13:45 |
|                            |               |                |       |                       |                       |                 |             | 127.080  |                         |                    | . (11). | 228.239  | Post-test      | 0 cfm@               | 8.7 in. Hg time:  | 17:35 |
| Sampling<br>Time           | Clock<br>Time | Velocity<br>ΔP |       | Meter<br>ΔH           | Actual<br>ΔH          | Meter<br>Volume | Probe       |          |                         | ATURE (°F)<br>eter |         | Impinger | Pump<br>Vacuum | %I,                  | COMMENTS          |       |
| (min.)                     | (24hr)        | (in. WG)       |       | (in. WG)              | (in, WG)              | (cubic feet)    | (if heated) | Stack    | ln Ivi                  | Out                | Filter  | Exit     | (in. Hg)       | 7011                 | COMMENTS          |       |
| 0                          | 14:30         | 0.150          | 0.387 | 1.14                  |                       | 101.159         | 247         | 133      | 75                      | 74                 | 260     | 58       | 8.2            | -                    |                   |       |
| 10                         | 14:40         | 0.150          | 0.387 | 1.15                  |                       | 108.120         | 248         | 133      | 82                      | 75                 | 260     | 50       | 8.2            | 101                  |                   |       |
| 20                         | 14:50         | 0.150          | 0.387 | 1.15                  |                       | 115.120         | 247         | 133      | 86                      | 76                 | 259     | 52       | 8.2            | 101                  |                   |       |
| 30                         | 15:00         | 0.150          | 0.387 | 1.16                  |                       | 122.090         | 248         | 132      | 88                      | 77                 | 259     | 53       | 8.2            | 101                  |                   |       |
| 40                         | 15:10         | 0.150          | 0.387 | 1.16                  |                       | 129.086         | 248         | 133      | 90                      | 78                 | 260     | 54       | 8.2            | 101                  |                   |       |
| 50                         | 15:20         | 0.150          | 0.387 | 1.16                  |                       | 136.050         | 247         | 132      | 91                      | 79                 | 259     | 54       | 8.2            | 100                  |                   |       |
| 60                         | 15:30         | 0.150          | 0.387 | 1.17                  |                       | 143.060         | 247         | 132      | 92                      | 80                 | 260     | 55       | 8.2            | 100                  |                   |       |
| 70                         | 15:40         | 0.150          | 0.387 | 1.17                  | -                     | 150.050         | 247         | 132      | 92                      | 81                 | 260     | 55       | 8.2            | 100                  |                   |       |
| 80                         | 15:50         | 0.150          | 0.387 | 1.17                  |                       | 157.070         | 247         | 132      | 93                      | 81                 | 259     | 55       | 8.2            | 100                  |                   |       |
| 90                         | 16:00         | 0.150          | 0.387 | 1.17                  |                       | 164.270         | 247         | 132      | 92                      | 81                 | 261     | 56       | 8.5            | 103                  |                   |       |
| 100                        | 16:10         | 0.150          | 0.387 | 1.17                  |                       | 171.589         | 247         | 132      | 93                      | 81                 | 259     | 57       | 8.5            | 105                  |                   |       |
| 110                        | 16:20         | 0.150          | 0.387 | 1.17                  |                       | 178.920         | 247         | 132      | 93                      | 81                 | 260     | 57       | 8.7            | 105                  |                   |       |
| 120                        | 16:30         | 0.150          | 0.387 | 1.17                  |                       | 186.231         | 247         | 132      | 93                      | 82                 | 260     | 57       | 8.7            | 104                  |                   |       |
| 130                        | 16:40         | 0.150          | 0.387 | 1.17                  |                       | 193.623         | 247         | 132      | 93                      | 82                 | 259     | 58       | 8.7            | 106                  |                   |       |
| 140                        | 16:50         | 0.150          | 0.387 | 1.17                  |                       | 201.132         | 247         | 132      | 93                      | 82                 | 259     | 58       | 8.7            | 107                  |                   |       |
| 150                        | 17:00         | 0.150          | 0.387 | 1.17                  |                       | 208.340         | 247         | 132      | 93                      | 82                 | 258     | 58       | 8.7            | 103                  |                   |       |
| 160                        | 17:10         | 0.150          | 0.387 | 1.17                  |                       | 215.732         | 247         | 132      | 93                      | 82                 | 258     | 58       | 8.7            | 106                  |                   |       |
| 170                        | 17:20         | 0.150          | 0.387 | 1.17                  |                       | 222.973         | 247         | 132      | 92                      | 81                 | 260     | 59       | 8.7            | 104                  |                   |       |
| 180                        | 17:30         | 0.150          | 0.387 | 1.17                  |                       | 230.321         | 247         | 132      | 92                      | 81                 | 260     | 59       | 8,7            | 105                  |                   |       |
| Total                      | Total         | ΔPavg          |       | Average               |                       | Total           |             | A\       | verage Ten              | nperatures         | (~F)    | T        | Max.           | Ave. %I <sub>i</sub> |                   |       |
| 180                        | 3:00          | 0.150          | 0.387 | 1.16                  |                       | 129.162         | 247         | 132      | 90                      | 80                 | 259     | 56       | 8.7            | 103                  |                   |       |

| Site:             | HLLWE O    | ffgas Tie-in |       | Impinger Box no.: | 9      | <del></del> |                    |            |                 |
|-------------------|------------|--------------|-------|-------------------|--------|-------------|--------------------|------------|-----------------|
| Date:             | 6/11/2001  |              |       |                   |        |             |                    |            |                 |
| Run No.:          | 0050-END-2 |              |       |                   |        |             |                    |            |                 |
| Component:        | KO-1       | lmp-1        | lmp-2 | lmp-3             | lmp-4  |             | Acid Scrub Section | on -       |                 |
| Туре:             | short stem | G            | -S    | mod               | dified | short stem  | modified           | modified   |                 |
| Reagent:          | None       | 0.05M        | H₂SO₄ | 0.1N              | NaOH   | None        | 2N NaOH            | Silica Gel | _               |
| Nominal Contents: | Empty      | 100          | mL    | 100               | ) mL   | Empty       | 200 mL             | 300-400g   |                 |
| Post-test Wt., g: | 564.0      | 658.9        | 668.3 | 682.5             | 719.7  | 592.5       | 717.3              | 816.8      | T : W           |
| Pre-test Wt., g:  | 563.9      | 664.4        | 666.8 | 681.7             | 718.6  | 589.5       | 720.0              | 787.6      | Train Wt. Gain  |
| Wt. Gain, g:      | 0.1        | -5.5         | 1.5   | 0.8               | 1.1    | 3.0         | -2.7               | 29.2       | 27.5            |
| Post-test Volume: | 0.0        | 100.0        | 100.0 | 100.0             | 100.0  | 0.0         |                    |            | T : VIO:        |
| Pre-test Volume:  | 0.0        | 100.0        | 100.0 | 100.0             | 100.0  | 0.0         |                    |            | Train Vol. Gain |
| Volume Gain:      | 0.0        | 0.0          | 0.0   | 0.0               | 0.0    | 0.0         |                    |            | 0.0             |
| Post-test pH:     |            |              |       | 13.0              | 13.0   |             | 14.0               |            |                 |

|      | Filter Lot #: T408E | H <sub>2</sub> SO <sub>4</sub> Lot #: | 328060 | NaOH Lot3: 000381 | DI Water* Lot #: QCLAB1           |
|------|---------------------|---------------------------------------|--------|-------------------|-----------------------------------|
|      | · <del></del>       |                                       |        |                   | * used to dilute acid and caustic |
| 02%  | 20.5                |                                       |        |                   |                                   |
| CO2% | 0                   |                                       |        |                   |                                   |

Record impinger change-out and other important information below:

Table B-12. 0050-END-2.

| Project:                           | 01-1062 | -01-0866       |          |
|------------------------------------|---------|----------------|----------|
| Run Date:<br>Run Identification:   |         | '2001<br>END-2 |          |
| PARAMETER                          | SYMBOL  |                |          |
| Absolute Pressure in the Duct      | Pabs    | in. Hg         | 23.688   |
| Average Duct Gas Temperature       | Ts      | R              | 592      |
| Average Meter Temperature          | Tm      | R              | 545      |
| Average Gas Oxygen Content         | Co2,m   | %              | 20.5     |
| Average Gas Carbon Dioxide Content | Cco2,m  | %              | 0.0      |
| Total Impinger Weight Gain (water) | Ww      | grams          | 27.5     |
| Nozzle Area                        | An      | ft²            | 0.000538 |
| Duct Area                          | As      | ft²            | 0.7854   |
| Sample Volume                      | VmStd   | dscf           | 108.235  |
| Sample Volume (SI)                 | VmStdm  | dscm           | 3.065    |
| Average Sampling Rate              | Qm      | dscf/m         | 0.601    |
| Volume of Water Vapor              | VwStd   | scf            | 1.297    |
| Volume of Water Vapor (SI)         | VwStdm  | scm            | 0.0367   |
| Moisture Fraction                  | Bws     |                | 0.012    |
| Dry Gas Molecular Weight           | Md      | g/g-mol        | 28.82    |
| Wet Gas Molecular Weight           | Ms      | g/g-mol        | 28.69    |
| Gas Velocity at Nozzle             | vn      | ft/s           | 26.0     |
| Gas Velocity at Nozzle (SI)        | vnm     | m/s            | 7.91     |
| Average Gas Velocity               | vncor   | ft/s           | 21.90    |
| Dry Offgas Flow Rate               | Qsd     | dscf/h         | 43,197   |
| Dry Offgas Flow Rate (SI)          | Qsdm    | dscm/h         | 1,223    |
| Actual Offgas Flow Rate            | Q       | acf/h          | 61,934   |
| Intermediate Isokinetic Rate       | li      | %              | 103.1    |
| Final Isokinetic Rate              | 1       | %              | 103.0    |

## Table B-12. 0050-END-2.

Project: 01-1062-01-

0866

Run Date: 6/11/2001 Run Identification: 0050-END-2

Run Type:

TEST 9/11/2001

Lab Report Date: Lab Report Status: (preliminary or final)

Final

#### 0050 RESULTS

• without blank corrections

| (preliminary or final)  |   |                  |   |                  |    |                                     |   |        |    |           |    |        |  |
|-------------------------|---|------------------|---|------------------|----|-------------------------------------|---|--------|----|-----------|----|--------|--|
|                         |   | CC               | N | CENTRATIO        |    |                                     |   | MA     | SS | FLOW RAT  | ES |        |  |
|                         |   | Actual           |   | Standard         | D  | ry Standard                         |   |        |    |           |    |        |  |
|                         |   | (mg/acm)         |   | (mg/scm)         |    | (mg/dscm)                           |   | mg/min | Ç  | grams/sec |    | lb/h   |  |
| Vapor Phase<br>Species: |   | mg/acm           |   | mg/scm           |    | mg/dscm                             |   |        |    |           |    |        |  |
| Chloride (as HCl)       | В | 6.6e-1           | В | 9.4e-1           | ВВ | 9.5e-1<br>ppmv<br>6.2e-1            | В | 1.9e1  | В  | 3.2e-4    | В  | 2.6e-3 |  |
| Chloride (as Cl2)       | < | mg/acm<br>6.6e-2 | < | mg/scm<br>9.4e-2 | <  | mg/dscm<br>9.5e-2<br>ppmv<br>3.2e-2 |   | 1.9e0  | <  | 3.2e-5    | ٧  | 2.6e-4 |  |
| Fluoride                | < | mg/acm<br>8.9e-2 | ٧ | mg/scm<br>1.3e-1 | <  | mg/dscm<br>1.3e-1                   | < | 2.6e0  | <  | 4.3e-5    | <  | 3.4e-4 |  |
| Nitrate                 |   | mg/acm<br>1.6e0  |   | mg/scm<br>2.3e0  |    | mg/dscm<br>2.3e0                    |   | 4.7e1  |    | 7.9e-4    |    | 6.2e-3 |  |
| Nitrite                 | < | mg/acm<br>7.1e-1 | < | mg/scm<br>1.0e0  | <  | mg/dscm<br>1.0e0                    | < | 2.1e1  | <  | 3.4e-4    | <  | 2.7e-3 |  |
| Total Particulate       |   |                  |   |                  |    | anana, .                            | В | 5.3e0  | В  | 8.9e-5    | В  | 7.0e-4 |  |

Table B-13. 0060-STRT-1.

1.20

Average

1.21

217.943

Total

127.667

253

250

133

133

0.150

ΔPavg

0.159

180

Total

180

12:30

Total

3:00

### METHOD 0060 SAMPLING DATA SHEET FOR HLLWE TESTS

| Site:            | HLLWE O             | ffgas Tie-in   | Sampling                              | Location:                              | MA                                    | N-OFG-73   | Nozzie No  | ).:       |                     | 2-01     | Est. ΔP:       | 0.17            | Est. Tst | ack, °F:    |     | 133     |
|------------------|---------------------|----------------|---------------------------------------|----------------------------------------|---------------------------------------|------------|------------|-----------|---------------------|----------|----------------|-----------------|----------|-------------|-----|---------|
| Project:         |                     | 62-01-0866     | · · · · · · · · · · · · · · · · · · · |                                        |                                       | 12         | Nozzle Siz |           |                     |          | Est. K:        |                 | Est. vs, | <del></del> |     | 27.6    |
| Date:            |                     | 6/5/2001       | Static Pre                            | essure, in. WG:                        |                                       | -17.5      | Pitot No.: |           |                     |          | Est. ∆H:       | 1.30            | Operate  | or(s):      | RW  | /,FE,JA |
| Run No           |                     | 60-STRT-1      |                                       |                                        |                                       | 20.5       | Pitot Coef |           |                     | 0.84     | Est. DGM 7     | Гетрегаtu       | re, °F   |             |     | 80      |
| Run Tyr          |                     |                | Est CO <sub>2</sub> ,                 |                                        | · · · · · · · · · · · · · · · · · · · | 0          | Meter Box  | No.       |                     |          | Leak Chec      |                 |          |             |     |         |
| Pbar., in.       |                     |                | Est. Mois                             |                                        |                                       |            | ΔH@:       |           |                     | 1.5673   | <del>-</del>   | Pre-            |          | Post-       |     | Pass    |
| Tambient,        | r:<br>ol. Goal (m³) | 3.0            |                                       | Box No.:<br>. Goal (ft <sup>3</sup> ): |                                       | 8<br>127.1 | Y-factor:  | g DGM vol | /ft <sup>3</sup> \· |          | DGM Pre:       |                 | cfm @    |             |     | inHg    |
|                  |                     |                |                                       |                                        |                                       | 127.1      |            |           | . (IL <i>)</i> .    | 217.356  | DGM Post:      | 0.000           | cfm @    |             | 8   | inHg    |
| Sampling<br>Time | Clock<br>Time       | Velocity<br>ΔP | Meter<br>∆H                           | Meter<br>Volume                        | Heated                                |            |            | TURE (°F) |                     | Impinger | Pump<br>Vacuum | %l <sub>i</sub> |          | СОММЕ       | NTS |         |
| (min.)           | (24hr)              | (in. WG)       | (in. WG)                              | (cubic feet)                           | Line                                  | Stack      | ln         | Out       | Filter              | Exit     | (in. Hg)       |                 |          |             |     |         |
| 0                | 9:30                | 0.160          | 1.30                                  | 90.276                                 | 249                                   | 133        | 72         | 70        | 260                 | 61       | 8.0            | _               | <u></u>  |             |     |         |
| 10               | 9:40                | 0.160          | 1.20                                  | 97.240                                 | 249                                   | 133        | 80         | 71        | 260                 | 53       | 7.0            | 99              | O2=20.5  |             |     |         |
| 20               | 9:50                | 0.160          | 1.25                                  | 104.200                                | 252                                   | 134        | 82         | 71        | 263                 | 55       | 7.5            | 99              |          |             |     |         |
| 30               | 10:00               | 0.160          | 1.22                                  | 111.220                                | 251                                   | 133        | 84         | 72        | 262                 | 57       | 7.5            | 99              | O2=20.5  |             |     |         |
| 40               | 10:10               | 0.160          | 1.20                                  | 118.230                                | 250                                   | 133        | 87         | 74        | 260                 | 59       | 7.5            | 98              | O2=20.6  |             |     |         |
| 50               | 10:20               | 0.160          | 1.20                                  | 125.380                                | 249                                   | 132        | 90         | 77        | 261                 | 61       | 7.5            | 100             | O2=20.6  |             |     |         |
| 60               | 10:30               | 0.160          | 1.20                                  | 132.315                                | 250                                   | 133        | 89         | 77        | 262                 | 58       | 7.5            | 97              | O2=20.6  |             |     |         |
| 70               | 10:40               | 0.160          | 1.20                                  | 139.455                                | 250                                   | 133        | 87         | 76        | 261                 | 54       | 7.5            | 100             | O2=20.6  |             |     |         |
| 80               | 10:50               | 0.160          | 1.20                                  | 146.567                                | 250                                   | 134        | 85         | 74        | 262                 | 52       | 7.5            | 100             | O2=20.6  |             |     |         |
| 90               | 11:00               | 0.160          | 1.20                                  | 153.653                                | 250                                   | 133        | 81         | 74        | 261                 | 52       | 7.5            | 100             | O2=20.6  |             |     |         |
| 100              | 11:10               | 0.160          | 1.20                                  | 160.757                                | 250                                   | 133        | 88         | 76        | 262                 | 53       | 7.5            | 99              | O2=20.6  |             |     |         |
| 110              | 11:20               | 0.160          | 1.20                                  | 167.850                                | 251                                   | 133        | 90         | 77        | 260                 | 54       | 7.5            | 99              | O2=20.6  |             |     |         |
| 120              | 11:30               | 0.160          | 1.20                                  | 175.250                                | 248                                   | 133        | 91         | 79        | 261                 | 54       | 7.5            | 103             | O2=20.6  |             |     |         |
| 130              | 11:40               | 0.160          | 1.20                                  | 182.110                                | 252                                   | 133        | 92         | 79        | 260                 | 55       | 7.5            | 95              | O2=20.6  |             |     |         |
| 140              | 11:50               | 0.160          | 1.20                                  | 189.255                                | 249                                   | 132        | 93         | 81        | 259                 | 57       | 7.5            | 99              | O2=20.6  |             |     |         |
| 150              | 12:00               | 0.160          | 1.20                                  | 196.425                                | 249                                   | 133        | 94         | 82        | 261                 | 57       | 7.5            | 99              | O2=20.6  |             |     |         |
| 160              | 12:10               | 0.160          | 1.20                                  | 203.600                                | 249                                   | 133        | 91         | 81        | 260                 | 56       | 7.5            | 100             | O2=20.6  |             |     |         |
| 170              | 12:20               | 0.160          | 1.20                                  | 210.810                                | 250                                   | 133        | 89         | 79        | 261                 | 55       | 7.5            | 101             | O2=20.6  |             |     |         |
|                  |                     |                |                                       |                                        |                                       |            |            |           |                     |          |                |                 |          |             |     |         |

87

87

Average Temperatures (°F)

77

76

260

261

54

56

7.5

Max.

8.0

O2=20.6

Ave. %I,

Table B-13. 0060-STRT-1.

Site: HLLWE Offgas Tie-in IMPINGER BOX NO. = 6/5/2001 Date: 0060-STRT-1 Run No.: Mercury-Only Section Component: KO-1 Imp-2 Imp-4 Acid Scrub Section Imp-1 Imp-3 Imp-5 Type: short stem modified G-S modified modified short stem modified modified Reagent: None 5% HNO<sub>3</sub> / 10% H<sub>2</sub>O<sub>2</sub> None 4% KMnO<sub>4</sub> / 10% H<sub>2</sub>SO<sub>4</sub> 2N NaOH Silica Gel None Nominal Contents: 100 mL solution in each 200 mL solution in each Empty **Empty Empty** 100 mL 300-400q Post-test Wt., g: 571.9 718.1 704.9 618.6 733.6 731.3 590.0 680.5 900.3 Impinger Pre-test Wt., g: 572.0 720.9 699.5 616.9 731.8 728.8 589.6 686.4 873.2 wt. gain (g) -2.8 Wt. Gain, g: -0.1 5.4 1.7 2.5 -5.9 30.1 1.8 0.4 27.1 Post-test Volume: 0.0 100.0 90.0 0.0 90.0 0.0 100.0 Impinger Pre-test Volume: 0.0 100.0 100.0 0.0 100.0 100.0 0.0 vol. gain (mL) Volume Gain: 0.0 0.0 -10.0 0.0 0.0 -10.0 0.0 -20.0 Post-test pH: 14.0 Filter Lot # H<sub>2</sub>SO<sub>4</sub> Lot # 328060 53322 HNO<sub>3</sub> Lot # 129100 DI water\* Lot # QCLab-1 H<sub>2</sub>O<sub>2</sub> Lot # 992809 KMnO<sub>4</sub> Lot # 006655

| * used to dilute the other | er reagents |
|----------------------------|-------------|
|----------------------------|-------------|

 $\frac{O_2\%}{CO_2\%}$  20.6 0.0

Table B-13. 0060-STRT-1.

| Project:                                | 01-1062          | -01-0866 |          |
|-----------------------------------------|------------------|----------|----------|
| Run Date:                               |                  |          |          |
| Run Identification:                     | 0060-S<br>SYMBOL |          |          |
| PARAMETER Absolute Pressure in the Duct | Pabs             | in. Hg   | 23.732   |
|                                         |                  |          |          |
| Average Duct Gas Temperature            | Ts<br>           | R _      | 593      |
| Average Meter Temperature               | Tm               | R        | 541      |
| Average Gas Oxygen Content              | Co2,m            | %        | 20.6     |
| Average Gas Carbon Dioxide Content      | Cco2,m           | %        | 0.0      |
| Total Impinger Weight Gain (water)      | Ww               | grams    | 30.1     |
| Nozzle Area                             | An               | ft²      | 0.000538 |
| Duct Area                               | As               | ft²      | 0.785    |
| Sample Volume                           | VmStd            | dscf     | 107.88   |
| Sample Volume (SI)                      | VmStdm           | dscm     | 3.055    |
| Average Sampling Rate                   | Qm               | dscf/m   | 0.599    |
| Volume of Water Vapor                   | VwStd            | scf      | 1.419    |
| Volume of Water Vapor (SI)              | VwStdm           | scm      | 0.0402   |
| Moisture Fraction                       | Bws              | _        | 0.013    |
| Dry Gas Molecular Weight                | Md               | g/g-mol  | 28.82    |
| Wet Gas Molecular Weight                | Ms               | g/g-mol  | 28.68    |
| Gas Velocity at Nozzle                  | vn               | ft/s     | 26.8     |
| Gas Velocity at Nozzle (SI)             | vnm              | m/s      | 8.16     |
| Average Gas Velocity                    | vncor            | ft/s     | 22.58    |
| Dry Offgas Flow Rate                    | Qsd              | dscf/h   | 44,506   |
| Dry Offgas Flow Rate (SI)               | Qsdm             | dscm/h   | 1,260    |
| Actual Offgas Flow Rate                 | Q                | acf/h    | 63,850   |
| Intermediate Isokinetic Rate            | li               | %        | 99.6     |
| Final Isokinetic Rate                   | ı                | %        | 99.6     |

Table B-13. 0060-STRT-1.

Project: 01-1062-01-0866

6/5/2001 Run Date:

Run Identification: 0060-STRT-1 Run Type:

Test 8/28/2001

Lab Report Date: Lab Report Status: (preliminary or final)

Final

### **RESULTS**

### without blank corrections

| (preliminary or linar) |     |         |     |          |     |          |     |        |      |         |     |        |
|------------------------|-----|---------|-----|----------|-----|----------|-----|--------|------|---------|-----|--------|
|                        |     | CC      | DNC | ENTRATIO | NS  |          |     | M.A    | SS F | LOW RAT | ES  |        |
|                        |     | Actual  | S   | Standard | Dry | Standard | l   |        |      |         |     |        |
|                        | (   | µg/acm) | (   | μg/scm)  | (μ  | ig/dscm) |     | μg/min | gr   | ams/sec |     | lb/h   |
| Aluminum (Al)          |     | 3.2e1   |     | 4.5e1    |     | 4.6e1    |     | 9.6e2  |      | 1.6e-5  |     | 1.3e-4 |
| Antimony (Sb)          | В   | 1.0e0   | В   | 1.5e0    | В   | 1.5e0    | В   | 3.2e1  | В    | 5.3e-7  | В   | 4.2e-6 |
| Arsenic (As)           | <,B | 3.7e-1  | <,B | 5.2e-1   | <,B | 5.2e-1   | <,B | 1.1e1  | <,B  | 1.8e-7  | <,B | 1.5e-6 |
| Barium (Ba)            | В   | 1.5e0   | В   | 2.2e0    | В   | 2.2e0    | В   | 4.6e1  | В    | 7.7e-7  | В   | 6.1e-6 |
| Beryllium (Be)         | <,B | 1.5e-1  | <,B | 2.1e-1   | <,B | 2.1e-1   | <,B | 4.5e0  | <,B  | 7.4e-8  | <,B | 5.9e-7 |
| Cadmium (Cd)           | В   | 1.0e-1  | В   | 1.5e-1   | В   | 1.5e-1   | В   | 3.2e0  | В    | 5.3e-8  | В   | 4.2e-7 |
| Chromium (Cr)          |     | 6.8e-1  |     | 9.7e-1   |     | 9.8e-1   |     | 2.1e1  |      | 3.4e-7  |     | 2.7e-6 |
| Cobalt (Co)            | В   | 6.2e-1  | В   | 8.7e-1   | В   | 8.8e-1   | В   | 1.9e1  | В    | 3.1e-7  | В   | 2.5e-6 |
| Copper (Cu)            | В   | 9.8e-1  | В   | 1.4e0    | В   | 1.4e0    | В   | 3.0e1  | В    | 4.9e-7  | В   | 3.9e-6 |
| Lead (Pb)              | <,B | 3.0e-1  | <,B | 4.2e-1   | <,B | 4.3e-1   | <,B | 8.9e0  | <,B  | 1.5e-7  |     | 1.2e-6 |
| Manganese (Mn)         |     | 4.3e0   |     | 6.1e0    |     | 6.2e0    |     | 1.3e2  |      | 2.2e-6  |     | 1.7e-5 |
| Mercury (Hg)           |     | 2.3e1   |     | 3.2e1    |     | 3.3e1    |     | 6.9e2  | l .  | 1.1e-5  |     | 9.1e-5 |
| Nickel (Ni)            | В   | 1.1e0   | В   | 1.6e0    | В   | 1.6e0    | В   | 3.4e1  | В    | 5.7e-7  | В   | 4.5e-6 |
| Selenium (Se)          | В   | 7.3e-1  | В   | 1.0e0    | В   | 1.0e0    | В   | 2.2e1  | В    | 3.7e-7  | В   | 2.9e-6 |
| Silver (Ag)            | <   | 5.9e-1  | <   | 8.4e-1   | <   | 8.5e-1   | <   | 1.8e1  | <    | 3.0e-7  | <   | 2.4e-6 |
| Thallium (Tl)          | <   | 5.7e-1  | <   | 8.1e-1   | <   | 8.2e-1   | <   | 1.7e1  | <    | 2.9e-7  | <   | 2.3e-6 |
| Vanadium (V)           | <   | 6.2e-1  | <   | 8.7e-1   | <   | 8.8e-1   | <   | 1.9e1  | <    | 3.1e-7  | <   | 2.5e-6 |
| Zinc (Zn)              |     | 1.4e1   |     | 2.0e1    |     | 2.0e1    |     | 4.2e2  |      | 7.0e-6  |     | 5.5e-5 |

Table B-13. 0060-STRT-1.

Project: 01-1062-01-0866

Run Date:

6/5/2001

Run Type:

Run Identification: 0060-STRT-1

Lab Report Date:

Test 8/28/2001

Lab Report Status:

Final

### **RESULTS**

#### CORRECTED FOR CONTRIBUTION FROM

Corrected for Reagent Blank per EPA SW-846 Test Method 0060

| (preliminary or final) |     |         |     |         |     |          |     |         |      |         |     |         |
|------------------------|-----|---------|-----|---------|-----|----------|-----|---------|------|---------|-----|---------|
|                        |     | CC      | NCE | NTRATIO | NS  |          |     | MA      | SS F | LOW RAT | ES  |         |
|                        | 7   | Actual  | St  | tandard | Dry | Standard |     |         |      |         |     |         |
|                        | (μ  | g/acm)  | (h  | ıg/scm) | (µ  | g/dscm)  |     | µg/min  | gr   | ams/sec |     | lb/h    |
| Aluminum (Al)          |     | 3.0e1   |     | 4.2e1   |     | 4.2e1    |     | 8.9e2   |      | 1.5e-5  |     | 1.2e-4  |
| Antimony (Sb)          | В   | 2.4e-1  | В   | 3.4e-1  | В   | 3.4e-1   | В   | 7.2e0   | В    | 1.2e-7  | В   | 9.5e-7  |
| Arsenic (As)           | <,B | 2.0e-1  | <,B | 2.8e-1  | <,B | 2.8e-1   | <,B | 5.9e0   | <,B  | 9.9e-8  | <,B | 7.8e-7  |
| Barium (Ba)            | В   | 4.9e-1  | В   | 6.9e-1  | В   | 7.0e-1   | В   | 1.5e1   | В    | 2.5e-7  |     | 1.9e-6  |
| Beryllium (Be)         | <,B | 1.0e-1  | <,B | 1.5e-1  | <,B | 1.5e-1   | <,B | 3.1e0   | <,B  | 5.2e-8  | <,B | 4.1e-7  |
| Cadmium (Cd)           | В   | 9.1e-2  | В   | 1.3e-1  | В   | 1.3e-1   | В   | 2.8e0   | В    | 4.6e-8  | В   | 3.6e-7  |
| Chromium (Cr)          |     | 2.7e-1  |     | 3.8e-1  |     | 3.8e-1   |     | 8.0e0   |      | 1.3e-7  |     | 1.1e-6  |
| Cobalt (Co)            | В   | 6.2e-1  | В   | 8.7e-1  | В   | 8.8e-1   | В   | 1.9e1   | В    | 3.1e-7  | В   | 2.5e-6  |
| Copper (Cu)            | В   | 9.9e-1  | В   | 1.4e0   | В   | 1.4e0    | В   | 3.0e1   | В    | 5.0e-7  | В   | 3.9e-6  |
| Lead (Pb)              | <,B | 2.0e-1  | <,B | 2.8e-1  | <,B | 2.8e-1   | <,B | 6.0e0   | <,B  | 1.0e-7  |     | 7.9e-7  |
| Manganese (Mn)         |     | 3.9e0   |     | 5.6e0   |     | 5.7e0    |     | 1.2e2   |      | 2.0e-6  |     | 1.6e-5  |
| Mercury (Hg)           |     | 2.3e1   |     | 3.2e1   |     | 3.3e1    |     | 6.9e2   |      | 1.1e-5  |     | 9.1e-5  |
| Nickel (Ni)            | В   | 3.5e-1  | В   | 5.0e-1  | В   | 5.0e-1   | В   | 1.1e1   | В    | 1.8e-7  | В   | 1.4e-6  |
| Selenium (Se)          | В   | 2.3e-11 | В   | 3.2e-11 | В   | 3.3e-11  | В   | 6.9e-10 | В    | 1.1e-17 | В   | 9.1e-17 |
| Silver (Ag)            | <   | 6.0e-1  | <   | 8.4e-1  | <   | 8.5e-1   | <   | 1.8e1   | <    | 3.0e-7  | <   | 2.4e-6  |
| Thallium (TI)          | <   | 5.7e-1  | <   | 8.1e-1  | <   | 8.2e-1   | <   | 1.7e1   | <    | 2.9e-7  | <   | 2.3e-6  |
| Vanadium (V)           | <   | 6.2e-1  | <   | 8.7e-1  | <   | 8.8e-1   | <   | 1.9e1   | <    | 3.1e-7  | l   | 2.5e-6  |
| Zinc (Zn)              |     | 1.3e1   |     | 1.8e1   |     | 1.8e1    |     | 3.8e2   |      | 6.4e-6  |     | 5.1e-5  |

Table B-14. 0060-END-1.

#### METHOD 0060 SAMPLING DATA SHEET FOR HLLWE TESTS

|                                      |                          |              | IVI                   | ETHOD 0060                            | USAM     | PLING     | DATA              | SHEE        | I FOR               | HLLW     | E IES                 | 15              |                |        |      |              |
|--------------------------------------|--------------------------|--------------|-----------------------|---------------------------------------|----------|-----------|-------------------|-------------|---------------------|----------|-----------------------|-----------------|----------------|--------|------|--------------|
| Site: 1                              | LLWE Offg                | as Tie-in    | Sampling              | Location:                             | MA       | N-OFG-73  | Nozzle No         | :           |                     | 2-01     | Est. ΔP:              | 0.17            | Est. Tstac     | k, °F: |      | 133          |
| Project:                             | 01-1062                  | -01-0866     | Duct ID, i            |                                       |          | 12        | Nozzle Siz        | e, in.:     |                     | 0.3140   | Est. K:               | 7.66            | Est. vs, f     | t/s:   |      | 27.6         |
| Date:                                |                          | 6/5/2001     |                       | ssure, in. WG:                        |          |           | Pitot No.:        |             |                     |          | Est. ∆H:              | 1.20            | Operator       | (s):   | FE/F | AL/WS        |
| Run No.:                             |                          | 0-END-1      | Est. O2, 9            | · · · · · · · · · · · · · · · · · · · |          | 20.6      | Pitot Coeff       |             |                     |          | Est. DGM 1            |                 | e, °F          |        |      | 80           |
| Run Type                             |                          | Test         | Est CO2,              |                                       |          | 0         | Meter Box         | No.         |                     |          | Leak Chec             |                 |                |        |      |              |
| Pbar., in.<br>Tambient, <sup>c</sup> |                          | 25.210<br>68 | Est. Mois<br>Impinger |                                       |          | 1.3%<br>8 | ∆H@:<br>Y-factor: |             |                     | 1.5673   |                       | Pre-            |                | Post-  |      | Dass .       |
|                                      | . Goal (m <sup>3</sup> ) | 3.0          |                       | Goal (ft <sup>3</sup> ):              |          |           | Min. endin        | a DGM vol   | (ft <sup>3</sup> )· |          | DGM Pre:<br>DGM Post: |                 | cfm @<br>cfm @ | 1      |      | inHg<br>inHg |
| Sampling                             | Clock                    | Velocity     | Meter                 | Meter                                 | <u> </u> | 127.1     | <u> </u>          | ATURE (°F)  | (1. /.              | 400.700  | Pump                  | 0.000           | T Citil (a)    |        |      | illig        |
| Time                                 | Time                     | ΔΡ΄          | ΔН                    | Volume                                | Heated   |           |                   | eter        |                     | Impinger | Vacuum                | %I <sub>i</sub> |                | COMMEN | ITS  |              |
| (min.)                               | (24hr)                   | (in. WG)     | (in. WG)              | (cubic feet)                          | Line     | Stack     | 1n                | Out         | Filter              | Exit     | (in. Hg)              |                 |                |        |      |              |
| 0                                    | 16:00                    | 0.160        | 1.20                  | 276.678                               | 257      | 133       | 69                | 68          | 264                 | 48       | 5.0                   | -               |                |        |      |              |
| 10                                   | 16:10                    | 0.150        | 1.20                  | 283,441                               | 259      | 133       | 82                | 69          | 263                 | 44       | 5.1                   | 99              | O2=20.6        |        |      |              |
| 20                                   | 16:20                    | 0.150        | 1.20                  | 290.220                               | 259      | 133       | . 84              | 71          | 262                 | 47       | 5.1                   | 99              | O2=20.5        |        |      |              |
| 30                                   | 16:30                    | 0.150        | 1.20                  | 297.030                               | 259      | 133       | 85                | 72          | 262                 | 48       | 5.1                   | 99              | <u>L</u> .     |        |      |              |
| 40                                   | 16:40                    | 0.150        | 1.20                  | 303.900                               | 259      | 133       | 85                | 73          | 262                 | 49       | 5.1                   | 100             | O2=20.5        |        |      |              |
| 50                                   | 16:50                    | 0.150        | 1.20                  | 310.701                               | 259      | 133       | 86                | 73          | 263                 | 49       | 5.1                   | 99              |                |        |      |              |
| 60                                   | 17:00                    | 0.150        | 1.20                  | 317.650                               | 259      | 133       | 86                | 74          | 263                 | 50       | 5.1                   | 101             | 02=20.6        |        |      |              |
| 70                                   | 17:10                    | 0.150        | 1.20                  | 324.560                               | 259      | 133       | . 87              | 74          | 263                 | 50       | 5.1                   | 101             |                |        |      |              |
| 80                                   | 17:20                    | 0.150        | 1.20                  | 331.653                               | 259      | 133       | 87                | 74          | 264                 | 51       | 5.1                   | 103             | O2=20.5        |        |      |              |
| 90                                   | 17:30                    | 0.150        | 1.20                  | 338.761                               | 259      | 133       | 87                | 74          | 263                 | 51       | 5.1                   | 103             |                |        |      |              |
| 100                                  | 17:40                    | 0.150        | 1.20                  | 345.873                               | 259      | 133       | 86                | 74          | 264                 | 52       | 5.2                   | 104             | O2=20.6        |        |      |              |
| 110                                  | 17:50                    | 0.150        | 1.20                  | 352.001                               | 259      | 133       | 86                | 74          | 263                 | 52       | 5.2                   | 89              |                |        |      |              |
| 120                                  | 18:00                    | 0.150        | 1.20                  | 360.078                               | 259      | 133       | 86                | 74          | 263                 | 52       | 5.2                   | 118             | O2=20.6        |        |      |              |
| 130                                  | 18:10                    | 0.150        | 1.20                  | 367.189                               | 259      | 133       | 87                | 74          | 261                 | 52       | 5.2                   | 104             |                |        |      |              |
| 140                                  | 18:20                    | 0.150        | 1.20                  | 374.275                               | 259      | 134       | 87                | 74          | 263                 | 53       | 5.2                   | 103             | O2=20.5        |        |      |              |
| 150                                  | 18:30                    | 0.150        | 1.20                  | 381.374                               | 259      | 134       | 87                | 74          | 264                 | 53       | 5.2                   | 103             |                |        |      |              |
| 160                                  | 18:40                    | 0.150        | 1.20                  | 388.481                               | 259      | 133       | 87                | 74          | 263                 | 53       | 5.2                   | 103             | Q2=20.5        |        |      |              |
| 170                                  | 18:50                    | 0.150        | 1.20                  | 395.590                               | 259      | 133       | 86                | 74          | 262                 | 53       | 5.2                   | 104             |                |        |      |              |
| 180                                  | 19:00                    | 0.150        | 1.20                  | 402.710                               | 259      | 133       | 86                | 74          | 264                 | 53       | 5.2                   | 104             | O2=20.6        |        |      |              |
| 190                                  | 19:10                    | 0.150        | 1.20                  | 409.800                               | 259      | 133       | 86                | 74          | 263                 | 53       | 5.2                   | 103             |                |        |      |              |
| 200                                  | 19:20                    | 0.150        | 1.20                  | 416.928                               | 259      | 133       | 86                | 74          | 262                 | 53       | 5.2                   | 104             | O2=20.4        |        |      |              |
| 210                                  | 19:30                    | 0.150        | 1.20                  | 442.102                               | 259      | 133       | 86                | 74          | 263                 | 53       | 5.2                   | 367             | O2=20.5        |        |      |              |
| 215                                  | 19:35                    | 0.150        | 1.20                  | 427.542                               | 259      | 133       | 86                | 74          | 263                 | 53       | 5.2                   | -424            |                |        |      |              |
| Total                                | Total                    | ΔPavg        | Average               | Total                                 |          | Av        | erage Tem         | peratures ( | °F)                 |          | Max.                  | Ave. %li        |                | -      |      |              |
| 215                                  | 3:35                     | 0.150        | 1.20                  | 150.864                               | 259      | 133       | 85                | 73          | 263                 | 51       | 5.2                   | 90              |                |        |      |              |

Table B-14. 0060-END-1.

 $O_2\%$ 

CO<sub>2</sub>%

20.5

0.0

## 0060 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

Site: HLLWE Offgas Tie-in IMPINGER BOX NO. = 8 6/5/2001 Date: Run No.: 0060-END-1 Mercury-Only Section KO-1 Component: Imp-1 Imp-2 Imp-3 Imp-4 Imp-5 Acid Scrub Section Type: short stem modified G-S modified modified short stem modified modified 5% HNO<sub>3</sub> / 10% H<sub>2</sub>O<sub>2</sub> Reagent: None None 4% KMnO<sub>4</sub> / 10% H<sub>2</sub>SO<sub>4</sub> None 2N NaOH Silica Gel Nominal Contents: **Empty** 100 mL solution in each 200 mL solution in each **Empty Empty 100** mL 300-400g Post-test Wt., g: 572.2 717.8 705.1 617.9 732.4 731.7 590.9 678.0 831.3 Impinger Pre-test Wt., g: 572.2 720.5 700.8 617.2 731.7 730.6 590.0 680.3 806.3 wt. gain (g) Wt. Gain, g: 0.0 -2.7 4.3 0.7 0.7 1.1 0.9 -2.3 25.0 27.7 Post-test Volume: 0.0 92.0 102.0 0.0 100.0 100.0 0.0 Impinger Pre-test Volume: 0.0 100.0 100.0 0.0 100.0 100.0 0.0 vol. gain (mL) Volume Gain: 0.0 -8.0 2.0 0.0 0.0 0.0 0.0 -6.0 Post-test pH: 14.0 Filter Lot # 53322 H<sub>2</sub>SO<sub>4</sub> Lot # HNO<sub>3</sub> Lot # 3280601 129100 DI water\* Lot # QCLAB-1 H<sub>2</sub>O<sub>2</sub> Lot # KMnO₄ Lot # 992809 006655 \* used to dilute the other reagents

Table B-14. 0060-END-1.

| Project: 01-1062-01-0866           |           |             |          |  |  |  |  |  |  |  |
|------------------------------------|-----------|-------------|----------|--|--|--|--|--|--|--|
| Run Date:                          |           | 6/5/2001    |          |  |  |  |  |  |  |  |
| Run Identification:                |           |             |          |  |  |  |  |  |  |  |
| PARAMETER                          | SYMBOL    |             | 22.022   |  |  |  |  |  |  |  |
| Absolute Pressure in the Duct      | Pabs<br>_ | in. Hg<br>_ | 23.923   |  |  |  |  |  |  |  |
| Average Duct Gas Temperature       | Ts        | R           | 593      |  |  |  |  |  |  |  |
| Average Meter Temperature          | Tm        | R           | 539      |  |  |  |  |  |  |  |
| Average Gas Oxygen Content         | Co2,m     | %           | 20.5     |  |  |  |  |  |  |  |
| Average Gas Carbon Dioxide Content | Cco2,m    | %           | 0.0      |  |  |  |  |  |  |  |
| Total Impinger Weight Gain (water) | Ww        | grams       | 27.7     |  |  |  |  |  |  |  |
| Nozzle Area                        | An        | ft²         | 0.000538 |  |  |  |  |  |  |  |
| Duct Area                          | As        | ft²         | 0.785    |  |  |  |  |  |  |  |
| Sample Volume                      | VmStd     | dscf        | 129.00   |  |  |  |  |  |  |  |
| Sample Volume (SI)                 | VmStdm    | dscm        | 3.653    |  |  |  |  |  |  |  |
| Average Sampling Rate              | Qm        | dscf/m      | 0.600    |  |  |  |  |  |  |  |
| Volume of Water Vapor              | VwStd     | scf         | 1.306    |  |  |  |  |  |  |  |
| Volume of Water Vapor (SI)         | VwStdm    | scm         | 0.0370   |  |  |  |  |  |  |  |
| Moisture Fraction                  | Bws       | -           | 0.010    |  |  |  |  |  |  |  |
| Dry Gas Molecular Weight           | Md        | g/g-mol     | 28.82    |  |  |  |  |  |  |  |
| Wet Gas Molecular Weight           | Ms        | g/g-mol     | 28.71    |  |  |  |  |  |  |  |
| Gas Velocity at Nozzle             | vn        | ft/s        | 25.9     |  |  |  |  |  |  |  |
| Gas Velocity at Nozzle (SI)        | vnm       | m/s         | 7.89     |  |  |  |  |  |  |  |
| Average Gas Velocity               | vncor     | ft/s        | 21.84    |  |  |  |  |  |  |  |
| Dry Offgas Flow Rate               | Qsd       | dscf/h      | 43,505   |  |  |  |  |  |  |  |
| Dry Offgas Flow Rate (SI)          | Qsdm      | dscm/h      | 1,232    |  |  |  |  |  |  |  |
| Actual Offgas Flow Rate            | Q         | acf/h       | 61,741   |  |  |  |  |  |  |  |
| Intermediate Isokinetic Rate       | li        | %           | 102.3    |  |  |  |  |  |  |  |
| Final Isokinetic Rate              | I         | %           | 102.0    |  |  |  |  |  |  |  |

Table B-14. 0060-END-1.

Project: <sub>01-1062-01-0866</sub>

8/28/2001

Final

6/5/2001 Run Date:

Run Identification: 0060-END-1 Run Type: Test

Lab Report Date: Lab Report Status:

**RESULTS** 

• without blank corrections

| (preliminary or final) |                |          |          |          |                 |          |        |                |           |        |      |        |
|------------------------|----------------|----------|----------|----------|-----------------|----------|--------|----------------|-----------|--------|------|--------|
|                        | CONCENTRATIONS |          |          |          | MASS FLOW RATES |          |        |                |           |        |      |        |
|                        |                | Actual   |          | Standard | Dry Standard    |          |        |                |           |        |      |        |
|                        |                | (µg/acm) | (µg/scm) |          | (µg/dscm)       |          | µg/min |                | grams/sec |        | lb/h |        |
| Aluminum (Al)          |                | 5.2e1    |          | 7.3e1    |                 | 7.4e1    |        | 1.5e3          |           | 2.5e-5 |      | 2.0e-4 |
| Antimony (Sb)          | В              | 9.8e-1   | В        | 1.4e0    | В               | 1.4e0    | В      | 2.9e1          | В         | 4.8e-7 | В    | 3.8e-6 |
| Arsenic (As)           | <              | 3.1e-1   | <        | 4.3e-1   | <               | 4.4e-1   | <      | 9.0e0          | <         | 1.5e-7 | <    | 1.2e-6 |
| Barium (Ba)            | В              | 1.9e0    | В        | 2.7e0    | В               | 2.7e0    | В      | 5.6e1          | В         | 9.4e-7 | В    | 7.4e-6 |
| Beryllium (Be)         | <,B            | 1.3e-1   | <,B      | 1.8e-1   | <,B             | 3 1.8e-1 | <,B    | 3.7e0          | <,B       | 6.1e-8 | <,B  | 4.8e-7 |
| Cadmium (Cd)           | В              | 1.6e-1   | В        | 2.2e-1   | В               | 2.2e-1   | В      | 4.6e0          | В         | 7.7e-8 | В    | 6.1e-7 |
| Chromium (Cr)          |                | 9.1e-1   |          | 1.3e0    |                 | 1.3e0    |        | 2.6e1          |           | 4.4e-7 |      | 3.5e-6 |
| Cobalt (Co)            | <              | 5.2e-1   | <        | 7.3e-1   | <               | 7.4e-1   | <      | 1.5e1          | <         | 2.5e-7 | <    | 2.0e-6 |
| Copper (Cu)            | В              | 6.9e-1   | В        | 9.8e-1   | В               | 9.9e-1   | В      | 2.0e1          | В         | 3.4e-7 | В    | 2.7e-6 |
| Lead (Pb)              | В              | 2.5e-1   | В        | 3.5e-1   | В               | 3.6e-1   | В      | 7.3e0          | В         | 1.2e-7 | В    | 9.7e-7 |
| Manganese (Mn)         |                | 4.4e0    |          | 6.2e0    |                 | 6.3e0    |        | 1.3e2          |           | 2.2e-6 |      | 1.7e-5 |
| Mercury (Hg)           |                | 2.9e1    |          | 4.1e1    |                 | 4.1e1    |        | 8.4 <b>e</b> 2 |           | 1.4e-5 | ŀ    | 1.1e-4 |
| Nickel (Ni)            | В              | 1.2e0    | В        | 1.6e0    | В               | 1.6e0    | В      | 3.4e1          | В         | 5.6e-7 | В    | 4.5e-6 |
| Selenium (Se)          | <              | 4.1e-1   | <        | 5.7e-1   | <               | 5.7e-1   | <      | 1.2e1          | <         | 2.0e-7 | <    | 1.6e-6 |
| Silver (Ag)            | <              | 5.0e-1   | <        | 7.0e-1   | <               | 7.1e-1   | <      | 1.5e1          | <         | 2.4e-7 | <    | 1.9e-6 |
| Thallium (TI)          | <              | 4.6e-1   | <        | 6.5e-1   | <               | 6.6e-1   | <      | 1.3e1          | <         | 2.2e-7 | <    | 1.8e-6 |
| Vanadium (V)           | <              | 5.2e-1   | <        | 7.3e-1   | <               | 7.4e-1   | <      | 1.5e1          | <         | 2.5e-7 | <    | 2.0e-6 |
| Zinc (Zn)              |                | 2.3e1    |          | 3.3e1    |                 | 3.3e1    |        | 6.7e2          |           | 1.1e-5 |      | 8.9e-5 |

Table B-14. 0060-END-1.

Project: 01-1062-01-0866

Run Date:

6/5/2001

Run Type:

Run Identification: 0060-END-1 Test

Lab Report Date: Lab Report Status: 8/28/2001

Final

#### **RESULTS**

#### CORRECTED FOR CONTRIBUTION FROM

Corrected for Reagent Blank per EPA SW-846 Test Method 0060 • final presentation should be rounded to two significant digits

| (preliminary or final) |     |          |     |                |     |            |     |                |      |          |    |         |
|------------------------|-----|----------|-----|----------------|-----|------------|-----|----------------|------|----------|----|---------|
|                        |     | CC       | ONC | ENTRATIO       | NS  |            |     | MA             | SS I | FLOW RAT | ES |         |
|                        |     | Actual   |     | Standard       | Dr  | y Standard |     |                |      |          |    |         |
|                        | (   | (µg/acm) |     | (µg/scm)       | (   | µg/dscm)   |     | μg/min         | gı   | rams/sec |    | lb/h    |
| Aluminum (Al)          |     | 4.9e1    |     | 6.9e1          |     | 7.0e1      |     | 1.4e3          |      | 2.4e-5   |    | 1.9e-4  |
| Antimony (Sb)          | В   | 3.0e-1   | В   | 4.2e-1         | В   | 4.2e-1     | В   | 8.7 <b>e</b> 0 | В    | 1.4e-7   | В  | 1.1e-6  |
| Arsenic (As)           | <   | 1.7e-1   | <   | 2.3e-1         | <   | 2.4e-1     | <   | 4.8e0          | <    | 8.1e-8   |    | 6.4e-7  |
| Barium (Ba)            | В   | 1.1e0    | В   | 1.5e0          | В   | 1.5e0      | В   | 3.1e1          | В    | 5.2e-7   | i  | 4.1e-6  |
| Beryllium (Be)         | <,B | 8.7e-2   | <,E | 3 1.2e-1       | <,B | 1.2e-1     | <,B |                |      | 4.2e-8   | ı  | 3.3e-7  |
| Cadmium (Cd)           | В   | 1.5e-1   | В   | 2.1e-1         | В   | 2.1e-1     | В   | 4.3e0          | В    | 7.1e-8   | ı  | 5.7e-7  |
| Chromium (Cr)          |     | 5.5e-1   |     | 7.8e-1         |     | 7.9e-1     |     | 1.6e1          |      | 2.7e-7   |    | 2.1e-6  |
| Cobalt (Co)            | <   | 5.2e-1   | <   | 7.3e-1         | <   | 7.4e-1     | <   | 1.5e1          |      | 2.5e-7   | <  | 2.0e-6  |
| Copper (Cu)            | В   | 6.9e-1   | В   | 9.8e-1         | В   | 9.9e-1     | В   | 2.0e1          | В    | 3.4e-7   | ı  | 2.7e-6  |
| Lead (Pb)              | В   | 1.7e-1   | В   | 2.4e-1         | В   | 2.4e-1     | В   | 4.9e0          | В    | 8.2e-8   | В  | 6.5e-7  |
| Manganese (Mn)         |     | 4.2e0    |     | 5.9e0          |     | 6.0e0      |     | 1.2e2          |      | 2.0e-6   |    | 1.6e-5  |
| Mercury (Hg)           |     | 2.9e1    |     | 4.1e1          |     | 4.1e1      |     | 8.4e2          |      | 1.4e-5   |    | 1.1e-4  |
| Nickel (Ni)            | В   | 4.9e-1   | В   | 6.9e <b>-1</b> | В   | 7.0e-1     | В   | 1.4e1          | В    | 2.4e-7   | В  | 1.9e-6  |
| Selenium (Se)          | <   | 1.9e-11  | <   | 2.7e-11        | <   | 2.7e-11    | <   | 5.6e-10        | <    | 9.4e-18  | <  | 7.4e-17 |
| Silver (Ag)            | <   | 5.0e-1   | <   | 7.1e-1         | <   | 7.1e-1     | <   | 1.5e1          | <    | 2.4e-7   | <  | 1.9e-6  |
| Thallium (TI)          | <   | 4.6e-1   | <   | 6.5e-1         | <   | 6.6e-1     | <   | 1.3e1          | <    | 2.2e-7   | <  | 1.8e-6  |
| Vanadium (V)           | <   | 5.2e-1   | <   | 7.3e-1         | <   | 7.4e-1     | <   | 1.5e1          | <    | 2.5e-7   | <  | 2.0e-6  |
| Zinc (Zn)              |     | 2.2e1    |     | 3.1e1          |     | 3.1e1      |     | 6.4e2          |      | 1.1e-5   |    | 8.5e-5  |

Table B-15. 0060-STRT-2.

#### METHOD 0060 SAMPLING DATA SHEET FOR HLLWE TESTS

|                  |                               |                | 1911                  | ETHOD UUGU              | JAIVII | LING       | DAIA        | JIILL       | 1101                | IILLVV   | LILU                  |                 |                     |         |              |
|------------------|-------------------------------|----------------|-----------------------|-------------------------|--------|------------|-------------|-------------|---------------------|----------|-----------------------|-----------------|---------------------|---------|--------------|
| Site:            | HLLWE C                       | Offgas Tie-in  | Sampling              | Location:               | MA     | N-OFG-73   | Nozzle No   | .:          |                     |          | Est. ΔP:              | 0.16            | Est. Tstack, °F:    |         | 133          |
| Project:         | 01-10                         | 062-01-0866    | Duct ID, it           | nches:                  |        | 12         | Nozzle Siz  | e, in.:     |                     | 0.3140   |                       | 7.67            | Est. vs, ft/s:      |         | 26.7         |
| Date:            |                               |                |                       | ssure, in. WG:          |        | -17.5      | Pitot No.:  |             |                     |          | Est. ∆H:              |                 | Operator(s):        | RV      | /,FE, JA     |
| Run No.:         |                               | 060-STRT-2     |                       | -                       |        | 20.6       | Pitot Coeff |             |                     |          | Est. DGM 1            |                 | e, °F               |         | 80           |
| Run Type         |                               | Test           | Est CO <sub>2</sub> , |                         |        | 0          | Meter Box   | No.         |                     |          | Leak Chec             |                 |                     |         |              |
| Pbar., in. I     |                               | 25.219         | Est. Moist            | <del></del>             |        |            | ΔH@:        |             |                     | 1.5673   |                       | Pre-            | PASS Post-          |         | PASS         |
| Tambient, °      | F:<br>Goal (m <sup>3</sup> ): | 3.0            | Impinger              | Box No.:<br>Goal (ft³): |        | 9<br>127.1 | Y-factor:   | g DGM vol.  | /ft <sup>3</sup> \· |          | DGM Pre:<br>DGM Post: |                 | cfm @               | 17<br>6 | inHg<br>inHg |
|                  |                               |                | <u> </u>              |                         |        | 127.1      |             |             | π. (ιτ ).           | 334.002  |                       | 0.000           | T                   |         | iiiiig       |
| Sampling<br>Time | Clock<br>Time                 | Velocity<br>ΔP | Meter<br>ΔH           | Meter<br>Volume         | Heated |            |             | ATURE (°F)  |                     | Impinger | Pump<br>Vacuum        | %l <sub>i</sub> | COM                 | MENTS   |              |
| (min.)           | (24hr)                        | (in. WG)       | (in. WG)              | (cubic feet)            | Line   | Stack      | In          | Out         | Filter              | Exit     | (in. Hg)              |                 |                     |         |              |
| 0                | 7:51                          | 0.170          | 1.20                  | 427.722                 | 255    | 134        | 63          | 53          | 260                 | 48       | 5.3                   |                 |                     |         |              |
| 10               | 8:01                          | 0.170          | 1.30                  | 434.370                 | 261    | 134        | 74          | 58          | 261                 | 45       | 5.5                   | 94              |                     |         |              |
| 20               | 8:11                          | 0.170          | 1.30                  | 441.310                 | 260    | 134        | 76          | 62          | 265                 | 49       | 5.5                   | 97              |                     |         |              |
| 30               | 8:21                          | 0.170          | 1.30                  | 448.280                 | 260    | 134        | 77          | 63          | 264                 | 49       | 5.5                   | 97              |                     |         |              |
| 40               | 8:31                          | 0.170          | 1.30                  | 455.250                 | 260    | 134        | 78          | 64          | 261                 | 50       | 5.5                   | 97              |                     |         |              |
| 50               | 8:41                          | 0.170          | 1.30                  | 462.210                 | 258    | 134        | 81          | 67          | 261                 | 51       | 5.5                   | 96              |                     |         |              |
| 59               | 8:50                          | 0.170          | 1.30                  | 468.605                 | 258    | 134        | 82          | 68          | 263                 | 52       | 5.5                   | 98              | Stopped train beca  | ause of | NWCF         |
| 59               | 9:22                          | 0.170          | 1.30                  | 468.605                 | 255    | 134        | 78          | 67          | 264                 | 53       | 5.5                   | #DIV/0!         | building evacuation | n.      |              |
| 60               | 9:23                          | 0.170          | 1.30                  | 469.290                 | 255    | 134        | 79          | 67          | 264                 | 53       | 5.5                   | 95_             | Restart at 0922     |         |              |
| 70               | 9:33                          | 0.170          | 1.30                  | 476.420                 | 250    | 134        | 84          | 68          | 262                 | 49       | 5.5                   | 98              | Hood O2=20.5        |         |              |
| 80               | 9:43                          | 0.170          | 1.30                  | 483.530                 | 252    | 134        | 85          | 69          | 263                 | 52       | 5.5                   | 98              | Hood O2=20.4        |         |              |
| 90               | 9:53                          | 0.170          | 1.30                  | 490.650                 | 257    | 134        | 85          | 70          | 264                 | 53       | 5.5                   | 98              | Hood O2=20.4        |         |              |
| 100              | 10:03                         | 0.170          | 1.30                  | 497.800                 | 254    | 134        | 86          | 71          | 262                 | 53       | 5.5                   | 98              | Hood O2=20.5        |         |              |
| 110              | 10:13                         | 0.170          | 1.30                  | 504.940                 | 255    | 134        | 86          | 72          | 263                 | 54       | 5.5                   | 98              | Offgas O2=20.5      |         |              |
| 120              | 10:23                         | 0.170          | 1.30                  | 512.090                 | 251    | 134        | 87          | 73          | 262                 | 54       | 5.5                   | 98              | Offgas O2=20.5      |         |              |
| 130              | 10:33                         | 0.160          | 1.30                  | 519.430                 | 250    | 133        | 88          | 73          | 262                 | 55       | 5.5                   | 103             |                     |         |              |
| 140              | 10:43                         | 0.160          | 1.30                  | 527.621                 | 252    | 133        | 88          | 74          | 262                 | 54       | 5.5                   | 115             |                     |         |              |
| 150              | 10:53                         | 0.160          | 1.30                  | 533,730                 | 250    | 134        | 88          | 73          | 261                 | 55       | 5.5                   | 86              |                     |         |              |
| 160              | 11:03                         | 0.160          | 1.30                  | 540.740                 | 254    | 134        | 88          | 75          | 261                 | 56       | 5.5                   | 99              | Offgas O2=20.5      |         |              |
| 170              | 11:13                         | 0.160          | 1.25                  | 548.003                 | 251    | 133        | 89          | 76          | 263                 | 56       | 5.5                   | 102             | Offgas O2≃20.5      |         |              |
| 180              | 11:23                         | 0.160          | 1.25                  | 555.122                 | 253    | 133        | 89          | 76          | 261                 | 56       | 5.5                   | 100             | Offgas O2=20.5      |         |              |
| 190              | 11:33                         | 0.160          | 1.30                  | 562.328                 | 250    | 133        | 90          | 77          | 262                 | 57       | 5.5                   | 101             |                     |         |              |
| Total            | Total                         | ΔPavg          | Average               | Total                   | 1      | A          | verage Tem  | peratures ( | (°F)                | 1        | Max.                  | Ave. %l;        | <del> </del>        |         |              |
| 190              | 3:10                          | 0.167          | 1.29                  | 134.606                 | 255    | 134        | 83          | 69          | 262                 | 52       | 5.5                   | #DIV/0!         |                     |         |              |

Table B-15. 0060-STRT-2.

# 0060 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

Site: HLLWE Offgas Tie-in IMPINGER BOX NO. = Date: 6/6/2001 0060-STRT-2 Run No.: Mercury-Only Section Acid Scrub Section Component: KO-1 lmp-1 Imp-2 Imp-3 Imp-4 Imp-5 modified G-S modified modified modified Type: short stem modified short stem Reagent: None 5% HNO<sub>3</sub> / 10% H<sub>2</sub>O<sub>2</sub> None 4% KMnO<sub>4</sub> / 10% H<sub>2</sub>SO<sub>4</sub> None 2N NaOH Silica Gel 300-400g **Nominal Contents:** 100 mL solution in each 100 mL solution in each 100 mL **Empty Empty** Empty Post-test Wt., g: 559.6 723.0 678.4 583.4 739.1 732.5 567.0 709.6 813.0 Impinger Pre-test Wt., g: 559.6 726.2 674.0 582.4 739.6 733.3 564.3 716.1 785.1 wt. gain (g) Wt. Gain, g: 0.0 -3.2 4.4 1.0 -0.5 -0.8 2.7 -6.5 27.9 25.0 Post-test Volume: 0.0 100.0 100.0 0.0 100.0 100.0 0.0 Impinger Pre-test Volume: 0.0 100.0 100.0 0.0 100.0 100.0 0.0 vol. gain (mL) Volume Gain: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0 Post-test pH: H<sub>2</sub>SO<sub>4</sub> Lot # Filter Lot # 53322 328060 HNO<sub>3</sub> Lot # 129100 DI water\* Lot # QCLAB-1 H<sub>2</sub>O<sub>2</sub> Lot # KMnO<sub>4</sub> Lot # 992809 006655

\* used to dilute the other reagents

 $\frac{O_2\%}{CO_2\%}$  20.5 0.0

Table B-15. 0060-STRT-2.

## FIELD DATA CALCULATIONS

| Project: 01-1062-01-0866 Run Date: 6/6/2001 |        |                 |          |  |  |  |  |  |  |  |  |
|---------------------------------------------|--------|-----------------|----------|--|--|--|--|--|--|--|--|
| Run Date:<br>Run Identification:            |        | 200 T<br>STRT-2 |          |  |  |  |  |  |  |  |  |
| PARAMETER                                   | SYMBOL | UNITS           |          |  |  |  |  |  |  |  |  |
| Absolute Pressure in the Duct               | Pabs   | in. Hg          | 23.932   |  |  |  |  |  |  |  |  |
| Average Duct Gas Temperature                | Ts     | R               | 593      |  |  |  |  |  |  |  |  |
| Average Meter Temperature                   | Tm     | R               | 536      |  |  |  |  |  |  |  |  |
| Average Gas Oxygen Content                  | Co2,m  | %               | 20.5     |  |  |  |  |  |  |  |  |
| Average Gas Carbon Dioxide Content          | Cco2,m | %               | 0.0      |  |  |  |  |  |  |  |  |
| Total Impinger Weight Gain (water)          | Ww     | grams           | 25.0     |  |  |  |  |  |  |  |  |
| Nozzie Area                                 | An     | ft²             | 0.000538 |  |  |  |  |  |  |  |  |
| Duct Area                                   | As     | ft²             | 0.785    |  |  |  |  |  |  |  |  |
| Sample Volume                               | VmStd  | dscf            | 115.90   |  |  |  |  |  |  |  |  |
| Sample Volume (SI)                          | VmStdm | dscm            | 3.282    |  |  |  |  |  |  |  |  |
| Average Sampling Rate                       | Qm     | dscf/m          | 0.610    |  |  |  |  |  |  |  |  |
| Volume of Water Vapor                       | VwStd  | scf             | 1.179    |  |  |  |  |  |  |  |  |
| Volume of Water Vapor (SI)                  | VwStdm | scm             | 0.0334   |  |  |  |  |  |  |  |  |
| Moisture Fraction                           | Bws    | -               | 0.010    |  |  |  |  |  |  |  |  |
| Dry Gas Molecular Weight                    | Md     | g/g-mol         | 28.82    |  |  |  |  |  |  |  |  |
| Wet Gas Molecular Weight                    | Ms     | g/g-mol         | 28.71    |  |  |  |  |  |  |  |  |
| Gas Velocity at Nozzle                      | vn     | ft/s            | 27.3     |  |  |  |  |  |  |  |  |
| Gas Velocity at Nozzle (SI)                 | vnm    | m/s             | 8.31     |  |  |  |  |  |  |  |  |
| Average Gas Velocity                        | vncor  | ft/s            | 23.00    |  |  |  |  |  |  |  |  |
| Dry Offgas Flow Rate                        | Qsd    | dscf/h          | 45,790   |  |  |  |  |  |  |  |  |
| Dry Offgas Flow Rate (SI)                   | Qsdm   | dscm/h          | 1,297    |  |  |  |  |  |  |  |  |
| Actual Offgas Flow Rate                     | Q      | acf/h           | 65,037   |  |  |  |  |  |  |  |  |
| Intermediate Isokinetic Rate                | li     | %               | 98.8     |  |  |  |  |  |  |  |  |
| Final Isokinetic Rate                       | 1      | %               | 98.5     |  |  |  |  |  |  |  |  |

Table B-15. 0060-STRT-2.

Project: 01-1062-01-0866

Run Date:

6/6/2001

Run Type: Test

Run Type: Lab Report Date: Test 8/28/2001

Lab Report Status: (preliminary or final)

Final

#### **RESULTS**

#### • without blank corrections

• final presentation should be rounded to two significant digits

| (preminary or miar) |     |                 |     |                 |     |          |     |        |     |          |     | ~~     |
|---------------------|-----|-----------------|-----|-----------------|-----|----------|-----|--------|-----|----------|-----|--------|
|                     |     | CC              | NC  | ENTRATIO        | NS  |          |     | M.A    | SS  | FLOW RAT | ES  |        |
|                     |     | Actual          | S   | Standard        | Dry | Standard | l   |        |     |          |     |        |
|                     | (1  | µg/acm)         | (   | (µg/scm)        | (þ  | ıg/dscm) |     | μg/min | gı  | rams/sec |     | lb/h   |
| Aluminum (Al)       |     | 1.6e1           |     | 2.3e1           |     | 2.3e1    |     | 5.0e2  |     | 8.3e-6   |     | 6.6e-5 |
| Antimony (Sb)       | В   | 9. <b>7</b> e-1 | В   | 1.4e0           | В   | 1.4e0    | В   | 3.0e1  | В   | 4.9e-7   | В   | 3.9e-6 |
| Arsenic (As)        | <   | 3.4e-1          | <   | 4.8e-1          | <   | 4.9e-1   | <   | 1.1e1  | <   | 1.8e-7   | <   | 1.4e-6 |
| Barium (Ba)         | В   | 1.1e0           | В   | 1.5e0           | В   | 1.6e0    | В   | 3.4e1  | В   | 5.6e-7   | В   | 4.4e-6 |
| Beryllium (Be)      | <,B | 1.4e-1          | <,B | 2.0e-1          | <,B | 2.0e-1   | <,B | 4.3e0  | <,B | 7.1e-8   | <,B | 5.7e-7 |
| Cadmium (Cd)        | <,B | 5.8e-2          | <,B | 8.1e <b>-</b> 2 | <,B | 8.2e-2   | <,B | 1.8e0  | <,B | 3.0e-8   | <,B | 2.4e-7 |
| Chromium (Cr)       |     | 5.4e-1          |     | 7.5e-1          |     | 7.6e-1   |     | 1.6e1  |     | 2.7e-7   | •   | 2.2e-6 |
| Cobalt (Co)         | <   | 5.8e-1          | <   | 8.1e-1          | <   | 8.2e-1   | <   | 1.8e1  | <   | 3.0e-7   | <   | 2.4e-6 |
| Copper (Cu)         | В   | 4.9e-1          | В   | 6.9e-1          | В   | 7.0e-1   | В   | 1.5e1  | В   | 2.5e-7   | В   | 2.0e-6 |
| Lead (Pb)           | <,B | 3.0e-1          | <,B | 4.2e-1          | <,B | 4.3e-1   | <,B | 9.2e0  | <,B | 1.5e-7   | <,B | 1.2e-6 |
| Manganese (Mn)      |     | 8.2e0           |     | 1.1e1           |     | 1.2e1    |     | 2.5e2  |     | 4.2e-6   |     | 3.3e-5 |
| Mercury (Hg)        |     | 2.4e1           |     | 3.3e1           |     | 3.4e1    |     | 7.2e2  |     | 1.2e-5   |     | 9.6e-5 |
| Nickel (Ni)         | В   | 9.7e-1          | В   | 1.4e0           | В   | 1.4e0    | В   | 3.0e1  | В   | 4.9e-7   | В   | 3.9e-6 |
| Selenium (Se)       | В   | 5.6e-1          | В   | 7.8e-1          | В   | 7.9e-1   | В   | 1.7e1  | В   | 2.9e-7   | В   | 2.3e-6 |
| Silver (Ag)         | <   | 5.6e-1          | <   | 7.8e-1          | <   | 7.9e-1   | <   | 1.7e1  | <   | 2.9e-7   | <   | 2.3e-6 |
| Thallium (TI)       | <   | 5.4e-1          | <   | 7.5e-1          | <   | 7.6e-1   | <   | 1.6e1  | <   | 2.7e-7   | <   | 2.2e-6 |
| Vanadium (V)        | <   | 5.8e-1          | <   | 8.1e-1          | <   | 8.2e-1   | <   | 1.8e1  | <   | 3.0e-7   | <   | 2.4e-6 |
| Zinc (Zn)           |     | 6.4e0           |     | 9.0e0           |     | 9.1e0    |     | 2.0e2  |     | 3.3e-6   |     | 2.6e-5 |

Table B-15. 0060-STRT-2.

Project: 01-1062-01-0866

Run Date: 6/6/2001 Run Identification: 0060-STRT-2

Run Type: Lab Report Date: Lab Report Status:

Test 8/28/2001

Final

#### **RESULTS**

## CORRECTED FOR CONTRIBUTION FROM

Corrected for Reagent Blank per EPA SW-846 Test Method 0060 • final presentation should be rounded to two significant digits

| (preliminary or final) |            | Final   |     |          |     |          |     |                |      |         |     |         |
|------------------------|------------|---------|-----|----------|-----|----------|-----|----------------|------|---------|-----|---------|
| (preliminary or imal)  | I          | CC      | NCI | ENTRATIO | NS  |          |     | MA             | SS F | LOW RAT | ES  |         |
|                        | <b> </b> - | Actual  |     | Standard |     | Standard |     |                |      |         |     |         |
|                        | l          | ug/acm) |     | µg/scm)  |     | ıg/dscm) | l.  | µg/min         | gr   | ams/sec |     | lb/h    |
| Aluminum (Al)          |            | 1.5e1   |     | 2.1e1    |     | 2.1e1    |     | 4.5e2          |      | 7.5e-6  |     | 6.0e-5  |
| Antimony (Sb)          | В          | 2.0e-1  | В   | 2.8e-1   | В   | 2.9e-1   | В   | 6.2e0          | В    | 1.0e-7  | В   | 8.2e-7  |
| Arsenic (As)           | <          | 1.8e-1  | <   | 2.6e-1   | <   | 2.6e-1   | <   | 5. <b>7e</b> 0 | <    | 9.4e-8  |     | 7.5e-7  |
| Barium (Ba)            | В          | 1.2e-1  | В   | 1.6e-1   | В   | 1.6e-1   | В   | 3.6e0          | В    | 5.9e-8  | В   | 4.7e-7  |
| Beryllium (Be)         | <,B        | 9.7e-2  | <,B | 1.4e-1   | <,B | 1.4e-1   | <,B | 3.0e0          | <,B  | 4.9e-8  | <,B | 3.9e-7  |
| Cadmium (Cd)           | <,B        | 4.5e-2  | <,B | 6.4e-2   | <,B | 6.4e-2   | <,B | 1.4e0          | <,B  | 2.3e-8  | <,B | 1.8e-7  |
| Chromium (Cr)          | -          | 1.4e-1  |     | 2.0e-1   |     | 2.0e-1   |     | 4.4e0          | ]    | 7.4e-8  |     | 5.8e-7  |
| Cobalt (Co)            | <          | 5.8e-1  | <   | 8.1e-1   | <   | 8.2e-1   | <   | 1.8e1          | <    | 3.0e-7  | <   | 2.4e-6  |
| Copper (Cu)            | В          | 4.8e-1  | В   | 6.8e-1   | В   | 6.9e-1   | В   | 1.5e1          | В    | 2.5e-7  | В   | 2.0e-6  |
| Lead (Pb)              | <,B        | 2.1e-1  | <,B | 3.0e-1   | <,B | 3.0e-1   | <,B | 6.5e0          | <,B  | 1.1e-7  | <,B | 8.5e-7  |
| Manganese (Mn)         |            | 7.8e0   |     | 1.1e1    |     | 1.1e1    |     | 2.4e2          |      | 4.0e-6  |     | 3.2e-5  |
| Mercury (Hg)           |            | 2.4e1   |     | 3.3e1    |     | 3.4e1    |     | 7.2e2          |      | 1.2e-5  |     | 9.6e-5  |
| Nickel (Ni)            | В          | 2.2e-1  | В   | 3.1e-1   | В   | 3.2e-1   | В   | 6.8e0          | В    | 1.1e-7  | В   | 9.1e-7  |
| Selenium (Se)          | В          | 2.1e-11 | В   | 3.0e-11  | В   | 3.0e-11  | В   | 6.6e-10        | В    | 1.1e-17 | В   | 8.7e-17 |
| Silver (Ag)            | <          | 5.6e-1  |     | 7.9e-1   | <   | 8.0e-1   | <   | 1.7e1          | <    | 2.9e-7  | <   | 2.3e-6  |
| Thallium (TI)          | <          | 5.4e-1  | <   | 7.5e-1   | <   | 7.6e-1   | <   | 1.6e1          | <    | 2.7e-7  | <   | 2.2e-6  |
| Vanadium (V)           | <          | 5.8e-1  | <   | 8.1e-1   | <   | 8.2e-1   | <   | 1.8e1          | <    | 3.0e-7  | <   | 2.4e-6  |
| Zinc (Zn)              |            | 5.6e0   |     | 7.8e0    |     | 7.9e0    |     | 1.7e2          |      | 2.8e-6  |     | 2.3e-5  |

|  |  | · |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |

Table B-16. 0060-END-2.

#### METHOD 0060 SAMPLING DATA SHEET FOR HILLWE TESTS

|                        | METHOD 0060 SAMPLING DATA SHEET FOR HLLWE TESTS |                |                         |                 |        |            |                         |           |          |          |                       |                      |                |          |       |
|------------------------|-------------------------------------------------|----------------|-------------------------|-----------------|--------|------------|-------------------------|-----------|----------|----------|-----------------------|----------------------|----------------|----------|-------|
| Site: I                | LLWE Offg                                       | as Tie-in      | Sampling                | Location:       | MAI    | V-OFG-73   | Nozzle No               | .:        |          |          | Est. ∆P:              | 0.15                 | Est. Tsta      | ock, °F: | 133   |
| Project:               | -                                               | -01-0866       | Duct ID, i              | <del></del>     |        | 12         | Nozzle Siz              | e, in.:   |          |          | Est. K:               |                      | Est. vs,       |          | 26.7  |
| Date:                  |                                                 | 6/6/2001       |                         | essure, in. WG: |        | -17.5      | Pitot No.:              |           |          |          | Est. ∆H:              |                      | Operato        | or(s):   | FE/RW |
| Run No.:               |                                                 | 0-END-2        | Est. O <sub>2</sub> , 9 |                 |        | 20.5       | Pitot Coeff             |           | a.       |          | Est. DGM              |                      | re, °F         |          | 80    |
| Run Typ                |                                                 | Test           | Est CO <sub>2</sub> ,   |                 |        | 0          | Meter Box               | No.       |          |          | Leak Chec             |                      |                |          |       |
| Pbar., in.             | _ <del>_</del>                                  | 25.192         | Est. Mois               |                 |        |            | ΔH@:                    |           |          | 1.5673   |                       | Pre-                 | Pass           | Post-    | Pass  |
| Tambient, <sup>o</sup> | . Goal (m³)                                     | 70<br>3.0      | Impinger<br>DGM vol     | Goal (ft'):     |        | 8<br>127.1 | Y-factor:<br>Min. endin | a DGM vo  | l (fft)· |          | DGM Pre:<br>DGM Post: |                      | cfm @<br>cfm @ | 15.5     | inHg  |
|                        |                                                 |                |                         |                 |        | 127.1      |                         |           |          | 090.100  | L                     | 0.000                | Cilli @        | 6        | inHg  |
| Sampling<br>Time       | Clock<br>Time                                   | Velocity<br>ΔP | Meter<br>∆H             | Meter<br>Volume | Heated |            |                         | TURE (°F) |          | Impinger | Pump<br>Vacuum        | %l,                  |                | COMMENTS | ļ     |
| (min.)                 | (24hr)                                          | (in. WG)       | (in. WG)                | (cubic feet)    | Line   | Stack      | In                      | Out       | Filter   | Exit     | (in. Hg)              | <u> </u>             |                |          |       |
| 0                      | 15:00                                           | 0.150          | 1.25                    | 563.026         | 248    | 133        | 82                      | 75        | 257      | 57       | 5.2                   |                      |                |          |       |
| 10                     | 15:10                                           | 0.150          | 1.25                    | 569.885         | 248    | 133        | 87                      | 76        | 259      | 55       | 5.2                   | 100                  |                |          |       |
| 20                     | 15:20                                           | 0.150          | 1.25                    | 576.880         | 250    | 133        | 90                      | 78        | 260      | 55       | 5.2                   | 101                  | O2=20.5        |          |       |
| 30                     | 15:30                                           | 0.150          | 1.25                    | 583.890         | 249    | 133        | 91                      | 79        | 260      | 55       | 5.2                   | 101                  | O2=20.5        |          |       |
| 40                     | 15:40                                           | 0.150          | 1.20                    | 590.900         | 251    | 133        | 92                      | 79        | 259      | 55       | 5.2                   | 101                  | O2=20.5        |          |       |
| 50                     | 15:50                                           | 0.150          | 1.20                    | 597.920         | 250    | 133        | 93                      | 80        | 261      | 55       | 5.2                   | 101                  | O2=20.5        |          |       |
| 60                     | 16:00                                           | 0.150          | 1.20                    | 604.930         | 250    | 133        | 93                      | 80        | 261      | 55       | 5.2                   | 101_                 | O2=20.5        |          |       |
| 70                     | 16:10                                           | 0.150          | 1.20                    | 611.920         | 254    | 133        | 93                      | 81        | 260      | 56       | 5.2                   | 100                  | O2=20.4        |          |       |
| 80                     | 16:20                                           | 0.150          | 1.20                    | 618.940         | 254    | 133        | 93                      | 81        | 260      | 57       | 5.2                   | 101                  | O2=20.5        |          |       |
| 90                     | 16:30                                           | 0.150          | 1.20                    | 625.950         | 256    | 133        | 93                      | 81        | 260      | 57       | 5.2                   | 101                  | O2=20.4        |          |       |
| 100                    | 16:40                                           | 0.150          | 1.20                    | 632.960         | 256    | 133        | 93                      | 81        | 260      | 58       | 5.2                   | 101                  | 02=20.5        |          |       |
| 110                    | 16:50                                           | 0.150          | 1.20                    | 639.960         | 256    | 133        | 93                      | 81        | 260      | 58       | 5.2                   | 101                  | 02=20.4        |          |       |
| 120                    | 17:00                                           | 0.150          | 1.20                    | 646.980         | 255    | 133        | 93                      | 81        | 261      | 59       | 5.2                   | 101                  | O2=20.4        |          |       |
| 130                    | 17:10                                           | 0.150          | 1.20                    | 654.010         | 256    | 133        | 93                      | 81        | 261      | 59       | 5.2                   | 101                  | O2=20.4        |          |       |
| 140                    | 17:20                                           | 0.150          | 1.20                    | 661.020         | 255    | 133        | 93                      | 81        | 259      | 60       | 5.2                   | 101                  | 02=20.4        |          |       |
| 150                    | 17:30                                           | 0.150          | 1.20                    | 668.060         | 255    | 133        | 93                      | 81        | 260      | 60       | 5.2                   | 101                  | O2=20.5        |          |       |
| 160                    | 17:40                                           | 0.150          | 1.20                    | 675.060         | 255    | 133        | 93                      | 81        | 260      | 61       | 5.2                   | 101                  | O2=20.4        |          |       |
| 170                    | 17:50                                           | 0.150          | 1.20                    | 682.070         | 255    | 133        | 93                      | 81        | 260      | 61       | 5.2                   | 101                  | O2=20.4        |          |       |
| 180                    | 18:00                                           | 0.150          | 1.30                    | 689.520         | 255    | 133        | 93                      | 81        | 260      | 61       | 5.5                   | 107                  | O2=20.5        |          |       |
| 182                    | 18:02                                           | 0.150          | 1.30                    | 691.050         | 255    | 133        | 93                      | 81        | 260      | 61       | 5.5                   | 110                  | 02=20.4        |          |       |
| Total                  | Total                                           | ΔPavg          | Average                 | Total           |        | A          | verage Tem              | peratures | (°F)     |          | Max.                  | Ave. %l <sub>i</sub> | <u> </u>       |          |       |
| 182                    | 3:02                                            | 0.150          | 1.22                    | 128.024         | 253    | 133        | 92                      | 80        | 260      | 58       | 5.5                   | 102                  |                |          |       |

Table B-16. 0060-END-2.

# 0060 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

Site: HLLWE Offgas Tie-in IMPINGER BOX NO. = 8 6/6/2001 Date: 0060-END-2 Run No.: Mercury-Only Section Acid Scrub Section Component: KO-1 Imp-1 Imp-2 Imp-3 Imp-4 lmp-5 modified modified modified modified G-S modified short stem Type: short stem 5% HNO<sub>3</sub> / 10% H<sub>2</sub>O<sub>2</sub> None 4% KMnO<sub>4</sub> / 10% H<sub>2</sub>SO<sub>4</sub> None 2N NaOH Silica Gel Reagent: None 100 mL 300-400g 100 mL solution in each 200 mL solution in each **Empty** Nominal Contents: Empty **Empty** 734.6 718.7 608.8 691.6 781.0 Impinger Post-test Wt., g: 572.2 720.7 682.1 618.4 Pre-test Wt., g: 573.2 727.9 677.4 618.6 734.9 719.0 607.3 694.7 754.2 wt. gain (g) 20.9 Wt. Gain, g: -1.0 -7.2 4.7 -0.2 -0.3 -0.3 1.5 -3.1 26.8 Post-test Volume: 0.0 100.0 100.0 0.0 100.0 100.0 0.0 Impinger 0.0 100.0 100.0 0.0 100.0 100.0 0.0 vol. gain (mL) Pre-test Volume: Volume Gain: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.0 Post-test pH: H<sub>2</sub>SO<sub>4</sub> Lot # 328060 Filter Lot # 53322 HNO<sub>3</sub> Lot # 129100 DI water\* Lot # QCLAB1 KMnO₄ Lot # H<sub>2</sub>O<sub>2</sub> Lot # 992809 06655

<sup>\*</sup> used to dilute the other reagents

| $O_2\%$           | 20.5 |
|-------------------|------|
| CO <sub>2</sub> % | 0.0  |

Table B-16. 0060-END-2.

## FIELD DATA CALCULATIONS

| Project:                           | 01-1062 |                |          |
|------------------------------------|---------|----------------|----------|
| Run Date:                          |         |                |          |
| Run Identification: PARAMETER      | SYMBOL  | END-2<br>UNITS | <u> </u> |
| Absolute Pressure in the Duct      | Pabs    | in. Hg         | 23.905   |
| Average Duct Gas Temperature       | Ts      | R              | 593      |
| Average Meter Temperature          | Tm      | R              | 546      |
| Average Gas Oxygen Content         | Co2,m   | %              | 20.5     |
|                                    | ·       | %<br>%         | 0.0      |
| Average Gas Carbon Dioxide Content | Cco2,m  |                |          |
| Total Impinger Weight Gain (water) | Ww      | grams          | 20.9     |
| Nozzle Area                        | An      | ft²            | 0.000538 |
| Duct Area                          | As      | ft²            | 0.785    |
| Sample Volume                      | VmStd   | dscf           | 108.05   |
| Sample Volume (SI)                 | VmStdm  | dscm           | 3.060    |
| Average Sampling Rate              | Qm      | dscf/m         | 0.594    |
| Volume of Water Vapor              | VwStd   | scf            | 0.985    |
| Volume of Water Vapor (SI)         | VwStdm  | scm            | 0.0279   |
| Moisture Fraction                  | Bws     | -              | 0.009    |
| Dry Gas Molecular Weight           | Md      | g/g-mol        | 28.82    |
| Wet Gas Molecular Weight           | Ms      | g/g-mol        | 28.72    |
| Gas Velocity at Nozzle             | vn      | ft/s           | 25.8     |
| Gas Velocity at Nozzle (SI)        | vnm     | m/s            | 7.88     |
| Average Gas Velocity               | vncor   | ft/s           | 21.81    |
| Dry Offgas Flow Rate               | Qsd     | dscf/h         | 43,465   |
| Dry Offgas Flow Rate (SI)          | Qsdm    | dscm/h         | 1,231    |
| Actual Offgas Flow Rate            | Q       | acf/h          | 61,660   |
| Intermediate Isokinetic Rate       | li      | %              | 101.4    |
| Final Isokinetic Rate              | l       | %              | 101.0    |

Table B-16. 0060-END-2.

Project: 01-1062-01-0866

Run Date:

6/6/2001

Run Identification: 0060-END-2 Run Type:

Test 8/28/2001

Lab Report Date: Lab Report Status: (preliminary or final)

Final

#### **RESULTS**

#### • without blank corrections

• final presentation should be rounded to two significant digits

| (preliminary or imar) |     |          |     |          |     |                 |     |        |     |          |     |        |  |  |  |
|-----------------------|-----|----------|-----|----------|-----|-----------------|-----|--------|-----|----------|-----|--------|--|--|--|
|                       |     | CC       | DNC | ENTRATIO | NS  |                 |     | MA     | SS  | FLOW RAT | ES  |        |  |  |  |
|                       |     | Actual   | ,   | Standard | Dry | Standard        | l   |        |     |          |     |        |  |  |  |
|                       |     | (µg/acm) |     | (µg/scm) | (١  | ıg/dscm)        |     | μg/min | gi  | rams/sec |     | lb/h   |  |  |  |
| Aluminum (AI)         |     | 1.7e1    |     | 2.4e1    |     | 2.4e1           |     | 4.9e2  |     | 8.2e-6   |     | 6.5e-5 |  |  |  |
| Antimony (Sb)         | В   | 9.4e-1   | В   | 1.3e0    | В   | 1.3e0           | В   | 2.7e1  | В   | 4.6e-7   | В   | 3.6e-6 |  |  |  |
| Arsenic (As)          | <   | 3.7e-1   | <   | 5.2e-1   | <   | 5.2e-1          | <   | 1.1e1  | <   | 1.8e-7   | <   | 1.4e-6 |  |  |  |
| Barium (Ba)           | В   | 1.1e0    | В   | 1.5e0    | В   | 1.5e0           | В   | 3.2e1  | В   | 5.3e-7   | В   | 4.2e-6 |  |  |  |
| Beryllium (Be)        | <,B | 1.5e-1   | <,B | 2.1e-1   | <,B | 2.1e-1          | <,B | 4.4e0  | <,B | 7.3e-8   | <,B | 5.8e-7 |  |  |  |
| Cadmium (Cd)          | <   | 6.2e-2   | <   | 8.7e-2   | <   | 8.8e <b>-</b> 2 | <   | 1.8e0  | <   | 3.0e-8   | <   | 2.4e-7 |  |  |  |
| Chromium (Cr)         |     | 1.2e0    |     | 1.7e0    |     | 1.7e0           |     | 3.4e1  |     | 5.7e-7   |     | 4.5e-6 |  |  |  |
| Cobalt (Co)           | <   | 6.2e-1   | <   | 8.7e-1   | <   | 8.8e-1          | <   | 1.8e1  |     | 3.0e-7   | <   | 2.4e-6 |  |  |  |
| Copper (Cu)           | <,B | 3.2e-1   | <,B | 4.5e-1   | <,B | 4.6e-1          | <,B | 9.4e0  | <,B | 1.6e-7   | <,B | 1.2e-6 |  |  |  |
| Lead (Pb)             | <,B | 2.8e-1   | <,B | 3.9e-1   | <,B | 3.9e-1          | <,B | 8.0e0  | <,B | 1.3e-7   | <,B | 1.1e-6 |  |  |  |
| Manganese (Mn)        |     | 1.7e1    |     | 2.3e1    |     | 2.4e1           |     | 4.8e2  |     | 8.0e-6   |     | 6.4e-5 |  |  |  |
| Mercury (Hg)          |     | 2.5e1    |     | 3.6e1    |     | 3.6e1           |     | 7.4e2  |     | 1.2e-5   |     | 9.8e-5 |  |  |  |
| Nickel (Ni)           | В   | 9.4e-1   | В   | 1.3e0    | В   | 1.3e0           | В   | 2.7e1  | В   | 4.6e-7   | В   | 3.6e-6 |  |  |  |
| Selenium (Se)         | В   | 5.3e-1   | В   | 7.4e-1   | В   | 7.5e-1          | В   | 1.5e1  | В   | 2.6e-7   | В   | 2.0e-6 |  |  |  |
| Silver (Ag)           | <   | 6.0e-1   | <   | 8.4e-1   | <   | 8.5e-1          | <   | 1.7e1  | <   | 2.9e-7   | <   | 2.3e-6 |  |  |  |
| Thallium (TI)         | <   | 5.5e-1   | <   | 7.8e-1   | <   | 7.8e-1          | <   | 1.6e1  | <   | 2.7e-7   | <   | 2.1e-6 |  |  |  |
| Vanadium (V)          | <   | 6.2e-1   | <   | 8.7e-1   | <   | 8.8e-1          | <   | 1.8e1  | <   | 3.0e-7   | <   | 2.4e-6 |  |  |  |
| Zinc (Zn)             |     | 3.9e0    |     | 5.5e0    |     | 5.6e0           |     | 1.1e2  |     | 1.9e-6   |     | 1.5e-5 |  |  |  |

Table B-16. 0060-END-2.

Project: <sub>01-1062-01-0866</sub>

Run Date: 6/6/2001

Run Identification: 0060-END-2 Run Type: Test

Lab Report Date: 8/28/2001 Lab Report Status:

(preliminary or final)

# RESULTS CORRECTED FOR CONTRIBUTION FROM

Corrected for Reagent Blank per EPA SW-846 Test Method 0060 • final presentation should be rounded to two significant digits

| (preliminary or linar | <i>)</i> |         |     | _               |     |                 |     |                |      |         |     |         |
|-----------------------|----------|---------|-----|-----------------|-----|-----------------|-----|----------------|------|---------|-----|---------|
|                       |          | CC      | DNC | <b>ENTRATIO</b> | NS  |                 |     | MA             | SS F | LOW RAT | ES  |         |
|                       |          | Actual  | 3   | Standard        | Dry | / Standard      |     |                |      |         |     |         |
|                       | (µ       | g/acm)  | (   | (µg/scm)        | (١  | ug/dscm)        |     | µg/min         | gr   | ams/sec |     | lb/h    |
| Aluminum (Al)         |          | 1.5e1   |     | 2.1e1           |     | 2.2e1           |     | 4.4e2          |      | 7.4e-6  |     | 5.9e-5  |
| Antimony (Sb)         | В        | 1.2e-1  | В   | 1.7e-1          | В   | 1.8e-1          | В   | 3.6e0          | В    | 6.0e-8  | В   | 4.8e-7  |
| Arsenic (As)          | <        | 2.0e-1  | <   | 2.8e-1          | <   | 2.8e-1          | <   | 5.8e0          | <    | 9.6e-8  | <   | 7.6e-7  |
| Barium (Ba)           | В        | 3.2e-2  | В   | 4.5e-2          | В   | 4.6e-2          | В   | 9. <b>4e-1</b> | В    | 1.6e-8  | В   | 1.2e-7  |
| Beryllium (Be)        | <,B      | 1.0e-1  | <,B | 1.5e-1          | <,B | 1.5e-1          | <,B | 3.0e0          | <,B  | 5.0e-8  | <,B | 4.0e-7  |
| Cadmium (Cd)          | <        | 4.9e-2  | <   | 6.8e-2          | <   | 6.9e <b>-</b> 2 | <   | 1.4e0          | <    | 2.4e-8  | <   | 1.9e-7  |
| Chromium (Cr)         |          | 7.5e-1  |     | 1.1e0           |     | 1.1e0           |     | 2.2e1          |      | 3.7e-7  |     | 2.9e-6  |
| Cobalt (Co)           | <        | 6.2e-1  | <   | 8.7e-1          | <   | 8.8e-1          | <   | 1.8e1          | <    | 3.0e-7  | <   | 2.4e-6  |
| Copper (Cu)           | <,B      | 3.2e-1  | <,B | 4.4e-1          | <,B | 4.5e-1          | <,B | 9.2e0          | <,B  | 1.5e-7  | <,B | 1.2e-6  |
| Lead (Pb)             | <,B      | 1.8e-1  | <,B | 2.5e-1          | <,B | 2.5e-1          | <,B | 5.2e0          | <,B  | 8.6e-8  | <,B | 6.8e-7  |
| Manganese (Mn)        |          | 1.6e1   |     | 2.2e1           |     | 2.3e1           |     | 4.6e2          |      | 7.7e-6  |     | 6.1e-5  |
| Mercury (Hg)          |          | 2.5e1   |     | 3.6e1           |     | 3.6e1           |     | 7.4e2          |      | 1.2e-5  |     | 9.8e-5  |
| Nickel (Ni)           | В        | 1.5e-1  | В   | 2.1e-1          | В   | 2.1e-1          | В   | 4.3e0          | В    | 7.2e-8  | В   | 5.7e-7  |
| Selenium (Se)         | В        | 2.3e-11 | В   | 3.2e-11         | В   | 3.3e-11         | В   | 6.7e-10        | В    | 1.1e-17 | В   | 8.9e-17 |
| Silver (Ag)           | <        | 6.0e-1  | <   | 8.5e-1          | <   | 8.5e-1          | <   | 1.7e1          | <    | 2.9e-7  | <   | 2.3e-6  |
| Thallium (TI)         | <        | 5.5e-1  | <   | 7.8e-1          | <   | 7.8e-1          | <   | 1.6e1          | <    | 2.7e-7  | <   | 2.1e-6  |
| Vanadium (V)          | <        | 6.2e-1  | <   | 8.7e-1          | <   | 8.8e-1          | <   | 1.8e1          | <    | 3.0e-7  | <   | 2.4e-6  |
| Zinc (Zn)             |          | 2.9e0   |     | 4.0e0           |     | 4.1e0           |     | 8.4e1          |      | 1.4e-6  |     | 1.1e-5  |

Table B-17. SVOC emission rates - grames per second comparisons.

| Table B-17. SVOC emission rates                       | s - grames pe        | er secona c      | compans  |          |                  |          | I Project |                  |             | L Project |                               |          | I Brojost | <del>,</del>             |                     | - <del></del>    | I Urningt           | <u> </u>         | EKNI VENO        |
|-------------------------------------------------------|----------------------|------------------|----------|----------|------------------|----------|-----------|------------------|-------------|-----------|-------------------------------|----------|-----------|--------------------------|---------------------|------------------|---------------------|------------------|------------------|
| Analyte                                               | Registry             | STRT-1           | Flag     | Specific | END-1            | Flag     | Specific  | STRT-2           | Flag        | Specific  | END-2                         | Flag     | Specific  | Max value ፲<br>g/s ଓ     | Avg+2σ ਜ਼ੁ<br>a/s a | Results<br>a/s   | Project<br>Specific | Run Avgs         | END Run<br>Avgs  |
| 1                                                     | Number               | g/s              | Ğ        | Flag     | g/s              | ĝ        | Flag      | g/s              | ĝ           | Flag      | g/s                           | Õ        | Flag      | g/s 🖔                    | g/s ຜັ              | g/s d            | Flag                | g/s              | g/s              |
| Acenaphthene                                          | 83-32-9              | 1.1e-6           | <        | N        | 1.1e-6           | <        | N         | 1.8e-6           | <,J         | P         | 9.9e-7                        | <        | N         | 1.8e-6 <,J               | 2.0e-6              | 1.8e-6           | P                   | 1.4e-6           | 1.0e-6           |
| Acenaphthylene                                        | 208-96-8             | 1.0e-6           | <        | l N      | 1.0e-6           | <        | N         | 1.8e-6           | <,J         | Р         | 9.6e-7                        | <        | N         | 1.8e-6 <,J               | 2.0e-6              | 1.8e-6           | Р                   | 1.4e-6           | 1.0e-6           |
| Acetophenone                                          | 98-86-2              | 5.4e-6           | <,J      | Р        | 3.9e-6           | <,J      | P         | 4.8e-6           | <,J         | Р         | 3.8e-6                        | <,J      | P         | 5.4e-6 <,J               | 6.0e-6              | 5.4e-6           | P                   | 5.1e-6           | 3.8e-6           |
| Aniline                                               | 62-53-3              | 1.2e-5           | <        | N        | 1.2e-5           | <        | N         | 1.7e-5           | <           | N         | 1.1e-5                        | <        | N         | 1.7e-5 <                 | 1.8e-5              | 1.7e-5           | N                   | 1.5e-5           | 1.2e-5           |
| Anthracene                                            | 120-12-7             | 1.0e-6           | <        | N        | 1.0e-6           | <        | N         | 1.8e-6           | <,J         | Р         | 9.6e-7                        | <        | N         | 1.8e-6 <,J               | 2.0e-6              | 1.8e-6           | Р                   | 1.4e-6           | 1.0e-6           |
| Benzidine                                             | 92-87-5              | 7.3e-5           | <        | N        | 7.2e-5           | <        | N         | 9.1e-5           | <           | N         | 6.8e-5                        | <        | N         | 9.1e-5 <                 | 9.7e-5              | 9.1e-5           | N                   | 8.2e-5           | 7.0e-5           |
| Benzoic acid                                          | 65-85-0              | 5.4e-4           | Ε        | P        | 2.8e-4           | Е        | Р         | 2.6e-4           | E           | P         | 2.7e-4                        | E        | P         | 5.4e-4 E                 | 6.0e-4              | 5.4e-4           | Р                   | 4.0e-4           | 2.8e-4           |
| Benzo(a)anthracene                                    | 56-55-3              | 1.3e-6           | <        | N        | 1.3e-6           | <        | N         | 2.2e-6           | <,J         | Р         | 1.2e-6                        | <        | N         | 2.2e-6 <,J               | 2.4e-6              | 2.2e-6           | Р                   | 1.7e-6           | 1.3e-6           |
| Benzo(a)pyrene                                        | 50-32-8              | 1.4e-5           | <        | N        | 1.4e-5           | <        | N         | 1.6e-5           | <,J         | Р         | 1.3e-5                        | <        | N         | 1.6e-5 <,J               | 1.7e-5              | 1.6e-5           | Р                   | 1.5e-5           | 1.4e-5           |
| Benzo(b)fluoranthene                                  | 205-99-2             | 3.3e-5           | <        | N        | 3.2e-5           | <        | N         | 3.4e-5           | <,J         | Р         | 3.0e-5                        | <        | N         | 3.4e-5 <,J               | 3.6e-5              | 3.4e-5           | Р                   | 3.3e-5           | 3.1e-5           |
| Benzo(g,h,i)perylene                                  | 191-24-2             | 1.9e-5           | <        | N I      | 1.8e-5           | <        | N         | 2.0e-5           | ر,>         | P         | 1.7e-5                        | <        | N         | 2.0e-5 <,J               | 2.1e-5              | 2.0e-5           | Р                   | 2.0e-5           | 1.8e-5           |
| Benzo(k)fluoranthene                                  | 207-08-9             | 4.7e-5           | <        | N        | 4.6e-5           | <        | N         | 4.9e-5           | <,J         | P         | 4.4e-5                        | <        | N         | 4.9e-5 <,J               | 5.1e-5              | 4.9e-5           | P                   | 4.8e-5           | 4.5e-5           |
| Benzyl alcohol                                        | 100-51-6             | 6.2e-5           | <        | N I      | 6.2e-5           | <        | N I       | 6.5e-5           | <           | N         | 5.8e-5                        | <        | N         | 6.5e-5 <                 | 6.7e-5              | 6.5e-5           | N                   | 6.4e-5           | 6.0e-5           |
| bis(2-Chloroethoxy)methane                            | 111-91-1             | 1.1e-6           | <        | N        | 1.1e-6           | <<br><   | N         | 1.6e-6           | <           | N<br>P    | 1.0e-6                        | <        | N         | 1.6e-6 <                 | 1.7e-6              | 1.6e-6           | N<br>P              | 1.3e-6           | 1.0e-6           |
| bis(2-Chloroethyl)ether<br>bis(2-Ethylhexyl)phthalate | 111-44-4<br>117-81-7 | 1.2e-6<br>1.3e-5 | <,J      | A        | 1.2e-6<br>2.4e-5 | <        | N p       | 1.8e-6<br>1.5e-5 | <,J         |           | 1.1e-6                        | <        | N         | 1.8e-6 <,J               | 2.0e-6              | 1.8e-6           | P                   | 1.5e-6           | 1.2e-6           |
| 4-Bromophenyl-phenylether                             | 101-55-3             | 1.0e-6           |          | N        | 1.0e-6           |          | N         | 2.0e-6           | ر,><br>ل,>  | A         | 1.6e-5<br>9.5e-7              | <,J<br>< | A<br>N    | 2.4e-5 <<br>2.0e-6 <,J   | 2.6e-5<br>2.3e-6    | 2.4e-5<br>2.0e-6 | P                   | 1.4e-5<br>1.5e-6 | 2.0e-5<br>9.8e-7 |
| Butylbenzylphthalate                                  | 85-68-7              | 1.4e-6           | <        | N        | 1.4e-6           | <        | N         | 2.0e-6<br>2.2e-6 | <,J         | P         | 1.3e-6                        | <        | N         | 2.2e-6 <,J               | 2.4e-6              | 2.0e-6<br>2.2e-6 |                     | 1.8e-6           | 1.4e-6           |
| Carbazole                                             | 86-74-8              | 1.4e-6           | <        | N        | 1.4e-6           | <        | N         | 2.2e-6<br>2.0e-6 | <,J         | P         | 1.3e-6                        | <        | N         | 2.0e-6 <,J               | 2.2e-6              | 2.0e-6           | P                   | 1.7e-6           | 1.4e-6           |
| 4-Chloro-3-methylphenol                               | 59-50-7              | 1.9e-6           | <        | N N      | 1.8e-6           | <        | N         | 3.5e-6           | ۰,۵<br>۲,۶  | N         | 1.7e-6                        | <        | N         | 3.5e-6 <,J               | 4.0e-6              | 3.5e-6           | N                   | 2.7e-6           | 1.8e-6           |
| 4-Chloroaniline                                       | 106-47-8             | 9.8e-6           | <        | N        | 9.7e-6           | ~        | N         | 1.3e-5           | < .,5       | N         | 9.1e-6                        | ~        | N         | 1.3e-5 <                 | 1.3e-5              | 1.3e-5           | l N                 | 1.1e-5           | 9.4e-6           |
| 2-Chloronaphthalene                                   | 91-58-7              | 1.0e-6           | <        | N        | 1.0e-6           | <        | N         | 1.7e-6           | <,J         | "         | 9.4e-7                        | ~        | N         | 1.7e-6 <,J               | 1.9e-6              | 1.7e-6           | P                   | 1.1e-5<br>1.4e-6 | 9.7e-7           |
| 2-Chlorophenol                                        | 95-57-8              | 1.2e-6           | <        | N        | 1.2e-6           | <        | N         | 1.7e-6           | ا,.<br>ال,> | P         | 1.1e-6                        | <        | l 'n l    | 1.7e-6 <,J               | 1.8e-6              | 1.7e-6           | P                   | 1.5e-6           | 1.2e-6           |
| 4-Chlorophenyl phenyl ether                           | 7005-72-36           | 1.2e-6           | <        | N        | 1.2e-6           | <        | N         | 1.9e-6           | ر.<br>ال,>  | P         | 1.1e-6                        | <        | N         | 1.9e-6 <,J               | 2.1e-6              | 1.9e-6           | P                   | 1.6e-6           | 1.2e-6           |
| Chrysene                                              | 218-01-9             | 1.3e-6           | <        | N        | 1.3e-6           | <        | N         | 2.4e-6           | <,J         | Р         | 1.2e-6                        | <        | N         | 2.4e-6 <,J               | 2.7e-6              | 2.4e-6           | P                   | 1.9e-6           | 1.3e-6           |
| Di-n-butylphthalate                                   | 84-74-2              | 1.1e-5           | <,J      | P        | 1.1e-5           | <,J      | Р         | 1.3e-5           | <,J         | P         | 1.0e-5                        | <,J      | P         | 1.3e-5 <,J               | 1.3e-5              | 1.3e-5           | P                   | 1.2e-5           | 1.0e-5           |
| Di-n-octylphthalate                                   | 117-84-0             | 1.8e-5           | <,J      | Р        | 1.7e-5           | <,J      | Р         | 1.8e-5           | <,J         | P         | 1.6e-5                        | <,J      | P         | 1.8e-5 <,J               | 1.9e-5              | 1.8e-5           | Р                   | 1.8e-5           | 1.7e-5           |
| Dibenz(a,h)anthracene                                 | 53-70-3              | 1.9e-5           | <        | N        | 1.8e-5           | <        | N         | 1.9e-5           | <,J         | P         | 1.7e-5                        | <        | N         | 1.9e-5 <,J               | 2.0e-5              | 1.9e-5           | Р                   | 1.9e-5           | 1.8e-5           |
| Dibenzofuran                                          | 132-64-9             | 1.2e-6           | <        | N        | 1.2e-6           | <        | N         | 1.9e-6           | <,J         | Р         | 1.1e-6                        | <        | N         | 1.9e-6 <,J               | 2.1e-6              | 1.9e-6           | Р                   | 1.6e-6           | 1.2e-6           |
| 1,2-Dichlorobenzene                                   | 95-50-1              | 1.2e-6           | <        | N        | 1.2e-6           | <        | N         | 1.8e-6           | <,J         | Р         | 1.1e-6                        | <        | N         | 1.8e-6 <,J               | 2.0e-6              | 1.8e-6           | P                   | 1.5e-6           | 1.2e-6           |
| 1,3-Dichlorobenzene                                   | 541-73-1             | 1.3e-6           | <        | N        | 1.3e-6           | <        | N         | 1.9e-6           | <,J         | Р         | 1.2e-6                        | <        | N         | 1.9e-6 <,J               | 2.1e-6              | 1.9e-6           | P                   | 1.6e-6           | 1.3e-6           |
| 1,4-Dichlorobenzene                                   | 106-46-7             | 1.8e-6           | <,J      | Р        | 2.1e-6           | J        | Р         | 2.3e-6           | J           | Р         | 2.1e-6                        | <,J      | P         | 2.3e-6 J                 | 2.5e-6              | 2.3e-6           | Р                   | 2.0e-6           | 2.1e-6           |
| 3,3'-Dichlorobenzidine                                | 91-94-1              | 1.2e-5           | <        | N I      | 1.2e-5           | <        | N         | 1.5e-5           | <           | N         | 1.1e-5                        | <        | N         | 1.5e-5 <                 | 1.6e-5              | 1.5e-5           | N                   | 1.3e-5           | 1.2e-5           |
| 2,4-Dichlorophenol                                    | 120-83-2             | 1.4e-6           | <        | N I      | 1.4e-6           | <        | N         | 2.0e-6           | <           | N         | 1.3e-6                        | <        | N         | 2.0e-6 <                 | 2.2e-6              | 2.0e-6           | N N                 | 1.7e-6           | 1.4e-6           |
| Diethylphthalate                                      | 84-66-2              | 1.8e-6           | <,J      | P        | 1.6e-6           | <        | N         | 2.5e-6           | <,J         | P         | 1.5e-6                        | <        | N         | 2.5e-6 <,J               | 2.7e-6              | 2.5e-6           | P                   | 2.1e-6           | 1.6e-6           |
| Dimethyl phthalate                                    | 131-11-3             | 1.1e-6           | <        | N        | 1.0e-6           | <        | N         | 1.8e-6           | <,J         | Р         | 9.7e-7                        | <        | N         | 1.8e-6 <,J               | 2.0e-6              | 1.8e-6           | Р                   | 1.4e-6           | 1.0e-6           |
| 2,4-Dimethylphenol                                    | 105-67-9             | 6.5e-6           | <        | N        | 6.4e-6           | <        | N         | 7.1e-6           | <           | N         | 6.0e-6                        | <        | N         | 7.1e-6 <                 | 7.4e-6              | 7.1e-6           | N<br>               | 6.8e-6           | 6.2e-6           |
| 4,6-Dinitro-2-methylphenol                            | 534-52-1             | 1.4e-5           | <        | N        | 1.4e-5           | <        | N         | 1.6e-5           | <           | N         | 1.3e-5                        | <        | N         | 1.6e-5 <                 | 1.7e-5              | 1.6e-5           | N                   | 1.5e-5           | 1.4e-5           |
| 2,4-Dinitrophenol                                     | 51-28-5              | 3.0e-5           | <        | N I      | 2.9e-5           | <        | N N       | 3.2e-5           | <           | N         | 2.7e-5                        | <        | N         | 3.2e-5 <                 | 3.3e-5              | 3.2e-5           | N<br>P              | 3.1e-5           | 2.8e-5           |
| 2,4-Dinitrotoluene<br>2,6-Dinitrotoluene              | 121-14-2<br>606-20-2 | 1.4e-6<br>1.3e-6 | <        | N<br>N   | 1.4e-6<br>1.3e-6 | <        | N<br>N    | 2.2e-6           | <,J         | P         | 1.3e-6                        | <u> </u> | N<br>N    | 2.2e-6 <,J               | 2.4e-6              | 2.2e-6           | P                   | 1.8e-6           | 1.4e-6           |
| 1,2-Diphenylhydrazine                                 | 122-66-7             | 1.3e-6           | <        | N        | 1.1e-6           | <        | N<br>N    | 1.8e-6           | <,J         | P         | 1.2e-6                        | <        |           | 1.8e-6 <,J               | 2.0e-6              | 1.8e-6           | P                   | 1.6e-6<br>1.4e-6 | 1.3e-6           |
| Fluoranthene                                          | 206-44-0             | 1.1e-6           | <        | N        | 1.1e-6           | <        | N         | 1.8e-6<br>1.9e-6 | <,J<br><,J  | P         | 9.9e-7<br>1.0e-6              | < <      | N<br>N    | 1.8e-6 <,J<br>1.9e-6 <,J | 2.0e-6<br>2.2e-6    | 1.8e-6<br>1.9e-6 |                     | 1.4e-6<br>1.5e-6 | 1.0e-6<br>1.0e-6 |
| Fluorene                                              | 86-73-7              | 1.1e-6           | <        | l N      | 1.1e-6           | <        | N         | 1.8e-6           | ۰,۰<br>۲,۶  | P         | 1.0e-6                        | ~        | N         | 1.8e-6 <,J               | 2.0e-6              | 1.8e-6           |                     | 1.5e-6           | 1.0e-6           |
| Hexachlorocyclopentadiene                             | 77-47-4              | 1.8e-5           | ~        | N        | 1.7e-5           | ~        | N         | 2.0e-5           | <u>',J</u>  | P         | 1.6e-5                        |          | N         | 2.0e-5 <                 | 2.2e-5              | 2.0e-5           | P                   | 1.9e-5           | 1.7e-5           |
| Hexachlorobenzene                                     | 118-74-1             | 1.2e-6           | <        | N        | 1.2e-6           | <        | N I       | 1.8e-6           | <,J         | P         | 1.1e-6                        | ~        | N :       | 1.8e-6 <,J               | 2.0e-6              | 1.8e-6           |                     | 1.5e-6           | 1.2e-6           |
| Hexachlorobutadiene                                   | 87-68-3              | 1.6e-6           | <        | N N      | 1.6e-6           | <        | N         | 2.3e-6           | ۰,۵<br><,J  | P         | 1.5e-6                        | <        | N         | 2.3e-6 <,J               | 2.5e-6              | 2.3e-6           | l ' <sub>P</sub> l  | 2.0e-6           | 1.6e-6           |
| Hexachloroethane                                      | 67-72-1              | 1.8e-6           | <        | N.       | 1.7e-6           | <        | N I       | 2.3e-6           | <,J         | P         | 1.6e-6                        | <        | N         | 2.3e-6 <,J               | 2.4e-6              | 2.3e-6           | l P                 | 2.0e-6           | 1.7e-6           |
| Indeno(1,2,3-cd)pyrene                                | 193-39-5             | 1.6e-5           | <        | N        | 1.6e-5           | <        | N         | 1.7e-5           | <,J         | P         | 1.5e-5                        | <        | N         | 1.7e-5 <.J               | 1.8e-5              | 1.7e-5           | P                   | 1.7e-5           | 1.6e-5           |
| Isophorone                                            | 78-59-1              | 1.1e-6           | <        | N        | 1.1e-6           | <        | N         | 1.8e-6           | <,J         | P         | 1.0e-6                        | <        | N         | 1.8e-6 <,J               | 2.0e-6              | 1.8e-6           | l p l               | 1.5e-6           | 1.0e-6           |
| 2-Methylnaphthalene                                   | 91-57-6              | 1.1e-6           | <        | N        | 1.1e-6           | <        | N         | 1.7e-6           | <,J         | P         | 1.0e-6                        | <        | N         | 1.7e-6 <,J               | 1.9e-6              | 1.7e-6           | Р                   | 1.4e-6           | 1.0e-6           |
| 2-Methylphenol                                        | 95-48-7              | 5.1e-6           | <        | N        | 5.1e-6           | <        | N         | 5.8e-6           | <           | N         | 4.8e-6                        | <        | N         | 5.8e-6 <                 | 6.1e-6              | 5.8e-6           | N                   | 5.5e-6           | 4.9e-6           |
| 3-Methylphenol & 4-Methylphenol                       |                      | 3.7e-6           | <        | N        | 3.7e-6           | <        | N         | 4.4e-6           | <           | N         | 3.4e-6                        | <        | N         | 4.4e-6 <                 | 4.7e-6              | 4.4e-6           | N                   | 4.1e-6           | 3.6e-6           |
| N-Nitroso-di-n-propylamine                            | 621-64-7             | 1.2e-6           | <        | N        | 1.2e-6           | <        | N         | 1.7e-6           | <           | N         | 1.1e-6                        | <        | N         | 1.7e-6 <                 | 1.8e-6              | 1.7e-6           | N                   | 1.5e-6           | 1.2e-6           |
| N-Nitrosodimethylamine                                | 62-75-9              | 1.2e-6           | <        | N        | 1.2e-6           | <        | N         | 1.7e-6           | <,J         | Р         | 1.1e-6                        | <        | N         | 1.7e-6 <,J               | 1.8e-6              | 1.7e-6           | P                   | 1.5e-6           | 1.2e-6           |
| N-Nitrosodiphenylamine                                | 86-30-6              | 1.6e-6           | <        | N        | 1.6e-6           | <        | N         | 2.4e-6           | <,J         | Р         | 1.5e-6                        | <        | N         | 2.4e-6 <,J               | 2.6e-6              | 2.4e-6           | Р                   | 2.0e-6           | 1.6e-6           |
| Naphthalene                                           | 91-20-3              | 1.2e-6           | <        | N        | 1.2e-6           | <        | N         | 1.9e-6           | <,J         | P         | 1.1e-6                        | <        | N         | 1.9e-6 <,J               | 2.1e-6              | 1.9e-6           | P                   | 1.6e-6           | 1.2e-6           |
| 2-Nitroaniline                                        | 88-74-4              | 1.2e-6           | <        | N        | 1.2e-6           | <        | N         | 1.9e-6           | <           | N         | 1.1e-6                        | <        | N I       | 1.9e-6 <                 | 2.1e-6              | 1.9e-6           | N                   | 1.6e-6           | 1.2e-6           |
| 3-Nitroaniline                                        | 99-09-2              | 4.5e-6           | <        | N        | 4.4e-6           | <        | N         | 5.7e-6           | <           | N         | 4.2e-6                        | <        | N.        | 5.7e-6 <                 | 6.1e-6              | 5.7e-6           | N                   | 5.1e-6           | 4.3e-6           |
| 4-Nitroaniline                                        | 100-01-6             | 3.9e-6           | <        | N        | 3.9e-6           | <        | N         | 5.0e-6           | <           | N         | 3.7e-6                        | <        | N         | 5.0e-6 <                 | 5.3e-6              | 5.0e-6           | N D                 | 4.5e-6           | 3.8e-6           |
| Nitrobenzene                                          | 98-95-1              | 1.8e-6           | <,J      | P<br>P   | 1.6e-6           | <,J      | P         | 2.3e-6           | <,J         | P<br>P    | 1.2e-6                        | <,J      | P         | 2.3e-6 <,J               | 2.6e-6              | 2.3e-6           | P                   | 2.0e-6           | 1.4e-6           |
| 2-Nitrophenol<br>4-Nitrophenol                        | 88-75-5<br>100-02-7  | 1.0e-5<br>8.3e-6 | <        | P        | 4.4e-6<br>5.9e-6 | <,J<br>< | N         | 4.2e-6           | <,J         | N         | 5.2e-6                        | <,J      | P<br>P    | 1.0e-5 <                 | 1.1e-5              | 1.0e-5           | P                   | 7.1e-6           | 4.8e-6           |
| 4-Nitropnenoi<br>2,2'-Oxybis(1-chloropropane)         | 100-02-7             | 8.3e-6<br>1.5e-6 | <,J<br>< | N        | 5.9e-6<br>1.5e-6 | ·        | N         | 7.2e-6<br>2.5e-6 | <           | Ni<br>P   | 5.6e-6<br>1.4e-6              | <,J<br>< | N         | 8.3e-6 <,J               | 9.2e-6              | 8.3e-6<br>2.5e-6 |                     | 7.7e-6<br>2.0e-6 | 5.8e-6<br>1.5e-6 |
| Pentachlorobenzene                                    | 608-93-5             | 1.5e-6<br>1.1e-6 | ~        | N        | 1.1e-6           | ~        | N         | 2.5e-6<br>1.7e-6 | <,J<br><    | N N       | 1.4e-6<br>1.0e-6              | <        | N<br>N    | 2.5e-6 <,J<br>1.7e-6 <   | 2.8e-6<br>1.9e-6    | 2.5e-6<br>1.7e-6 | l P                 | 2.0e-6<br>1.4e-6 | 1.5e-6           |
| Pentachloronitrobenzene                               | 82-68-8              | 1.1e-6<br>1.2e-6 | <        | N        | 1.2e-6           | ~        | N         | 1.7e-6<br>1.8e-6 | <           | Ň         | 1.1e-6                        | <        | N<br>N    | 1.7e-6 < 1.8e-6 <        | 2.0e-6              | 1.7e-6<br>1.8e-6 | N                   | 1.4e-6<br>1.5e-6 | 1.0e-6<br>1.2e-6 |
| Pentachlorophenol                                     | 87-86-5              | 3.3e-5           | <        | N N      | 3.2e-5           | ~        | N         | 3.5e-5           | ~           | N         | 3.8e-5                        | <        | N         | 3.8e-5 <                 | 3.9e-5              | 3.8e-5           | I N                 | 3.4e-5           | 3.5e-5           |
| Phenanthrene                                          | 85-01-8              | 1.1e-6           | ~        | N        | 1.1e-6           | ~        | N         | 1.9e-6           | <,J         | P         | 3.6 <del>e-</del> 5<br>9.9e-7 | <        | N         | 1.9e-6 <,J               | 2.2e-6              | 1.9e-6           | P                   | 1.5e-6           | 1.0e-6           |
| Phenol                                                | 108-95-2             | 8.4e-6           | ~        | P        | 4.0e-6           | <,J      | P         | 3.8e-6           | <,J         | P         | 4.0e-6                        | \<br><,J | P         | 8.4e-6 <                 | 9.6e-6              | 8.4e-6           |                     | 6.1e-6           | 4.0e-6           |
| Pyrene                                                | 129-00-0             | 1.1e-6           | <        | N I      | 1.1e-6           | <        | N         | 2.0e-6           | <,J         | P         | 1.0e-6                        | ·,,      | N         | 2.0e-6 <,J               | 2.3e-6              | 2.0e-6           | ' <sub>P</sub>      | 1.6e-6           | 1.0e-6           |
| Pyridine                                              | 110-86-1             | 1.9e-6           | <        | N        | 1.8e-6           | <        | N         | 3.2e-6           | <           | N         | 1.7e-6                        | <        | N         | 3.2e-6 <                 | 3.5e-6              | 3.2e-6           | N                   | 2.5e-6           | 1.8e-6           |
| 1,2,4,5-Tetrachlorobenzene                            | 95-94-3              | 1.2e-6           | <        | N        | 1.2e-6           | <        | N         | 1.8e-6           | <           | Ň         | 1.1e-6                        | <        | Ň         | 1.8e-6 <                 | 2.0e-6              | 1.8e-6           | N                   | 1.5e-6           | 1.2e-6           |
| 1,2,4-Trichlorobenzene                                | 120-82-1             | 1.3e-6           | <        | N        | 1.3e-6           | <        | N         | 1.9e-6           | <,J         | P         | 1.2e-6                        | <        | N         | 1.9e-6 <,J               | 2.1e-6              | 1.9e-6           | P                   | 1.6e-6           | 1.3e-6           |
| 2,4,5-Trichlorophenol                                 | 95-95-4              | 2.7e-6           | <        | N        | 2.7e-6           | <        | N         | 3.3e-6           | <           | N         | 2.5e-6                        | <        | N         | 3.3e-6 <                 | 3.5e-6              | 3.3e-6           | N                   | 3.0e-6           | 2.6e-6           |
| 2,4,6-Trichlorophenol                                 | 88-06-2              | 1.8e-6           | <        | N        | 1.7e-6           | <        | N         | 2.4e-6           | <           | N         | 1.6e-6                        | <        | N         | 2.4e-6 <                 | 2.6e-6              | 2.4e-6           | N                   | 2.1e-6           | 1.7e-6           |
|                                                       |                      |                  |          |          |                  |          |           |                  |             |           |                               |          |           |                          |                     |                  |                     |                  |                  |

Table B-17. SVOC emission rates - grames per second comparisons.

| TICs                            | CAS<br>Registry<br>Number | STRT-1<br>g/s | Flag    | Project<br>Specific<br>Flag | END-1<br>g/s | Flag      | Project<br>Specific<br>Flag | STRT-2<br>g/s | Flag      | Project<br>Specific<br>Flag | END-2<br>g/s | Flag      | Project<br>Specific<br>Flag | Max value<br>g/s | Avg+2σ<br>g/s | Results<br>g/s | Project<br>Specific<br>Flag | STRT<br>Run Avgs<br>g/s | END Rur<br>Avgs g/s |
|---------------------------------|---------------------------|---------------|---------|-----------------------------|--------------|-----------|-----------------------------|---------------|-----------|-----------------------------|--------------|-----------|-----------------------------|------------------|---------------|----------------|-----------------------------|-------------------------|---------------------|
| 1,2-Benzenedicarboxylic acid,   | 1330-96-7                 |               |         |                             |              |           |                             | 9.6e-7        | N,J,Q     | Р                           |              |           |                             | 9.6e-7 N,J,Q     |               | 9.6e-7         | Р                           | 9.6e-7                  |                     |
| 2,4-Hexadiene                   | 592-46-1                  | l             |         |                             | 1.7e-5       | N,J,M     | Р                           |               |           |                             | 2.8e-6       | N,J,M     | P                           | 1.7e-5 N,J,M     | 3.1e-5        | 1.7e-5         | P                           |                         | 1.0e-5              |
| 2,5-Diethylphenol               | 876-20-0                  |               |         |                             |              |           |                             |               |           |                             | 1.0e-5       | N,J,M     | Р                           | 1.0e-5 N,J,M     |               | 1.0e-5         | P                           |                         | 1.0e-5              |
| 2-Cyclohexene-1-one, 3-methyl-  | 1193-18-6                 |               |         |                             |              |           |                             |               |           |                             | 3.2e-7       | N,J,M     | Р                           | 3.2e-7 N,J,M     | 1             | 3.2e-7         | P                           | 1                       | 3.2e-7              |
| 2-Hexanone                      | 591-78-6                  | 2.5e-5        | N,J,M   | P                           | 1.3e-5       | N,J,M     | Р                           |               |           |                             |              |           |                             | 2.5e-5 N,J,M     | 3.6e-5        | 2.5e-5         | Р                           | 2.5e-5                  | 1.3e-5              |
| 3-Hexanone                      | 589-38-8                  | 2.1e-5        | N,J,M   | Р                           | 1.0e-5       | N,J,M     | P                           | 1.1e-5        | N,J,M     | Р                           | 7.1e-6       | N,J,M     | P                           | 2.1e-5 N,J,M     | 2.4e-5        | 2.1e-5         | P                           | 1.6e-5                  | 8.7e-6              |
| Benzaldehyde                    | 100-52-7                  | 1.2e-4        | N,J,M   | Р                           | 8.0e-5       | N,J,M     | Р                           | 7.6e-5        | N,J,M     | Р                           | 7.4e-5       | N,J,M     | P                           | 1.2e-4 N,J,M     | 1.3e-4        | 1.2e-4         | Р                           | 9.8e-5                  | 7.7e-5              |
| Benzaldehyde, 4-ethyl-          | 4748-78-1                 |               |         |                             | 6.2e-6       | N,J,M     | Р                           |               |           |                             |              |           |                             | 6.2e-6 N,J,M     |               | 6.2e-6         | P                           | 1 1                     | 6.2e-6              |
| Benzaldehyde, ethyl-            | 53951-50-1                |               |         |                             |              |           |                             |               |           |                             | 6.2e-6       | N,J,M     | Р                           | 6.2e-6 N,J,M     |               | 6.2e-6         | Р                           |                         | 6.2e-6              |
| Benzo(e)pyrene                  | 192-97-2                  |               |         |                             |              | Į         |                             | 1.6e-6        | N,J,Q     | Р                           |              |           | 1                           | 1.6e-6 N,J,Q     |               | 1.6e-6         | P                           | 1.6e-6                  |                     |
| Cyclododecane                   | 294-62-2                  | 3.4e-6        | N,J,M   | Р                           | 3.2e-6       | N,J,M     | Р                           | 6.4e-7        | N,J,M     | Р                           | 1.3e-6       | N,J,M     | Р                           | 3.4e-6 N,J,M     | 4.9e-6        | 3.4e-6         | P                           | 2.0e-6                  | 2.3e-6              |
| Dodecane                        | 112-40-3                  | 7.3e-6        | N,J,M   | Р                           | 5.2e-6       | N,J,M     | Р                           | 6.3e-6        | N,J,M     | Р                           | 3.8e-6       | N,J,M     | P                           | 7.3e-6 N,J,M     | 8.7e-6        | 7.3e-6         | l P l                       | 6.8e-6                  | 4.5e-6              |
| Eicosane                        | 112-95-8                  | 6.7e-7        | N,J,M   | Р                           |              |           |                             |               |           |                             | 1.9e-6       | N,J,M     | Р                           | 1.9e-6 N,J,M     | 3.1e-6        | 1.9e-6         | Р                           | 6.7e-7                  | 1.9e-6              |
| Formic acid, phenylmethyl ester | 104-57-4                  |               | , . ,   | -                           | 7.8e-6       | N.J.M     | Р                           |               |           |                             | 9.6e-6       | N,J,M     | P                           | 9.6e-6 N,J,M     | 1.1e-5        | 9.6e-6         | l P                         |                         | 8.7e-6              |
| Furan, 2,5-dimethyl-            | 625-86-5                  | 1.5e-6        | N.J.M   | Р                           | 8.4e-7       | N,J,M     | P                           | 1.1e-6        | N,J,M     | Р                           |              |           |                             | 1.5e-6 N,J,M     | 1.9e-6        | 1.5e-6         | l p l                       | 1.3e-6                  | 8.4e-7              |
| Heneicosane                     | 629-94-7                  | 2.2e-7        | N,J,M   | P                           |              | ,.,.      |                             |               | , . ,     |                             | 9.2e-7       | N,J,M     | Р                           | 9.2e-7 N,J,M     | 1.6e-6        | 9.2e-7         | I P I                       | 2.2e-7                  | 9.2e-7              |
| Heptacosane                     | 593-49-7                  |               |         |                             |              |           |                             |               |           |                             | 8.4e-6       | N,J,M     | Р                           | 8.4e-6 N,J,M     |               | 8.4e-6         | Р                           |                         | 8.4e-6              |
| Heptadecane                     | 629-78-7                  | 9.7e-7        | N,J,M   | Р                           | 4.3e-7       | N,J,M     | Р                           |               |           |                             |              |           |                             | 9.7e-7 N.J.M     | 1.5e-6        | 9.7e-7         | P                           | 9.7e-7                  | 4.3e-7              |
| Heptane, 2,3-dimethyl-          | 3074-71-3                 |               | 1       | ·                           | 1.1e-6       | N,J,M     | P                           |               |           |                             |              |           | •                           | 1.1e-6 N,J,M     |               | 1.1e-6         | l p l                       |                         | 1.1e-6              |
| Heptane, 2,5-dimethyl-          | 2216-30-0                 |               | ł       |                             |              | ,_,       |                             | 8.1e-7        | N,J,M     | Р                           |              |           |                             | 8.1e-7 N,J,M     |               | 8.1e-7         | P                           | 4.0e-7                  | 1                   |
| Hexacosane                      | 630-01-3                  |               |         |                             |              |           |                             |               | ,         | -                           | 6.5e-6       | N,J,M     | Р                           | 6.5e-6 N,J,M     |               | 6.5e-6         | P                           |                         | 6.5e-6              |
| Hexadecanoic acid               | 57-10-3                   | 5.9e-7        | N,J,M   | Р                           |              |           |                             |               |           |                             |              |           |                             | 5.9e-7 N,J,M     |               | 5.9e-7         | l p l                       | 5.9e-7                  | ŀ                   |
| Hexanedioic acid, bis(2-ethylh) | 103-23-1                  |               | , . ,   | ·                           |              |           |                             | 1.1e-6        | N.J.Q     | P                           |              |           |                             | 1.1e-6 N.J.Q     | Ī             | 1.1e-6         | l P I                       | 1.1e-6                  | İ                   |
| Hexatriacontane                 | 630-06-8                  |               |         |                             |              |           |                             |               | ,.,       | -                           | 5.8e-7       | N,J,M     | P                           | 5.8e-7 N,J,M     |               | 5.8e-7         | Р                           |                         | 5.8e-7              |
| Naphthalene, 1-methyl-          | 90-12-0                   |               |         |                             |              |           |                             | 8.9e-7        | N,J,Q     | Р                           |              | ,-,       |                             | 8.9e-7 N.J.Q     |               | 8.9e-7         | Р                           | 8.9e-7                  |                     |
| Octadecanoic acid               | 57-11-4                   | 3.9e-7        | N.J.M   | Р                           | 2.2e-7       | N,J,M     | P                           |               | , . ,     |                             |              |           |                             | 3.9e-7 N,J,M     | 5.6e-7        | 3.9e-7         | Р                           | 3.9e-7                  | 2.2e-7              |
| Octane, 3-methyl-               | 2216-33-3                 | 8.6e-7        | N,J,M   | P                           |              | .,.,.     | -                           |               |           |                             |              |           |                             | 8.6e-7 N,J,M     |               | 8.6e-7         | Р                           | 8.6e-7                  |                     |
| Pentacosane                     | 629-99-2                  |               | .,.,    | ·                           |              | l         |                             |               |           |                             | 3.8e-6       | N,J,M     | Р                           | 3.8e-6 N,J,M     |               | 3.8e-6         | P                           |                         | 3.8e-6              |
| Pentadecane                     | 629-62-9                  | 1.6e-6        | N,J,M   | Р                           |              |           |                             |               |           |                             | 4.6e-7       | N.J.M     | P                           | 1.6e-6 N,J,M     | 2.7e-6        | 1.6e-6         | Р                           | 1.6e-6                  | 4.6e-7              |
| Phosphine oxide, triphenvi-     | 791-28-6                  | 9.5e-7        | N,J,M   | P                           |              |           |                             |               |           |                             |              | ,.,.,     |                             | 9.5e-7 N,J,M     |               | 9.5e-7         | P                           | 9.5e-7                  |                     |
| Phosphoric acid tributyl ester  | 126-73-8                  | 2.5e-6        | N,J,M   | P P                         | 1.7e-6       | N,J,M     | Р                           |               |           |                             | 2.4e-6       | N,J,M     | Р                           | 2.5e-6 N,J,M     | 3.1e-6        | 2.5e-6         | P                           | 2.5e-6                  | 2.1e-6              |
| Tetracosane                     | 646-31-1                  | -::50 0       | ,,,,,,, | ·                           | 0 0          | ,,,,,,,   |                             |               | l         |                             | 2.6e-6       | N,J,M     | P                           | 2.6e-6 N,J,M     | 1             | 2.6e-6         | P                           |                         | 2.6e-6              |
| Tetradecane                     | 629-59-4                  | 9.4e-7        | N.J.M   | Р                           | 1.0e-5       | N,J,M     | Р                           | 6.4e-6        | N,J,M     | Р                           | 1.0e-5       | N.J.M     | P                           | 1.0e-5 N,J,M     | 1.6e-5        | 1.0e-5         | P                           | 3.7e-6                  | 1.0e-5              |
| Tetratetracontane               | 7098-22-8                 | 7.2e-7        | N.J.M   | P                           |              | . 1,5,141 | •                           | 50 0          | ,0,111    | ·                           |              | 1 1,0,111 | i i                         | 7.2e-7 N,J,M     | 1.00 0        | 7.2e-7         | ' <sub>P</sub>              | 7.2e-7                  | 1.000               |
| Tridecane                       | 629-50-5                  | 2.2e-6        | N.J.M   | P P                         | 2.3e-6       | N,J,M     | Р                           | 2.0e-6        | N.J.M     | Р                           | 2.1e-6       | N,J,M     | Р                           | 2.3e-6 N,J,M     | 2.3e-6        | 2.3e-6         | P                           | 2.1e-6                  | 2.2e-6              |
| Total Analytes                  | 320 00 0                  |               | . 1,0,  |                             | 2.000        | . 1,0,121 |                             | 1.000         | . 1,0,.11 |                             |              | . 1,0,111 | L                           |                  | _,000         | 1.5e-3         |                             | <u> </u>                |                     |

Total Analytes
Total Detected Analytes

1.5e-3 1.2e-3 Total Volatile Emissions rate in lbs/hr = 0.011826754 Table B-18. 0031 emission rates - grams per second comparisons.

| Table B-18. 0031 emission ra |                      | per secon | d comp |          |        |            |          |        |          |          |        |          |                |           |          |                  |               |                  |        |          |                  |                  |
|------------------------------|----------------------|-----------|--------|----------|--------|------------|----------|--------|----------|----------|--------|----------|----------------|-----------|----------|------------------|---------------|------------------|--------|----------|------------------|------------------|
| Analysis                     | CAS                  | STRT-1    |        | Project  | END-1  | ⊐          | Project  | STRT-2 | <b>T</b> | Project  | END-2  | <u> </u> | Project        | Max value | ⊐        | Avg+2σ           | n             | Results          | ≖      | Project  | STRT Run         | END Run          |
| Analyte                      | Registry             | g/s       | Flag   | Specific | g/s    | Flag       | Specific | g/s    | Flag     | Specific | g/s    | Flag     | Specific       | g/s       | Flag     | g/s              | Flag          | g/s              | Flag   | Specific | Avgs g/s         | Avgs             |
| A 4                          | Number               | 00-5      |        | Flag     |        |            | Flag     |        |          | Flag     |        |          | Flag           | 20-5      |          |                  |               | 20-5             | D      | Flag     | 2505             | g/s              |
| Acetone                      | 67-64-1              | 2.9e-5    | В      | A        | 3.0e-5 | В          | A I      | 2.1e-5 | J,B      | A        | 1.6e-5 | <,J,B    | A              | 3.0e-5    | В        | 3.8e-5           |               | 3.0e-5           | В      | A        | 2.5e-5           | 2.3e-5           |
| Acrylonitrile                | 107-13-1             | 1.1e-5    | <      | N        | 1.2e-5 | <          | N        | 1.2e-5 | <        | N        | 1.2e-5 | <        | N              | 1.2e-5    | <        | 1.2e-5           |               | 1.2e-5           | <      | N<br>P   | 1.1e-5           | 1.2e-5           |
| Benzene                      | 71-43-2              | 1.6e-6    | <      | P        | 1.0e-6 | <          | P        | 9.1e-7 | ۷,>      | , F      | 8.4e-7 | <        | P              | 1.6e-6    | <        | 1.8e-6           |               | 1.6e-6           | <      | '        | 1.3e-6           | 9.3e-7           |
| Bromobenzene                 | 108-86-1             | 4.9e-7    | <      | N        | 5.0e-7 | <          | N        | 5.0e-7 | <        | N        | 5.0e-7 | <        | N              | 5.0e-7    | <        | 5.1e-7           |               | 5.0e-7           | <      | N        | 4.9e-7           | 5.0e-7           |
| Bromochloromethane           | 74-97-5              | 6.1e-7    | <      | N        | 6.3e-7 | <          | N        | 6.2e-7 | <        | N        | 6.3e-7 | <        | N              | 6.3e-7    | <        | 6.4e-7           |               | 6.3e-7           | <      | N        | 6.2e-7           | 6.3e-7           |
| Bromodichloromethane         | 75-27-4              | 4.9e-7    | <      | N        | 5.0e-7 | <          | N I      | 5.0e-7 | <        | N I      | 5.0e-7 | <        | N              | 5.0e-7    | <        | 5.1e-7           |               | 5.0e-7           | <      | N        | 4.9e-7           | 5.0e-7           |
| Bromoform                    | 75-25-2              | 7.3e-7    | < .    | N        | 7.6e-7 | < .        | N        | 7.4e-7 | < .      | N I      | 7.6e-7 | <        | N              | 7.6e-7    | < .      | 7.7e-7           |               | 7.6e-7           | <      | N        | 7.4e-7           | 7.6e-7           |
| Bromomethane                 | 74-83-9              | 6.9e-7    | < J    | P        | 9.7e-7 | <,J        | Р        | 6.2e-7 | <,J      | Р        | 8.4e-7 | J        |                | 9.7e-7    | <,J      | 1.1e-6           |               | 9.7e-7           | <,J    | P        | 6.6e-7           | 9.0e-7           |
| 2-Butanone                   | 78-93-3              | 3.6e-6    | <,J    | P        | 3.7e-6 | <,J        | P        | 3.7e-6 | ر,>      | P        | 3.7e-6 | < .      | N              | 3.7e-6    | <,J      | 3.8e-6           |               | 3.7e-6           | <,J    | : ' I    | 3.7e-6           | 3.7e-6           |
| n-Butylbenzene               | 104-51-8             | 6.1e-7    | <      | N        | 6.3e-7 | <          | N        | 6.2e-7 | <        | N        | 6.3e-7 | <        | N              | 6.3e-7    | <        | 6.4e-7           |               | 6.3e-7           | <      | N        | 6.2e-7           | 6.3e-7           |
| sec-Butylbenzene             | 135-98-8             | 3.5e-7    | <      | N        | 3.6e-7 | <          | N I      | 3.5e-7 | <        | N        | 3.6e-7 | <        | N              | 3.6e-7    | <        | 3.6e-7           |               | 3.6e-7           | <      | N        | 3.5e-7           | 3.6e-7           |
| tert-Butylbenzene            | 98-06-6              | 5.7e-7    | <      | N        | 5.9e-7 | <          | N        | 5.8e-7 | <        | N        | 5.9e-7 | <        | N              | 5.9e-7    | <        | 6.0e-7           |               | 5.9e-7           | <      | N        | 5.7e-7           | 5.9e-7           |
| Carbon disulfide             | 75-15-0              | 4.0e-6    | <      | P        | 5.0e-6 | <          | P        | 5.4e-6 | <        | P        | 2.7e-6 | <        | P              | 5.4e-6    | <        | 6.7e-6           | ı             | 5.4e-6           | <      |          | 4.7e-6           | 3.9e-6           |
| Carbon tetrachloride         | 56-23-5              | 6.5e-7    | <      | N        | 6.7e-7 | <          | N        | 6.6e-7 | <        | N        | 6.7e-7 | <,J      |                | 6.7e-7    | <        | 6.8e-7           |               | 6.7e-7           | <      |          | 6.6e-7           | 6.7e-7           |
| Chlorobenzene                | 108-90-7             | 3.9e-7    | <      | N        | 4.0e-7 | <,J        | P        | 3.9e-7 | <        | N        | 4.0e-7 | <,J      | P              | 4.0e-7    | <,J      | 4.1e-7           |               | 4.0e-7           | <,J    |          | 3.9e-7           | 4.0e-7           |
| Chlorodibromomethane         | 124-48-1             | 6.1e-7    | <      | N        | 6.3e-7 | <          | N        | 6.2e-7 | < .      | N        | 6.3e-7 | <        | N              | 6.3e-7    | <        | 6.4e-7           |               | 6.3e-7           | <      | N        | 6.2e-7           | 6.3e-7           |
| Chloroethane                 | 75-00-3              | 6.5e-7    | <,J    | P        | 8.4e-7 | ر,>        | P        | 7.0e-7 | <,J      | Р        | 6.7e-7 | <,J      | Р              | 8.4e-7    | <,J      | 8.9e-7           |               | 8.4e-7           | <,J    | P        | 6.8e-7           | 7.6e-7           |
| Chloroform                   | 67-66-3              | 9.8e-7    | <,J    | P        | 1.7e-6 | <          | P        | 1.4e-6 | <        | Р        | 1.6e-6 | <        | Р              | 1.7e-6    | <        | 2.1e-6           |               | 1.7e-6           | <      | P        | 1.2e-6           | 1.7e-6           |
| Chloromethane                | 74-87-3              | 4.9e-6    | J      | P        | 1.2e-5 | <          | P        | 5.0e-6 | ا,>      | P        | 1.1e-5 | <,J      | Р              | 1.2e-5    | <        | 1.6e-5           | ŀ             | 1.2e-5           | <      |          | 4.9e-6           | 1.1e-5           |
| 2-Chlorotoluene              | 95-49-8              | 2.4e-7    | <      | N N      | 2.5e-7 | <          | N        | 2.4e-7 | <        | N        | 2.5e-7 | <        | N              | 2.5e-7    | <        | 2.5e-7           |               | 2.5e-7           | <      | N N      | 2.4e-7           | 2.5e-7           |
| 4-Chlorotoluene              | 106-43-4             | 2.4e-7    | <      | N        | 2.5e-7 | <          | N I      | 2.4e-7 | <        | N I      | 2.5e-7 | <        | N              | 2.5e-7    | <        | 2.5e-7           |               | 2.5e-7           | <      | N        | 2.4e-7           | 2.5e-7           |
| 1,2-Dibromo-3-chloropropane  | 96-12-8              | 1.1e-6    | <      | N N      | 1.2e-6 | <          | N        | 1.2e-6 | <        | N N      | 1.1e-6 | <        | N              | 1.2e-6    | <        | 1.2e-6           |               | 1.2e-6           | <      | N        | 1.1e-6           | 1.2e-6           |
| 1,2-Dibromoethane            | 106-93-4             | 8.2e-7    | <      | N I      | 8.4e-7 | <          | N        | 8.3e-7 | <        | N        | 8.4e-7 | <        | N              | 8.4e-7    | <        | 8.6e-7           |               | 8.4e-7           | <      | N        | 8.2e-7           | 8.4e-7           |
| Dibromomethane               | 74-95-3              | 6.9e-7    | <      | N N      | 7.2e-7 | <          | N        | 7.0e-7 | <        | N        | 7.1e-7 | <        | N              | 7.2e-7    | <        | 7.3e-7           |               | 7.2e-7           | <      | N        | 7.0e-7           | 7.2e-7           |
| 1,2-Dichlorobenzene          | 95-50-1              | 7.3e-7    | <      | N        | 7.6e-7 | <          | N        | 7.4e-7 | <        | N        | 7.6e-7 | <        | N              | 7.6e-7    | <        | 7.7e-7           | l             | 7.6e-7           | <      | N        | 7.4e-7           | 7.6e-7           |
| 1,3-Dichlorobenzene          | 541-73-1             | 4.1e-7    | <      | N        | 4.2e-7 | <          | N        | 4.1e-7 | <        | N        | 4.2e-7 | <        | N              | 4.2e-7    | <        | 4.3e-7           | I             | 4.2e-7           | <      | N        | 4.1e-7           | 4.2e-7           |
| 1,4-Dichlorobenzene          | 106-46-7             | 5.7e-7    | <      | N        | 5.9e-7 | < .        | N        | 5.8e-7 | <        | N        | 5.9e-7 | <.       | N <sub>D</sub> | 5.9e-7    | <        | 6.0e-7           | I             | 5.9e-7           | <      | N        | 5.7e-7           | 5.9e-7           |
| Dichlorodifluoromethane      | 75-71-8              | 1.1e-6    | <      | P        | 6.7e-7 | <,J        | P        | 8.3e-7 | <        | P        | 6.7e-7 | <,J      | 1              | 1.1e-6    | <        | 1.2e-6           |               | 1.1e-6           | <      | P        | 9.4e-7           | 6.7e-7           |
| 1,1-Dichloroethane           | 75-34-3              | 6.1e-7    | <      | N        | 6.3e-7 | <          | N        | 6.2e-7 | <        | N        | 6.3e-7 | <        | N              | 6.3e-7    | <        | 6.4e-7           | l             | 6.3e-7           | <      | N<br>P   | 6.2e-7           | 6.3e-7           |
| 1,2-Dichloroethane           | 107-06-2             | 6.5e-7    | <,J    | P        | 6.7e-7 | <,J        | Р        | 6.6e-7 | < .      | N        | 6.7e-7 | <.       | N              | 6.7e-7    | <,J      | 6.8e-7           |               | 6.7e-7           | <,J    |          | 6.6e-7           | 6.7e-7           |
| 1,1-Dichloroethene           | 75-35-4              | 6.5e-7    | <,J    | P        | 7.6e-7 | ل,>        | P        | 6.6e-7 | <,J      | P        | 6.7e-7 | <,J      | P              | 7.6e-7    | <,J      | 7.8e-7           |               | 7.6e-7           | <,J    | ' '      | 6.6e-7           | 7.2e-7           |
| cis-1,2-Dichloroethene       | 156-59-2             | 6.1e-7    | <      | N        | 6.3e-7 | <          | N        | 6.2e-7 | <        | N        | 6.3e-7 | <        | N              | 6.3e-7    | <        | 6.4e-7           |               | 6.3e-7           | <      | N        | 6.2e-7           | 6.3e-7           |
| trans-1,2-Dichloroethene     | 156-60-5             | 6.9e-7    | <      | N I      | 6.7e-7 | < .        | N        | 6.6e-7 | <        | N I      | 7.1e-7 | <        | N              | 7.1e-7    | <        | 7.3e-7           |               | 7.1e-7           | <      | N<br>D   | 6.8e-7           | 6.9e-7           |
| 1,2-Dichloropropane          | 78-87-5              | 5.3e-7    | <      | N I      | 5.5e-7 | <,J        | P        | 5.4e-7 | <        | N        | 5.5e-7 | <        | N              | 5.5e-7    | <,J      | 5.6e-7           |               | 5.5e-7           | <,J    | ' '      | 5.3e-7           | 5.5e-7           |
| 1,3-Dichloropropane          | 142-28-9             | 6.9e-7    | <      | N I      | 7.2e-7 | <          | N        | 7.0e-7 | <        | N        | 7.1e-7 | <        | N              | 7.2e-7    | <        | 7.3e-7           |               | 7.2e-7           | <      | N I      | 7.0e-7           | 7.2e-7           |
| 2,2-Dichloropropane          | 594-20-7             | 6.5e-7    | <      | N        | 6.7e-7 | <          | N        | 6.6e-7 | <        | N        | 6.7e-7 | <        | N              | 6.7e-7    | <        | 6.8e-7           |               | 6.7e-7           | <      | N        | 6.6e-7           | 6.7e-7           |
| 1,1-Dichloropropene          | 563-58-6             | 7.3e-7    | <      | N        | 7.6e-7 | <          | N        | 7.4e-7 | <        | N        | 7.6e-7 | <        | N              | 7.6e-7    | <        | 7.7e-7           | - 1           | 7.6e-7           | <      | N I      | 7.4e-7           | 7.6e-7           |
| cis-1,3-Dichloropropene      | 10061-01-5           | 5.3e-7    | <      | N        | 5.5e-7 | <          | N        | 5.4e-7 | <        | N        | 5.5e-7 | <        | N              | 5.5e-7    | <        | 5.6e-7           | l             | 5.5e-7           | <      | N I      | 5.3e-7           | 5.5e-7           |
| trans-1,3-Dichloropropene    | 10061-02-6           | 6.1e-7    | <      | N        | 6.3e-7 | <          | N        | 6.2e-7 | <        | N        | 6.3e-7 | <        | N              | 6.3e-7    | <        | 6.4e-7           | ľ             | 6.3e-7           | <      | N        | 6.2e-7           | 6.3e-7           |
| Ethylbenzene                 | 100-41-4             | 3.8e-7    | <      | N        | 3.9e-7 | <          | N N      | 3.8e-7 | <        | N        | 3.9e-7 | <        | N              | 3.9e-7    | <        | 4.0e-7           |               | 3.9e-7           | <      | N N      | 3.8e-7           | 3.9e-7           |
| Hexachlorobutadiene          | 87-68-3              | 9.0e-7    | <      | N        | 9.3e-7 | <          | N        | 9.1e-7 | <        | N        | 9.7e-7 | <        | N              | 9.7e-7    | <        | 9.9e-7           |               | 9.7e-7           | <      | N        | 9.0e-7           | 9.5e-7           |
| 2-Hexanone                   | 591-78-6             | 2.3e-6    | <      | N        | 2.4e-6 | <          | N        | 2.3e-6 | <        | N        | 2.4e-6 | <        | N              | 2.4e-6    | <        | 2.4e-6           |               | 2.4e-6           | <      | N        | 2.3e-6           | 2.4e-6           |
| Isopropylbenzene             | 98-82-8              | 2.9e-7    | <      | N        | 2.9e-7 | <          | N        | 2.9e-7 | <        | N        | 2.9e-7 | <        | N              | 2.9e-7    | <        | 3.0e-7           |               | 2.9e-7           | <      | N        | 2.9e-7           | 2.9e-7           |
| p-Isopropyltoluene           | 99-87-6              | 4.5e-7    | F B    | N        | 4.6e-7 | < <u> </u> | N        | 4.5e-7 | < D      | N A      | 4.6e-7 | < ID     | N A            | 4.6e-7    | <<br>E D | 4.7e-7           | $\rightarrow$ | 4.6e-7           | < P    | N N      | 4.5e-7           | 4.6e-7<br>4.5e-6 |
| Methylene chloride           | 75-09-2              | 7.3e-5    | _,_    | A        | 7.2e-6 | В          | A        | 4.5e-6 | <,B      | A        | 1.8e-6 | <,J,B    | A              |           | E,B      | 9.1e-5           | J             | 7.3e-5           | E,B    | A        | 3.9e-5           | 4.5e-6<br>2.5e-6 |
| 4-Methyl-2-pentanone         | 108-10-1             | 2.4e-6    | <      | N        | 2.5e-6 | <          | N        | 2.4e-6 | <        | N        | 2.5e-6 | <        | N              | 2.5e-6    | <        | 2.5e-6           | J             | 2.5e-6           | <      | N        | 2.4e-6           | 2.5e-6<br>8.8e-7 |
| Naphthalene                  | 91-20-3              | 8.6e-7    | <      | N<br>N   | 8.8e-7 | <<br><     | N        | 8.7e-7 | <        | N<br>N   | 8.8e-7 | <        | N              | 8.8e-7    | <        | 9.0e-7           | J             | 8.8e-7           | <<br>< | N        | 8.6e-7           | 2.8e-7           |
| n-Propylbenzene              | 103-65-1             | 2.7e-7    |        | N<br>N   | 2.8e-7 | <          | N<br>N   | 2.7e-7 | <        | N<br>N   | 2.8e-7 | < <      | N<br>N         | 2.8e-7    | <        | 2.8e-7           |               | 2.8e-7<br>3.3e-7 | - <    | N<br>N   | 2.7e-7<br>3.2e-7 | 3.3e-7           |
| Styrene                      | 100-42-5<br>630-20-6 | 3.2e-7    | <      | N        | 3.3e-7 | <          | N<br>N   | 3.2e-7 | <        |          | 3.3e-7 | - 1      | N<br>N         | 3.3e-7    | <        | 3.3e-7<br>4.3e-7 | - 1           | 3.3e-7<br>4.2e-7 | <      | N        | 3.2e-7<br>4.1e-7 | 3.3e-7<br>4.2e-7 |
| 1,1,1,2-Tetrachloroethane    |                      | 4.0e-7    | <      | N        | 4.2e-7 | <          | N<br>N   | 4.1e-7 |          | N<br>N   | 4.2e-7 | <        |                | 4.2e-7    | <        |                  |               | 4.2e-7<br>9.7e-7 | `      | N        | 4.1e-7<br>9.0e-7 | 4.2e-7<br>9.5e-7 |
| 1,1,2,2-Tetrachloroethane    | 79-34-5              | 9.0e-7    | <      | N N      | 9.3e-7 |            | N        | 9.1e-7 | < <      | N<br>N   | 9.7e-7 | <u> </u> | N              | 9.7e-7    |          | 9.9e-7           |               |                  |        | N        | 9.0e-7<br>6.2e-7 | 9.5e-7<br>6.3e-7 |
| Tetrachloroethene            | 127-18-4             | 6.1e-7    | <      | N        | 6.3e-7 | <          | N        | 6.2e-7 |          | N<br>P   | 6.3e-7 | <        | N<br>P         | 6.3e-7    | <        | 6.4e-7           |               | 6.3e-7           | <      | P        |                  | 9.7e-7           |
| Toluene                      | 108-88-3             | 7.8e-7    | <,J    | P        | 1.2e-6 | <,J        | Р        | 1.2e-6 | <,J      |          | 7.6e-7 | <,J      |                |           | <,J      | 1.5e-6           |               | 1.2e-6           | <,j    |          | 1.0e-6           |                  |
| 1,2,3-Trichlorobenzene       | 87-61-6              | 8.6e-7    | <      | N        | 8.8e-7 | <          | N        | 8.7e-7 | <<br><   | N        | 8.8e-7 | <u> </u> | N<br>N         | 8.8e-7    | <        | 9.0e-7<br>9.9e-7 |               | 8.8e-7           | <<br>< | N<br>N   | 8.6e-7<br>9.0e-7 | 8.8e-7<br>9.5e-7 |
| 1,2,4-Trichlorobenzene       | 120-82-1             | 9.0e-7    | <      | N        | 9.3e-7 | <          | N        | 9.1e-7 | <        | N<br>N   | 9.7e-7 | <u> </u> | N              | 9.7e-7    | < <      | B .              | J             | 9.7e-7           | ·      | N<br>N   | 9.0e-7<br>7.8e-7 | 9.5e-7<br>8.0e-7 |
| 1,1,1-Trichloroethane        | 71-55-6              | 7.8e-7    |        | N N      | 8.0e-7 | <          | N<br>N   | 7.8e-7 |          | N<br>N   | 8.0e-7 | <        | N<br>N         | 8.0e-7    |          | 8.1e-7           |               | 8.0e-7           |        | N<br>N   | 7.8e-7<br>7.0e-7 |                  |
| 1,1,2-Trichloroethane        | 79-00-5              | 6.9e-7    | <      | N N      | 7.2e-7 | <          | N        | 7.0e-7 | <        | N        | 7.1e-7 | <        | N              | 7.2e-7    | <        | 7.3e-7           |               | 7.2e-7           | <      | N N      |                  | 7.2e-7           |
| Trichloroethene              | 79-01-6              | 6.5e-7    | <      | N        | 6.7e-7 | ۲ .        | N        | 6.6e-7 | <        | N        | 6.7e-7 | <u> </u> | N              | 6.7e-7    | <        | 6.8e-7           |               | 6.7e-7           | <      | N        | 6.6e-7           | 6.7e-7           |
| Trichlorofluoromethane       | 75-69-4              | 6.5e-7    | <,J    | P        | 6.7e-7 | <,J        | P        | 6.6e-7 | <,J      | Р        | 6.7e-7 | <,J      | Р              |           | <,J      | 6.8e-7           | 1             | 6.7e-7           | <,J    | P        | 6.6e-7           | 6.7e-7           |
| 1,2,3-Trichloropropane       | 96-18-4              | 9.8e-7    | <      | N        | 1.0e-6 | <          | N        | 9.9e-7 | <        | N N      | 1.0e-6 | <        | N.             | 1.0e-6    | <        | 1.0e-6           |               | 1.0e-6           | <      | N.       | 9.8e-7           | 1.0e-6           |
| 1,2,4-Trimethylbenzene       | 95-63-6              | 4.1e-7    | <      | N        | 4.2e-7 | <          | N        | 4.1e-7 | <        | N        | 4.2e-7 | <        | N              | 4.2e-7    | <        | 4.3e-7           | J             | 4.2e-7           | <      | N N      | 4.1e-7           | 4.2e-7           |
| 1,3,5-Trimethylbenzene       | 108-67-8             | 2.4e-7    | <      | N        | 2.5e-7 | <          | N        | 2.4e-7 | <        | N        | 2.5e-7 | <        | N              | 2.5e-7    | <        | 2.5e-7           | -             | 2.5e-7           | <      | N        | 2.4e-7           | 2.5e-7           |
| Vinyl chloride               | 75-01-4              | 5.3e-7    | <,J    | P        | 7.6e-7 | <,J        | P        | 5.4e-7 | <,J      | P        | 7.1e-7 | <,J      | P              |           | <,J      | 8.7e-7           | 1             | 7.6e-7           | <,J    | P        | 5.3e-7           | 7.4e-7           |
| m-Xylene & p-Xylene          | 36777-61-            | 1.8e-6    | <      | N        | 1.9e-6 | <          | N        | 1.8e-6 | <        | N        | 1.9e-6 | <        | N D            | 1.9e-6    | <        | 1.9e-6           |               | 1.9e-6           | <      | N        | 1.8e-6           | 1.9e-6           |
| o-Xylene                     | 95-47-6              | 3.1e-7    | <      | N        | 3.3e-7 | <,J        | Р        | 3.2e-7 | <        | N        | 3.2e-7 | <,J      | Р              | 3.3e-7    | <,J      | 3.3e-7           |               | 3.3e-7           | <,J    | Р        | 3.2e-7           | 3.3e-7           |

Table B-18. 0031 emission rates - grams per second comparisons.

| TICs                                      | CAS<br>Registry<br>Number | STRT-1<br>g/s | Flag  | Project<br>Specific<br>Flag | END-1<br>g/s | Flag  | Project<br>Specific<br>Flag | STRT-2<br>g/s | Flag                                  | Project<br>Specific<br>Flag | END-2<br>g/s | Flag  | Project<br>Specific<br>Flag | Max value<br>g/s | Flag  | Avg+2σ<br>g/s | Flag | Results<br>g/s   | Flag  | Project<br>Specific<br>Flag | STRT Run<br>Avgs<br>µg/dscm | END Run<br>Avgs<br>μg/dscm |
|-------------------------------------------|---------------------------|---------------|-------|-----------------------------|--------------|-------|-----------------------------|---------------|---------------------------------------|-----------------------------|--------------|-------|-----------------------------|------------------|-------|---------------|------|------------------|-------|-----------------------------|-----------------------------|----------------------------|
| 1-Heptene                                 | 592-76-7                  | 2.2e-7        | N,J,M | Р                           |              |       |                             |               |                                       |                             |              |       |                             | 2.2e-7           | N,J,M |               |      | 2.2e-7           | N,J,M | Р                           | 2.2e-7                      |                            |
| Benzonitrile                              | 100-47-0                  |               |       |                             | 8.0e-7       | N,J,M | Р                           | 3.0e-7        | N,J,M                                 | Р                           | 2.0e-7       | N,J,M | Р                           | 8.0e-7           | N,J,M | 1.1e-6        |      | 8.0e-7           | N,J,M | Р                           | 3.0e-7                      | 5.0e-7                     |
| Butane, 1-chloro-                         | 109-69-3                  | 2.3e-7        | N,J,M | Р                           |              |       |                             |               |                                       |                             |              |       |                             | 2.3e-7           | N,J,M |               |      | 2.3e-7           | N,J,M | Р                           | 2.3e-7                      | 1                          |
| Cyclobutane, ethenyl-                     | 2597-49-1                 |               |       |                             | 5.0e-7       | N,J,M | Р                           |               |                                       |                             |              |       |                             | 5.0e-7           | N,J,M |               |      | 5.0e-7           | N,J,M | Р                           |                             | 5.0e-7                     |
| Cyclohexane, hexyl-                       | 4292-75-5                 | 2.4e-7        | N,J,M | Р                           |              |       |                             |               |                                       |                             |              |       |                             | 2.4e-7           | N,J,M |               |      | 2.4e-7           | N,J,M | Р                           | 2.4e-7                      |                            |
| Cyclohexane, methyl-                      | 108-87-2                  | 4.5e-7        | N,J,M | Р                           | 8.4e-7       | N,J,M | Р                           | 8.3e-7        | N,J,M                                 | Р                           | 5.0e-7       | N,J,M | Р                           | 8.4e-7           | N,J,M | 1.1e-6        |      | 8.4e-7           | N,J,M | Р                           | 6.4e-7                      | 6.7e-7                     |
| Cyclohexene                               | 110-83-8                  | 4.1e-7        | N,J,M | Р                           | 1.5e-7       | N,J,M | Р                           | 7.4e-7        | N,J,M                                 | Р                           | 1.1e-7       | N,J,M | Р                           | 7.4e-7           | N,J,M | 9.4e-7        |      | 7.4e-7           | N,J,M | Р                           | 5.8e-7                      | 1.3e-7                     |
| Cyclopentane, 1,2-dimethyl-               | 2452-99-5                 |               |       |                             |              |       |                             | 2.2e-7        | N,J,M                                 | Р                           |              |       |                             | 2.2e-7           | N,J,M |               | ľ    | 2.2e-7           | N,J,M | Р                           | 2.2e-7                      |                            |
| Cyclopentane, 1,2-dimethyl-, t            | 822-50-4                  |               |       |                             | 3.3e-7       | N,J,M | Р                           |               |                                       |                             | 1.3e-7       | N,J,M | Р                           | 3.3e-7           | N,J,M | 5.2e-7        |      | 3.3e-7           | N,J,M | Р                           |                             | 2.3e-7                     |
| Cyclopentane, ethyl-                      | 1640-89-7                 | 1.1e-7        | N,J,M | Р                           | 1.7e-7       | N,J,M | Р                           | 1.5e-7        | N,J,M                                 | Р                           |              | İ     |                             | 1.7e-7           | N,J,M | 2.0e-7        | 1    | 1.7e-7           | N,J,M | Р                           | 1.3e-7                      | 1.7e-7                     |
| Decane                                    | 124-18-5                  | 4.9e-7        | N,J,M | Р                           |              |       |                             |               |                                       |                             |              |       |                             | 4.9e-7           | N,J,M |               |      | 4.9e-7           | N,J,M | Р                           | 4.9e-7                      | 1                          |
| Decane, 2,2,5-trimethyl-                  | 62237-96-1                |               |       |                             |              |       |                             | 2.5e-7        | N,J,M                                 | Р                           |              |       |                             | 2.5e-7           | N,J,M |               |      | 2.5e-7           | N,J,M | Р                           | 2.5e-7                      | i                          |
| Decane, 2,9-dimethyl-                     | 1002-17-1                 | 2.6e-7        | N,J,M | Р                           |              |       |                             |               |                                       |                             |              |       |                             | 2.6e-7           | N,J,M |               |      | 2.6e-7           | N,J,M | Р                           | 2.6e-7                      |                            |
| Dodecane                                  | 112-40-3                  | 1.3e-4        | N,J,M | Р                           | 1.1e-4       | N,J,M | Р                           | 9.1e-5        | N,J,M                                 | Р                           | 7.1e-5       | N,J,M | Р                           | 1.3e-4           | N,J,M | 1.5e-4        |      | 1.3e-4           | N,J,M | Р                           | 1.1e-4                      | 9.0e-5                     |
| Dodecane, 6-methyl-                       | 6044-71-9                 |               |       |                             |              |       |                             | 2.1e-7        | N,J,M                                 | Р                           |              |       |                             | 2.1e-7           | N,J,M |               | ı    | 2.1e-7           | N,J,M | Р                           | 2.1e-7                      |                            |
| Hexadecane                                | 544-76-3                  |               |       |                             | 8.8e-7       | N,J,M | Р                           |               |                                       |                             |              | Ī     |                             | 8.8e-7           | N,J,M |               | ł    | 8.8e-7           | N,J,M | Р                           | 1 1                         | 8.8e-7                     |
| Hexane, 2,4-dimethyl-                     | 589-43-5                  | 4.5e-7        | N,J,M | Р                           | 7.6e-7       | N,J,M | Р                           | 8.3e-7        | N,J,M                                 | Р                           | 4.0e-7       | N,J,M | Р                           | 8.3e-7           | N,J,M | 1.0e-6        |      | 8.3e-7           | N,J,M | Р                           | 6.4e-7                      | 5.8e-7                     |
| Hexane, 2-methyl-                         | 591-76-4                  | 6.9e-7        | N,J,M | P                           | 1.3e-6       | N,J,M | Р                           | 1.2e-6        | N,J,M                                 | Р                           | 1.0e-6       | N,J,M | Р                           | 1.3e-6           | N,J,M | 1.6e-6        |      | 1.3e-6           | N,J,M | Р                           | 9.7e-7                      | 1.2e-6                     |
| Hexane, 3-methyl-                         | 589-34-4                  | 1.6e-6        | N,J,M | Р                           | 3.2e-6       | N,J,M | Р                           | 1.1e-6        | N,J,M                                 | Р                           | 1.4e-6       | N,J,M | Р                           | 3.2e-6           | N,J,M | 3.7e-6        |      | 3.2e-6           | N,J,M | Р                           | 1.3e-6                      | 2.3e-6                     |
| Methane, trichloronitro-                  | 76-06-2                   |               |       |                             | 1.5e-6       | N,J,M | Р                           |               |                                       |                             |              |       |                             | 1.5e-6           | N,J,M |               |      | 1.5e-6           | N,J,M | Р                           | 1 1                         | 1.5e-6                     |
| Octane                                    | 111-65-9                  | 1.1e-7        | N,J,M | Р                           |              |       |                             |               |                                       |                             |              |       |                             | 1.1e-7           | N,J,M |               |      | 1.1e-7           | N,J,M | Р                           | 1.1e-7                      |                            |
| Pentane, 2,3-dimethyl-                    | 565-59-3                  | 7.3e-7        | N,J,M | Р                           | 1.3e-7       | N,J,M | Р                           | 4.5e-7        | N,J,M                                 | Р                           | 5.9e-7       | N,J,M | Р                           | 7.3e-7           | N,J,M | 9.9e-7        |      | 7.3e-7           | N,J,M | Р                           | 5.9e-7                      | 3.6e-7                     |
| Pentane, 3,3-dimethyl-                    | 562-49-2                  |               |       |                             | 2.5e-7       | N,J,M | Р                           |               |                                       |                             |              |       |                             | 2.5e-7           | N,J,M |               |      | 2.5e-7           | N,J,M | Р                           | 1 1                         | 2.5e-7                     |
| Pentane, 3-ethyl-                         | 617-78-7                  |               |       |                             |              | ·     |                             | 1.4e-7        | N,J,M                                 | Р                           | 1.3e-7       | М,Ј,М | Р                           | 1.4e-7           | N,J,M | 1.5e-7        | - 1  | 1.4e-7           | N,J,M | Р                           | 1.4e-7                      | 1.3e-7                     |
| Tetradecane                               | 629-59-4                  | 3.8e-6        | N,J,M | Р                           | 4.2e-6       | N,J,M | Р                           | 4.0e-6        | N,J,M                                 | Р                           | 5.9e-6       | N.J.M | Р                           | 5.9e-6           | N.J.M | 6.4e-6        |      | 5.9e-6           | N,J,M | Р                           | 3.9e-6                      | 5.0e-6                     |
| Tridecane                                 | 629-50-5                  | 1.1e-5        | N,J,M | Р                           | 1.3e-5       | N,J,M | P                           | 3.4e-7        | N,J,M                                 | Р                           | 1.3e-5       | N,J,M | P                           |                  | N,J,M | 2.2e-5        |      | 1.3e-5           | N,J,M | Р                           | 5.9e-6                      | 1.3e-5                     |
| Undecane                                  | 1120-21-4                 | 4.1e-6        | N,J,M | Р                           | 2.1e-6       | N,J,M | P                           | 9.9e-7        | N,J,M                                 | Р                           | 5.0e-7       | N,J,M | Р                           | 4.1e-6           | N,J,M | 5.1e-6        | 1    | 4.1e-6           | N,J,M | Р                           | 2.5e-6                      | 1.3e-6                     |
| Undecane, 2,6-dimethyl-                   | 17301-23-4                | 4.5e-7        | N,J,M | Р                           |              |       |                             | 1.9e-7        | N,J,M                                 | Р                           | 3.5e-7       | N,J,M | Р                           | 4.5e-7           | N,J,M | 5.9e-7        | ĺ    | 4.5e-7           | N,J,M | P                           | 3.2e-7                      | 3.5e-7                     |
| Undecane, 5-methyl-                       | 1632-70-8                 | 2.6e-6        | N,J,M | Р                           | 7.6e-7       | N,J,M | Р                           | 8.7e-7        | N,J,M                                 | Р                           | 7.6e-7       | N,J,M | Р                           |                  | N,J,M | 3.1e-6        |      | 2.6e-6           | N,J,M | Р                           | 1.7e-6                      | 7.6e-7                     |
| Total Analytes<br>Total Detected Analytes |                           |               |       |                             |              |       |                             |               | · · · · · · · · · · · · · · · · · · · |                             |              | 1     |                             |                  |       |               |      | 3.5e-4<br>3.0e-4 |       |                             |                             |                            |

Total Semivolatiles in lbs/hr

0.002769813

Table B-19. 0050 emission rates - grams per second comparisons.

| Analyte           | STRT-1<br>g/s | Flag | END-1<br>g/s | Flag | STRT-2<br>g/s | Flag | END-2<br>g/s | Flag | Max value | Flag | Avg+2o <u>T</u><br>g/s © | Results<br>g/s | Flag | STRT Run<br>Avgs g/s | END Run<br>Avgs g/s |
|-------------------|---------------|------|--------------|------|---------------|------|--------------|------|-----------|------|--------------------------|----------------|------|----------------------|---------------------|
| Chloride (as HCI) | 3.3e-4        | В    | 2.9e-4       | В    | 3.2e-4        | В    | 3.2e-4       | В    | 3.3e-4    | В    | 3.4e-4                   | 3.3e-4         | В    | 3.2e-4               | 3.1e-4              |
| Chloride (as CI2) | 3.3e-5        | <    | 5.8e-5       | В    | 3.0e-5        | <    | 3.2e-5       | <    | 5.8e-5    | В    | 6.4e-5                   | 5.8e-5         | В    | 3.2 <b>e</b> -5      | 4.5e-5              |
| Fluoride (as HF)  | 4.5e-5        | <    | 4.0e-5       | <    | 4.1e-5        | <    | 4.3e-5       | <    | 4.5e-5    | <    | 4.7e-5                   | 4.5e-5         | <    | 4.3e-5               | 4.2e-5              |
| Nitrate (as HNO3) | 1.4e-3        |      | 1.1e-3       |      | 9.4e-4        |      | 7.9e-4       |      | 1.4e-3    |      | 1.5e-3                   | 1.4e-3         | ŀ    | 1.1e-3               | 9.2e-4              |
| Nitrite (as HNO2) | 1.8e-4        | <    | 3.8e-4       | <    | 1.7e-4        | <    | 3.4e-4       | <    | 3.8e-4    | <    | 4.9e-4                   | 3.8e-4         | <    | 1.8e-4               | 3.6e-4              |
| Particulate       | 4.0e-4        | В    | 2.9e-4       | В    | 1.2e-4        |      | 8.9e-5       | В    | 4.0e-4    | В    | 5.2e-4                   | 4.0e-4         | В    | 2.6e-4               | 1.9e-4              |

maximum hourly emissions

Table B-20. 0060 emission rates - grams per second comparisons.

| Analyte        | CAS<br>Registry<br>Number | STRT-1<br>g/s   | Flag | Project<br>Specific<br>Flags | END-1<br>g/s | Flag | Project<br>Specific<br>Flags | STRT-2<br>g/s | Flag | Project<br>Specific<br>Flags | END-2<br>g/s | Flag | Project<br>Specific<br>Flags | Max value<br>g/s | Flag | Avg+2σ<br>g/s | Flag | Results<br>g/s | Flag | Project<br>Specific<br>Flag | STRT<br>Run Avgs<br>g/s | END Run<br>Avgs<br>g/s |
|----------------|---------------------------|-----------------|------|------------------------------|--------------|------|------------------------------|---------------|------|------------------------------|--------------|------|------------------------------|------------------|------|---------------|------|----------------|------|-----------------------------|-------------------------|------------------------|
| Aluminum (Al)  | 7429-90-5                 | 1.6e-5          |      | Α                            | 2.5e-5       |      | Α                            | 8.3e-6        |      | Α                            | 8.2e-6       |      | Α                            | 2.5e-5           |      | 3.4e-5        |      | 2.5e-5         |      | Α                           | 1.2e-5                  | 1.7e-5                 |
| Antimony (Sb)  | 7440-36-0                 | 5.3e-7、         | В    | Α                            | 4.8e-7       | В    | A                            | 4.9e-7        | В    | A                            | 4.6e-7       | В    | A                            | 5.3e-7           | В    | 5.5e-7        |      | 5.3e-7         |      | A                           | 5.1e-7                  | 4.7e-7                 |
| Arsenic (As)   | 7440-38-2                 | 1.8e-7          | <,B  | Р                            | 1.5e-7       | <    | N I                          | 1.8e-7        | <    | N                            | 1.8e-7       | <    | N                            | 1.8e-7           | <,B  | 2.0e-7        |      | 1.8e-7         |      | P                           | 1.8e-7                  | 1.6e-7                 |
| Barium (Ba)    | 7440-39-3                 | 7.7 <b>e</b> -7 | В    | Α                            | 9.4e-7       | В    | A                            | 5.6e-7        | В    | A                            | 5.3e-7       | В    | Α                            | 9.4 <b>e-</b> 7  | В    | 1.1e-6        |      | 9.4e-7         |      | Α                           | 6.6e-7                  | 7.3e-7                 |
| Beryllium (Be) | 7440-41-7                 | 7.4e-8          | <,B  | Р                            | 6.1e-8       | <,B  | Р                            | 7.1e-8        | <,B  | Р                            | 7.3e-8       | <,B  | Р                            | 7.4e-8           | ν,Β  | 8.3e-8        |      | 7.4e-8         |      | Р                           | 7.3e-8                  | 6.7e-8                 |
| Cadmium (Cd)   | 7440-43-9                 | 5.3e-8          | В    | A                            | 7.7e-8       | В    | A                            | 3.0e-8        | <,B  | P                            | 3.0e-8       | <    | N                            | 7.7e-8           | В    | 1.0e-7        |      | 7.7e-8         |      | Р                           | 4.1e-8                  | 5.3e-8                 |
| Chromium (Cr)  | 7440-47-3                 | 3.4e-7          |      | A                            | 4.4e-7       |      | A                            | 2.7e-7        |      | A                            | 5.7e-7       |      | A                            | 5.7e-7           |      | 5.2e-7        | 1    | 5.2e-7         |      | Α                           | 3.1e-7                  | 5.1e-7                 |
| Cobalt (Co)    | 7440-48-4                 | 3.1e-7          | В    | Α                            | 2.5e-7       | <    | N                            | 3.0e-7        | <    | N                            | 3.0e-7       | <    | N                            | 3.1e-7           | В    | 3.5e-7        | 1    | 3.1e-7         |      | Р                           | 3.0e-7                  | 2.8e-7                 |
| Copper (Cu)    | 7440-50-8                 | 4.9e-7          | В    | Α                            | 3.4e-7       | В    | Α                            | 2.5e-7        | В    | A                            | 1.6e-7       | <,B  | P                            | 4.9e-7           | В    | 6.0e-7        |      | 4.9e-7         |      | Р                           | 3.7e-7                  | 2.5e-7                 |
| Lead (Pb)      | 7439-92-1                 | 1.5e-7          | <,B  | P                            | 1.2e-7       | В    | Α                            | 1.5e-7        | <,B  | P                            | 1.3e-7       | <,B  | P                            | 1.5e-7           | <,B  | 1.8e-7        |      | 1.5e-7         |      | Р                           | 1.5e-7                  | 1.3e-7                 |
| Manganese (Mn) | 7439-96-5                 | 2.2e-6          |      | A                            | 2.2e-6       |      | Α                            | 4.2e-6        |      | Α                            | 8.0e-6       |      | Α                            | 8.0e-6           |      | 5.1e-6        |      | 5.1e-6         |      | Α                           | 3.2e-6                  | 5.1e-6                 |
| Mercury (Hg)   | 7439-97-6                 | 1.1e-5          |      | A                            | 1.4e-5       |      | Р                            | 1.2e-5        |      | Р                            | 1.2e-5       |      | P                            | 1.4e-5           |      | 1.5e-5        |      | 1.4e-5         |      | Р                           | 1.2e-5                  | 1.3e-5                 |
| Nickel (Ni)    | 7440-02-0                 | 5.7e-7          | В    | Α                            | 5.6e-7       | В    | Α                            | 4.9e-7        | В    | Α                            | 4.6e-7       | В    | Α                            | 5.7e-7           | В    | 6.3e-7        |      | 5.7e-7         |      | Α                           | 5.3e-7                  | 5.1e-7                 |
| Selenium (Se)  | 7782-49-2                 | 3.7e-7          | В    | A                            | 2.0e-7       | <    | Р                            | 2.9e-7        | В    | Α                            | 2.6e-7       | В    | Α                            | 3.7e-7           | В    | 4.5e-7        |      | 3.7e-7         |      | P                           | 3.3e-7                  | 2.3e-7                 |
| Silver (Ag)    | 7440-22-4                 | 3.0e-7          | <    | N                            | 2.4e-7       | <    | N                            | 2.9e-7        | <    | N                            | 2.9e-7       | <    | N                            | 3.0e-7           | <    | 3.3e-7        |      | 3.0e-7         |      | N                           | 2.9e-7                  | 2.7e-7                 |
| Thallium (TI)  | 7440-28-0                 | 2.9e-7          | <    | N                            | 2.2e-7       | <    | N                            | 2.7e-7        | <    | N                            | 2.7e-7       | <    | N                            | 2.9e-7           | <    | 3.3e-7        |      | 2.9e-7         |      | N                           | 2.8e-7                  | 2.5e-7                 |
| Vanadium (V)   | 7440-62-2                 | 3.1e-7          | <    | N                            | 2.5e-7       | <    | N                            | 3.0e-7        | <    | N                            | 3.0e-7       | <    | N                            | 3.1 <b>e</b> -7  | <    | 3.5e-7        |      | 3.1e-7         |      |                             | 3.0e-7                  | 2.8e-7                 |
| Zinc (Zn)      | 7440-66-6                 | 7.0e-6          |      | Α                            | 1.1e-5       |      | Α                            | 3.3e-6        |      | Α                            | 1.9e-6       |      | Α                            | 1.1e-5           |      | 1.5e-5        |      | 1.1e-5         |      | A                           | 5.1e-6                  | 6.6e-6                 |
| Total Metals   |                           |                 |      |                              |              |      |                              |               |      |                              |              |      |                              | -                |      |               |      | 6.1e-5         |      |                             |                         |                        |

6.0e-5

Total Detected Metals

Table B-21. 0060 blank corrected emission rates - grams per second comparisons.

| Analyte        | CAS<br>Registry<br>Number | STRT-1<br>g/s | Flag | Project<br>Specific<br>Flags | END-1<br>g/s | Flag | Project<br>Specific<br>Flags | STRT-2<br>g/s | Flag | Project<br>Specific<br>Flags | END-2<br>g/s   | Flag | Project<br>Specific<br>Flags |         | Flag | Avg+2σ<br>g/s | Flag | Results<br>g/s | Flag | Project<br>Specific<br>Flag | STRT<br>Run Avgs<br>g/s | END Run<br>Avgs<br>g/s |
|----------------|---------------------------|---------------|------|------------------------------|--------------|------|------------------------------|---------------|------|------------------------------|----------------|------|------------------------------|---------|------|---------------|------|----------------|------|-----------------------------|-------------------------|------------------------|
| Aluminum (Al)  | 7429-90-5                 | 1.5e-5        |      | Α                            | 2.4e-5       |      | Α                            | 7.5e-6        |      | Α                            | 7.5e-6         |      | Α                            | 2.4e-5  |      | 3.2e-5        |      | 2.4e-5         |      | A                           | 1.1e-5                  | 1.6e-5                 |
| Antimony (Sb)  | 7440-36-0                 | 1.2e-7        | В    | A                            | 1.4e-7       | В    | Α                            | 1.0e-7        | В    | Α                            | 1.0e-7         | В    | Α                            | 1.4e-7  | В    | 1.6e-7        |      | 1.4e-7         |      | Α                           | 1.1e-7                  | 1.2e-7                 |
| Arsenic (As)   | 7440-38-2                 | 9.9e-8        | <,B  | P                            | 8.1e-8       | <    | N                            | 9.4e-8        | <    | N                            | 9.4e-8         | <    | N                            | 9.9e-8  | <,B  | 1.1e-7        |      | 9.9e-8         |      | Р                           | 9.6e-8                  | 8.7e-8                 |
| Barium (Ba)    | 7440-39-3                 | 2.5e-7        | В    | Α                            | 5.2e-7       | В    | Α                            | 5.9e-8        | В    | Α                            | 5.9e <b>-8</b> | В    | A                            | 5.2e-7  | В    | 7.4e-7        |      | 5.2e-7         |      | A                           | 1.5e-7                  | 2.9e-7                 |
| Beryllium (Be) | 7440-41-7                 | 5.2e-8        | <,B  | P                            | 4.2e-8       | <,B  | Р                            | 4.9e-8        | <,B  | Р                            | 4.9e-8         | <,B  | Р                            | 5.2e-8  | <,B  | 5.8e-8        |      | 5.2e-8         |      | Р                           | 5.0e-8                  | 4.6e-8                 |
| Cadmium (Cd)   | 7440-43-9                 | 4.6e-8        | В    | A                            | 7.1e-8       | В    | Α                            | 2.3e-8        | <,B  | Р                            | 2.3e-8         | <,B  | N                            | 7.1e-8  | В    | 9.5e-8        |      | 7.1e-8         |      | Р                           | 3.5e-8                  | 4.7e-8                 |
| Chromium (Cr)  | 7440-47-3                 | 1.3e-7        |      | A                            | 2.7e-7       |      | Α :                          | 7.4e-8        |      | Α                            | 7.4e-8         |      | Α                            | 2.7e-7  |      | 3.6e-7        |      | 2.7e-7         |      | A                           | 1.0e-7                  | 1.7e-7                 |
| Cobalt (Co)    | 7440-48-4                 | 3.1e-7        | В    | Α                            | 2.5e-7       | <    | N                            | 3.0e-7        | <    | N                            | 3.0e-7         | <    | N                            | 3.1e-7  | В    | 3.5e-7        |      | 3.1e-7         |      | Р                           | 3.0e-7                  | 2.7e-7                 |
| Copper (Cu)    | 7440-50-8                 | 5.0e-7        | В    | Α                            | 3.4e-7       | В    | Α                            | 2.5e-7        | В    | Α                            | 2.5e-7         | В    | Р                            | 5.0e-7  | В    | 6.1e-7        |      | 5.0e-7         |      | Р                           | 3.7e-7                  | 2.9e-7                 |
| Lead (Pb)      | 7439-92-1                 | 1.0e-7        | <,B  | P                            | 8.2e-8       | В    | Α                            | 1.1e-7        | <,B  | P                            | 1.1e-7         | <,B  | Р                            | 1.1e-7  | <,B  | 1.2e-7        |      | 1.1e-7         |      | P                           | 1.0e-7                  | 9.5e-8                 |
| Manganese (Mn) | 7439-96-5                 | 2.0e-6        |      | Α                            | 2.0e-6       |      | Α                            | 4.0e-6        |      | Α                            | 4.0e-6         |      | Α                            | 4.0e-6  |      | 5.0e-6        |      | 4.0e-6         |      | Α                           | 3.0e-6                  | 3.0e-6                 |
| Mercury (Hg)   | 7439-97-6                 | 1.1e-5        |      | Α                            | 1.4e-5       |      | P                            | 1.2e-5        |      | Р                            | 1.2e-5         |      | P                            | 1.4e-5  |      | 1.5e-5        |      | 1.4e-5         |      | P                           | 1.2e-5                  | 1.3e-5                 |
| Nickel (Ni)    | 7440-02-0                 | 1.8e-7        | В    | Α                            | 2.4e-7       | В    | Α                            | 1.1e-7        | В    | Α                            | 1.1e-7         | В    | Α                            | 2.4e-7  | В    | 3.0e-7        |      | 2.4e-7         |      | Α                           | 1.5e-7                  | 1.8e-7                 |
| Selenium (Se)  | 7782-49-2                 | 1.1e-17       | В    | A                            | 9.4e-18      | <    | Р                            | 1.1e-17       | В    | A                            | 1.1e-17        | В    | Α                            | 1.1e-17 | В    | 1.3e-17       |      | 1.1e-17        |      | P                           | 1.1e-17                 | 1.0e-17                |
| Silver (Ag)    | 7440-22-4                 | 3.0e-7        | <    | N                            | 2.4e-7       | <    | N                            | 2.9e-7        | <    | N                            | 2.9e-7         | <    | N                            | 3.0e-7  | <    | 3.3e-7        |      | 3.0e-7         |      | N                           | 2.9e-7                  | 2.7e-7                 |
| Thallium (TI)  | 7440-28-0                 | 2.9e-7        | <    | N                            | 2.2e-7       | <    | N                            | 2.7e-7        | <    | N                            | 2.7e-7         | <    | N                            | 2.9e-7  | <    | 3.3e-7        |      | 2.9e-7         |      | N                           | 2.8e-7                  | 2.5e-7                 |
| Vanadium (V)   | 7440-62-2                 | 3.1e-7        | <    | N                            | 2.5e-7       | <    | N                            | 3.0e-7        | <    | N                            | 3.0e-7         | <    | N                            | 3.1e-7  | <    | 3.5e-7        |      | 3.1e-7         |      | N                           | 3.0e-7                  | 2.7e-7                 |
| Zinc (Zn)      | 7440-66-6                 | 6.4e-6        |      | Α                            | 1.1e-5       |      | Α                            | 2.8e-6        |      | Α                            | 2.8e-6         |      | Α                            | 1.1e-5  |      | 1.5e-5        |      | 1.1e-5         |      | A                           | 4.6e-6                  | 6.8e-6                 |
| Total Metals   |                           |               |      |                              |              |      |                              |               |      |                              |                |      |                              | *****   |      |               |      | 5.6e-5         |      | •                           | <u> </u>                |                        |

5.5e-5

Total Detected Metals

Table B-22. SVOC concentration-basis.

| Table B-22. SVOC concentration-                 |                     |                |              | L Project I         |                    |                | 1 Droinet |                |             | I Droinet           |                |              | Uroject             |                |            | · · · · · · · · · · · · · · · · · · · |                |            | Urorect             | STRIRUM        | END Run        |
|-------------------------------------------------|---------------------|----------------|--------------|---------------------|--------------------|----------------|-----------|----------------|-------------|---------------------|----------------|--------------|---------------------|----------------|------------|---------------------------------------|----------------|------------|---------------------|----------------|----------------|
| Analyte                                         | CAS<br>Registry     | STRT-1         | Flag         | Project<br>Specific | END-1              | Flag           | Specific  | STRT-2         | Flag        | Project<br>Specific | END-2          | Flag         | Project<br>Specific | Max value      | Flag       | Avg+2σ =                              | Results        | 고          | Project<br>Specific | Avgs           | Avgs           |
| Analyte                                         | Number              | μg/dscm        | 99           | Flag                | μg/dscm            | Đ              | Flag      | μg/dscm        | g           | Flag                | μg/dscm        | ag           | Flag                | μg/dscm        | Ö          | μg/dscm 🗳                             | μg/dscm        | ag         | Flag                | μg/dscm        | μg/dscm        |
| Acenaphthene                                    | 83-32-9             | 3.1e0          | <            | N                   | 3.2e0              | <              | N         | 5.2e0          | <,J         | P                   | 3.0e0          | <            | N                   | 5.2e0          | <,J        | 5.7e0                                 | 5.2e0          | $\dashv$   | P                   | 4.2e0          | 3.1e0          |
| Acenaphthylene                                  | 208-96-8            | 3.0e0          | <            | N                   | 3.1e0              | <              | l 'n      | 5.2e0<br>5.2e0 | ۰,۵<br><,J  | P                   | 2.9e0          | <            | N                   | 5.2e0          | -,5<br><,J | 5.7e0<br>5.7e0                        | 5.2e0<br>5.2e0 | ı          | 'p                  | 4.1e0          | 3.0e0          |
| Acetophenone                                    | 98-86-2             | 1.6e1          | <,J          | 'P                  | 1.2e1              | <,J            | 'P        | 1.4e1          | <,J         | l 'P                | 1.1e1          | <,J          | P                   | 1.6e1          | <,J        | 1.7e1                                 | 1.6e1          | ł          | P                   | 1.5e1          | 1.2e1          |
| Aniline                                         | 62-53-3             | 3.5e1          | <            | l N                 | 3.6e1              | <              | N         | 4.8e1          | <           | N                   | 3.4e1          | <,0          | N                   | 4.8e1          | <          | 5.2e1                                 | 4.8e1          | - 1        | N                   | 4.2e1          | 3.5e1          |
| Anthracene                                      | 120-12-7            | 3.0e0          | <u> </u>     | N                   | 3.1e0              | <              | i N       | 5.2e0          | <,J         | P                   | 2.9e0          |              | N                   | 5.2e0          | <,J        | 5.7e0                                 | 5.2e0          |            | P                   | 4.1e0          | 3.0e0          |
| Benzidine                                       | 92-87-5             | 2.1e2          | <            | l N                 | 2.2e2              | <              | N         | 2.6e2          | <           | N                   | 2.1e2          | <            | N N                 | 2.6e2          | <          | 2.7e2                                 | 2.6e2          |            | N                   | 2.4e2          | 2.1e2          |
| Benzoic acid                                    | 65-85-0             | 1.6e3          | E            | P                   | 8.5e2              | <,E            | P         | 7.4e2          | E           | P                   | 8.3e2          | Ē            | P                   | 1.6e3          | Ē          | 1.8e3                                 | 1.6e3          |            | P                   | 1.2e3          | 8.4e2          |
| Benzo(a)anthracene                              | 56-55-3             | 3.8e0          | _            | N                   | 3.9e0              | <              | l 'n      | 6.1e0          | -<br><,J    | P                   | 3.7e0          | <            | N                   | 6.1e0          | <,J        | 6.7e0                                 | 6.1e0          |            | P                   | 5.0e0          | 3.8e0          |
| Benzo(a)pyrene                                  | 50-32-8             | 4.2e1          | <del>-</del> | N                   | 4.3e1              | · <            | N         | 4.5e1          | <,J         | <del>'</del>        | 4.0e1          | ~~           | N                   | 4.5e1          | <,J        | 4.7e1                                 | 4.5e1          | $\dashv$   | P                   | 4.3e1          | 4.1e1          |
| Benzo(b)fluoranthene                            | 205-99-2            | 9.6e1          | <            | l N                 | 9.8e1              | <              | N         | 9.7e1          | ۰,۵<br>۷,۶  | P                   | 9.2e1          | <            | N                   | 9.8e1          | <          | 1.0e2                                 | 9.8e1          | - 1        | P                   | 9.6e1          | 9.5e1          |
| Benzo(g,h,i)perylene                            | 191-24-2            | 5.4e1          | <            | N                   | 5.6e1              | <              | N N       | 5.8e1          | <,J         | P                   | 5.2e1          | <            | N                   | 5.8e1          | <,J        | 6.0e1                                 | 5.8e1          | ı          | P                   | 5.6e1          | 5.4e1          |
| Benzo(k)fluoranthene                            | 207-08-9            | 1.4e2          | <            | N                   | 1.4e2              | <              | N         | 1.4e2          | ۰,۵<br><,J  | P                   | 1.3e2          | <            | N                   | 1.4e2          | <          | 1.4e2                                 | 1.4e2          |            | P                   | 1.4e2          | 1.4e2          |
| Benzyl alcohol                                  | 100-51-6            | 1.8e2          | <            | N                   | 1.9e2              | <              | N         | 1.8e2          | <           | N                   | 1.8e2          | <del>-</del> | N                   | 1.9e2          | <u> </u>   | 1.9e2                                 | 1.9e2          |            | <u>i</u>            | 1.8e2          | 1.8e2          |
| bis(2-Chloroethoxy)methane                      | 111-91-1            | 3.2e0          | <            | N                   | 3.3e0              | <              | N         | 4.5e0          | <           | N                   | 3.1e0          | <            | l n                 | 4.5e0          | <          | 4.9e0                                 | 4.5e0          |            | Ň                   | 3.9e0          | 3.2e0          |
| bis(2-Chloroethyl)ether                         | 111-44-4            | 3.5e0          | <            | N                   | 3.6e0              | <              | N         | 5.2e0          | <,J         | P                   | 3.4e0          | <            | l 'n                | 5.2e0          | <,J        | 5.6e0                                 | 5.2e0          |            | P                   | 4.3e0          | 3.5e0          |
| bis(2-Ethylhexyl)phthalate                      | 117-81-7            | 3.8e1          | <,J          | A                   | 7.2e1              | <              | P         | 4.2e1          | <,J         | A                   | 4.9e1          | <,J          | Ä                   | 7.2e1          | <          | 8.1e1                                 | 7.2e1          |            | P                   | 4.0e1          | 6.1e1          |
| 4-Bromophenyl-phenylether                       | 101-55-3            | 3.0e0          | <            | N N                 | 3.1e0              | <              | N         | 5.8e0          | <,J         | P                   | 2.9e0          | <            | N N                 | 5.8e0          | <,J        | 6.5e0                                 | 5.8e0          | - +        | P                   | 4.4e0          | 3.0e0          |
| Butylbenzylphthalate                            | 85-68-7             | 4.2e0          | <            | l n                 | 4.3e0              | <              | l ii      | 6.1e0          | <,J         | P                   | 4.0e0          | <            | N N                 | 6.1e0          | <,J        | 6.6e0                                 | 6.1e0          | l          | P                   | 5.1e0          | 4.1e0          |
| Carbazole                                       | 86-74-8             | 4.2e0          | <            | l n l               | 4.3e0              | <              | N I       | 5.8e0          | <,J         | P                   | 4.0e0          | <            | N                   | 5.8e0          | <,J        | 6.2e0                                 | 5.8e0          |            | P                   | 5.0e0          | 4.1e0          |
| 4-Chloro-3-methylphenol                         | 59-50-7             | 5.4e0          | <            | N                   | 5.6e0              | <              | N         | 1.0e1          | <,J         | N                   | 5.2e0          | <            | N N                 | 1.0e1          | -,∪<br><,J | 1.1e1                                 | 1.0e1          | J          | N                   | 7.7e0          | 5.4e0          |
| 4-Chloroaniline                                 | 106-47-8            | 2.9e1          | <            | N                   | 2.9e1              | <del>-</del> - | N         | 3.6e1          | <           | N                   | 2.8e1          | <del>`</del> | N                   | 3.6e1          | <          | 3.7e1                                 | 3.6e1          | -+         | N                   | 3.2e1          | 2.9e1          |
| 2-Chloronaphthalene                             | 91-58-7             | 3.0e0          | <            | N                   | 3.0e0              | <              | N         | 4.8e0          | <,J         | P                   | 2.9e0          | <            | N                   | 4.8e0          | <,J        | 5.3e0                                 | 4.8e0          | J          | P                   | 3.9e0          | 3.0e0          |
| 2-Chlorophenol                                  | 95-57-8             | 3.5e0          | <            | N                   | 3.6e0              | <              | l 'n      | 4.8e0          | <,J         | P                   | 3.4e0          | <            | N                   | 4.8e0          | <,J        | 5.2e0                                 | 4.8e0          | J          | P I                 | 4.2e0          | 3.5e0          |
| 4-Chlorophenyl phenyl ether                     | 7005-72-36          | 3.5e0          | <            | l 'n l              | 3.6e0              | <              | N N       | 5.5e0          | <,J         | P                   | 3.4e0          | < .          | N                   | 5.5e0          | -,∪<br><,J | 6.0e0                                 | 5.5e0          | - 1        | P                   | 4.5e0          | 3.5e0          |
| Chrysene                                        | 218-01-9            | 3.8e0          | <            | N                   | 3.9e0              | <del>-</del>   | N         | 6.8e0          | <,J         | P                   | 3.7e0          | <            | N                   | 6.8e0          | <,J        | 7.5e0                                 | 6.8e0          |            | Ė                   | 5.3e0          | 3.8e0          |
| Di-n-butylphthalate                             | 84-74-2             | 3.2e1          | <,J          | P                   | 3.3e1              | <,J            | P         | 3.6e1          | ۰,۵<br>ار,> | P                   | 3.1e1          | <,J          | P                   | 3.6e1          | <,J        | 3.7e1                                 | 3.6e1          | J          | P                   | 3.4e1          | 3.2e1          |
| Di-n-octylphthalate                             | 117-84-0            | 5.1e1          | <,J          | P                   | 5.2e1              | <,J            | P         | 5.2e1          | <,J         | l p                 | 4.9e1          | <,J          | P                   | 5.2e1          | <,J        | 5.4e1                                 | 5.2e1          | 1          | P                   | 5.1e1          | 5.1e1          |
| Dibenz(a,h)anthracene                           | 53-70-3             | 5.4e1          | <            | N                   | 5.6e1              | <              | N         | 5.5e1          | <,J         | l P                 | 5.2e1          | <            | N                   | 5.6e1          | <          | 5.7e1                                 | 5.6e1          | - 1        | P                   | 5.5e1          | 5.4e1          |
| Dibenzofuran                                    | 132-64-9            | 3.5e0          | <            | N                   | 3.6e0              | <              | N         | 5.5e0          | <,J         | Р                   | 3.4e0          | <            | N                   | 5.5e0          | <,J        | 6.0e0                                 | 5.5e0          |            | Р                   | 4.5e0          | 3.5e0          |
| 1,2-Dichlorobenzene                             | 95-50-1             | 3.5e0          | <            | N                   | 3.6e0              | <              | N         | 5.2e0          | <,J         | Р                   | 3.4e0          | <            | N                   | 5.2e0          | <,J        | 5.6e0                                 | 5.2e0          |            | Р                   | 4.3e0          | 3.5e0          |
| 1,3-Dichlorobenzene                             | 541-73-1            | 3.8e0          | <            | N                   | 3.9e0              | <              | N         | 5.5e0          | <, J        | P                   | 3.7e0          | <            | N                   | 5.5e0          | <,J        | 5.9e0                                 | 5.5e0          |            | Р                   | 4.7e0          | 3.8e0          |
| 1,4-Dichlorobenzene                             | 106-46-7            | 5.1e0          | <,J          | P                   | 3.9e0              | <,J            | P         | 5.2e0          | ل,>         | P                   | 6.5e0          | ل,>          | Р                   | 6.5e0          | <,J        | 7.2e0                                 | 6.5e0          |            | Р                   | 5.1e0          | 5.2e0          |
| 3,3'-Dichlorobenzidine                          | 91-94-1             | 3.5e1          | <            | N                   | 3.6e1              | <              | N         | 4.2e1          | <           | N                   | 3.4e1          | <            | N                   | 4.2e1          | <          | 4.4e1                                 | 4.2e1          |            | N                   | 3.9e1          | 3.5e1          |
| 2,4-Dichlorophenol                              | 120-83-2            | 4.2e0          | <            | N                   | 4.3e0              | <              | N         | 5.8e0          | <           | N                   | 4.0e0          | <            | N                   | 5.8e0          | <          | 6.2e0                                 | 5.8e0          | - 1        | N                   | 5.0e0          | 4.1e0          |
| Diethylphthalate                                | 84-66-2             | 5.1e0          | ۷,>          | P                   | 4.9e0              | <              | N         | 7.1e0          | <,J         | Р                   | 4.6e0          | <            | N                   | 7.1e0          | <,J        | 7.7e0                                 | 7.1e0          | - 1        | Р                   | 6.1e0          | 4.8e0          |
| Dimethyl phthalate                              | 131-11-3            | 3.1e0          | <            | N                   | 3.1e0              | <              | N         | 5.2e0          | <,J         | Р                   | 3.0e0          | <            | N                   | 5.2e0          | <,J        | 5.7e0                                 | 5.2e0          |            | Р                   | 4.1e0          | 3.0e0          |
| 2,4-Dimethylphenol                              | 105-67-9            | 1.9e1          | <            | N                   | 1.9e1              | <              | N         | 2.0e1          | <           | N                   | 1.8e1          | <            | N                   | 2.0e1          | <          | 2.1e1                                 | 2.0e1          |            | N                   | 1.9e1          | 1.9e1          |
| 4,6-Dinitro-2-methylphenol                      | 534-52-1            | 4.2e1          | <            | N                   | 4.3e1              | <              | N         | 4.5e1          | <           | N                   | 4.0e1          | <            | N                   | 4.5e1          | <          | 4.7e1                                 | 4.5e1          |            | N                   | 4.3e1          | 4.1e1          |
| 2,4-Dinitrophenol                               | 51-28-5             | 8.6e1          | <            | N                   | 8.8e1              | <              | N         | 9.0e1          | <           | N                   | 8.3e1          | <            | N                   | 9.0e1          | <          | 9.3e1                                 | 9.0e1          |            | N                   | 8.8e1          | 8.6e1          |
| 2,4-Dinitrotoluene                              | 121-14-2            | 4.2e0          | <            | N                   | 4.3e0              | <              | N         | 6.1e0          | <,J         | P                   | 4.0e0          | <            | N                   | 6.1e0          | <,J        | 6.6e0                                 | 6.1e0          |            | P                   | 5.1e0          | 4.1e0          |
| 2,6-Dinitrotoluene                              | 606-20-2            | 3.8e0          | <            | N                   | 3.9e0              | <              | N         | 5.2e0          | <,J         | Р                   | 3.7e0          | <            | N                   | 5.2e0          | <,J        | 5.5e0                                 | 5.2e0          |            | P                   | 4.5e0          | 3.8e0          |
| 1,2-Diphenylhydrazine                           | 122-66-7            | 3.1e0          | <            | N                   | 3.2e0              | <              | N i       | 5.2e0          | <,J         | P                   | 3.0e0          | <            | N                   | 5.2e0          | <,J        | 5.7e0                                 | 5.2e0          | 1          | P                   | 4.2e0          | 3.1e0          |
| Fluoranthene                                    | 206-44-0            | 3.2e0          | <            | N I                 | 3.3e0              | <              | N         | 5.5e0          | <,J         | P                   | 3.1e0          | <            | N                   | 5.5e0          | <,J        | 6.1e0                                 | 5.5e0          | - 1        | P                   | 4.3e0          | 3.2e0          |
| Fluorene                                        | 86-73-7             | 3.2e0          | <            | N N                 | 3.3e0              | <              | N.        | 5.2e0          | <,J         | P                   | 3.1e0          | <            | N N                 | 5.2e0          | <,J        | 5.7e0                                 | 5.2e0          |            | P P                 | 4.2e0          | 3.2e0          |
| Hexachlorocyclopentadiene                       | 77-47-4             | 5.1e1          | <            | N I                 | 5.2e1              | <<br><         | N         | 5.8e1          | <           | P<br>P              | 4.9e1          | <            | N                   | 5.8e1          | <          | 6.0e1                                 | 5.8e1          |            | P                   | 5.5e1          | 5.1e1          |
| Hexachlorobenzene Hexachlorobutadiene           | 118-74-1<br>87-68-3 | 3.5e0<br>4.8e0 | < <          | N<br>N              | 3.6e0<br>4.9e0     | `              | N<br>N    | 5.2e0          | <,J         | P                   | 3.4e0          | <<br><       | N                   | 5.2e0          | <,J        | 5.6e0                                 | 5.2e0<br>6.5e0 |            | P                   | 4.3e0<br>5.6e0 | 3.5e0<br>4.8e0 |
| Hexachloroethane                                | 67-72-1             | 5.1e0          | ~            | N                   | 5.2e0              | `              | N         | 6.5e0<br>6.5e0 | <,J         | F                   | 4.6e0<br>4.9e0 | `            | N                   | 6.5e0<br>6.5e0 | <,J        | 6.9e0<br>6.8e0                        | 6.5e0          |            | - F                 | 5.8e0          | 5.1e0          |
| Indeno(1,2,3-cd)pyrene                          | 193-39-5            | 4.8e1          | ~            | N                   | 4.9e1              | ~              | N         | 4.8e1          | <,J<br><,J  | P                   | 4.6e1          | ~            | N                   | 4.9e1          | <,J<br><   | 5.0e1                                 | 4.9e1          | -          | - <del>-</del> -    | 4.8e1          | 4.8e1          |
| Isophorone                                      | 78-59-1             | 3.2e0          | <            | N                   | 3.3e0              | <              | N         | 5.2e0          | -,5<br><,J  | 'p                  | 3.1e0          | <            | N                   | 5.2e0          | <,J        | 5.7e0                                 | 5.2e0          |            | ' <sub>-</sub>      | 4.2e0          | 3.2e0          |
| 2-Methylnaphthalene                             | 91-57-6             | 3.2e0          | <            | N                   | 3.3e0              | <              | N         | 4.8e0          | -,u<br><,J  | 'p                  | 3.1e0          | <            | N                   | 4.8e0          | <,J        | 5.3e0                                 | 4.8e0          |            | P                   | 4.0e0          | 3.2e0          |
| 2-Methylphenol                                  | 95-48-7             | 1.5e1          | <            | N                   | 1.5e1              | ζ              | N         | 1.6e1          | <           | N                   | 1.4e1          | ~            | Ň                   | 1.6e1          | <,0        | 1.7e1                                 | 1.6e1          |            | N                   | 1.6e1          | 1.5e1          |
| 3-Methylphenol & 4-Methylphenol                 | 65794-96-9          | 1.1e1          | <            | N                   | 1.1e1              | <              | N         | 1.3e1          | <           | N                   | 1.0e1          | <            | N                   | 1.3e1          | <          | 1.3e1                                 | 1.3e1          |            | N N                 | 1.2e1          | 1.1e1          |
| N-Nitroso-di-n-propylamine                      | 621-64-7            | 3.5e0          | <            | N                   | 3.6e0              | <              | N         | 4.8e0          | <           | N                   | 3.4e0          | <            | N                   | 4.8e0          | <          | 5.2e0                                 | 4.8e0          |            | N                   | 4.2e0          | 3.5e0          |
| N-Nitrosodimethylamine                          | 62-75-9             | 3.5e0          | <            | N                   | 3.6e0              | <              | N         | 4.8e0          | <,J         | P                   | 3.4e0          | <            | N                   | 4.8e0          | <,J        | 5.2e0                                 | 4.8e0          |            | Р                   | 4.2e0          | 3.5e0          |
| N-Nitrosodiphenylamine                          | 86-30-6             | 4.8e0          | <            | N                   | 4.9e0              | <              | N         | 6.8e0          | <,J         | P                   | 4.6e0          | <            | N                   | 6.8e0          | <,j        | 7.3e0                                 | 6.8e0          |            | P                   | 5.8e0          | 4.8e0          |
| Naphthalene                                     | 91-20-3             | 3.5e0          | <            | N                   | 3.6e0              | <              | N         | 5.5e0          | <,J         | P                   | 3.4e0          | <            | N                   | 5.5e0          | <,J        | 6.0e0                                 | 5.5e0          |            | P                   | 4.5e0          | 3.5e0          |
| 2-Nitroaniline                                  | 88-74-4             | 3.5e0          | <            | N                   | 3.6e0              | <              | N         | 5.5e0          | <           | N                   | 3.4e0          | <            | N                   | 5.5e0          | <          | 6.0e0                                 | 5.5e0          | - [        | N                   | 4.5e0          | 3.5e0          |
| 3-Nitroaniline                                  | 99-09-2             | 1.3e1          | <            | N                   | 1.3e1              | <              | N         | 1.6e1          | <           | N                   | 1.3e1          | <            | N                   | 1.6e1          | <          | 1.7e1                                 | 1.6e1          |            | N                   | 1.5e1          | 1.3e1          |
| 4-Nitroaniline                                  | 100-01-6            | 1.2e1          | <            | N                   | 1.2e1              | <              | N         | 1.4e1          | <           | N                   | 1.1e1          | <            | N                   | 1.4e1          | <          | 1.5e1                                 | 1.4e1          |            | N                   | 1.3e1          | 1.1e1          |
| Nitrobenzene                                    | 98-95-1             | 5.1e0          | ار,>         | Р                   | 4.9e0              | <,J            | Р         | 6.5e0          | <,J         | P                   | 3.7e0          | <,J          | Р                   | 6.5e0          | <,J        | 7.3e0                                 | 6.5e0          | 1          | Р                   | 5.8e0          | 4.3e0          |
| 2-Nitrophenol                                   | 88-75-5             | 2.9e1          | <            | P                   | 1.3e1              | <,J            | Р         | 1.2e1          | <,J         | P                   | 1.6e1          | <,J          | P                   | 2.9e1          | <          | 3.3e1                                 | 2.9e1          | 1          | Р                   | 2.1e1          | 1.5e1          |
| 4-Nitrophenol                                   | 100-02-7            | 2.4e1          | ٧,>          | P                   | 1.8e1              | <              | N         | 2.0e1          | <           | N                   | 1.7e1          | <,J          | P                   | 2.4e1          | <,J        | 2.6e1                                 | 2.4e1          | •          | Р                   | 2.2e1          | 1.7e1          |
| 2,2'-Oxybis(1-chloropropane)                    | 108-60-1            | 4.5e0          | <            | N                   | 4.6e0              | <              | N         | 7.1e0          | <,J         | Р                   | 4.3e0          | <            | N                   | 7.1e0          | <,J        | 7.8e0                                 | 7.1e0          |            | Р                   | 5.8e0          | 4.4e0          |
| Pentachlorobenzene                              | 608-93-5            | 3.2e0          | <            | N I                 | 3.3e0              | <              | N         | 4.8e0          | <           | N                   | 3.1e0          | <            | N                   | 4.8e0          | <          | 5.3e0                                 | 4.8e0          |            | N<br>ti             | 4.0e0          | 3.2e0          |
| Pentachloronitrobenzene                         | 82-68-8             | 3.5e0          | <            | N I                 | 3.6e0              | <              | N         | 5.2e0          | <           | N                   | 3.4e0          | <            | N                   | 5.2e0          | <          | 5.6e0                                 | 5.2e0          |            | N                   | 4.3e0          | 3.5e0          |
| Pentachlorophenol                               | 87-86-5             | 9.6e1          | <            | N                   | 9.8e1              | <              | N I       | 1.0e2          | <           | N                   | 1.1e2          | <            | N                   | 1.1e2          | <          | 1.2e2                                 | 1.1e2          | ŀ          | N                   | 9.8e1          | 1.1e2          |
| Phenanthrene                                    | 85-01-8             | 3.1e0          | <            | N                   | 3.2e0              | < .            | <u>N</u>  | 5.5e0          | <,J         | P                   | 3.0e0          | < .          | N                   | 5.5e0          | ال,>       | 6.1e0                                 | 5.5e0          |            | P                   | 4.3e0          | 3.1e0          |
| Phenol                                          | 108-95-2            | 2.5e1          | <            | P                   | 1.2e1              | <,J            | P         | 1.1e1          | <,J         | Р                   | 1.2e1          | <,J          | P                   | 2.5e1          | <          | 2.8e1                                 | 2.5e1          |            | Р                   | 1.8e1          | 1.2e1          |
| Pyrene                                          | 129-00-0            | 3.2e0          | <            | N                   | 3.3e0              | <              | N         | 5.8e0          | <,J         | P                   | 3.1e0          | <b> </b>     | N                   | 5.8e0          | <,J        | 6.5e0                                 | 5.8e0          |            | P                   | 4.5e0          | 3.2e0          |
| Pyridine                                        | 110-86-1            | 5.4e0          | <            | N                   | 5.6e0              | < <            | N I       | 9.0e0          | <u> </u>    | N                   | 5.2e0          | <            | N                   | 9.0e0          | <          | 1.0e1                                 | 9.0e0          | - 1        | N                   | 7.2e0          | 5.4e0          |
| 1,2,4,5-Tetrachlorobenzene                      | 95-94-3             | 3.5e0          | <            | N<br>N              | 3.6e0              | <              | N<br>N    | 5.2e0          | <           | N<br>P              | 3.4e0          | <            | N<br>N              | 5.2e0          | <          | 5.6e0                                 | 5.2e0          | <b> </b> - | N<br>P              | 4.3e0          | 3.5e0<br>3.8e0 |
| 1,2,4-Trichlorobenzene<br>2,4,5-Trichlorophenol | 120-82-1<br>95-95-4 | 3.8e0          | < <          | N<br>N              | 3.9e0<br>8.2e0     | `              | N<br>N    | 5.5e0          | <,J<br><    |                     | 3.7e0          | · _          | N<br>N              | 5.5e0          | <,J<br><   | 5.9e0                                 | 5.5e0          | 1          | N                   | 4.7e0<br>8.7e0 | 7.9e0          |
| 2,4,5-1 nchlorophenol<br>2,4,6-Trichlorophenol  | 95-95-4<br>88-06-2  | 8.0e0<br>5.1e0 | <<br><       | N<br>N              | 5.2e0<br>5.2e0     | ~              | N         | 9.4e0<br>6.8e0 | <b>~</b>    | N<br>N              | 7.7e0<br>4.9e0 | <            | N                   | 9.4e0<br>6.8e0 | <b>~</b>   | 9.8e0<br>7.2e0                        | 9.4e0<br>6.8e0 |            | N I                 | 5.9e0          | 7.9e0<br>5.1e0 |
| z,+,o-monorophenor                              | 00-00-2             | 5. TeU         |              | 14                  | 3.2 <del>0</del> 0 | `              | iN.       | 0.080          | `           | 14                  | 4.5€∪          | `            | IN                  | 0.000          | `          | 7.2e0                                 | 0.860          |            | 14                  | 5.960          | 3.160          |

Table B-22. SVOC concentration-basis

| TICs                                                                                                  | CAS<br>Registry<br>Number                      | STRT-1                   |                         | Project<br>Specific<br>Flag | END-1                            |                                  | Project<br>Specific<br>Flag | STRT-2<br>µg/dscm       |                | Project<br>Specific<br>Flag | END-2<br>µg/dscm         |                         | Project<br>Specific<br>Flag | Max value<br>µgidsom              |                          | Aug+Ze<br>µg/dsom                | Results<br>µg/tsom                | Project<br>Specific<br>Flag | STRT Hure<br>Avgs<br>ug/dscm | Avgs.                            |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|-------------------------|-----------------------------|----------------------------------|----------------------------------|-----------------------------|-------------------------|----------------|-----------------------------|--------------------------|-------------------------|-----------------------------|-----------------------------------|--------------------------|----------------------------------|-----------------------------------|-----------------------------|------------------------------|----------------------------------|
| 1,3-Bercenedicarboxylic acid,<br>2,4-Hexadiene<br>2,5-Diethylphenol<br>2,Cyclohoxene-1-one, 3-methyl- | 1330-96-7<br>592-46-1<br>876-20-0<br>1193-18-6 |                          |                         |                             | 5.2e1                            | NJM                              | P                           | 2.7e0                   | N.J.Q          | P                           | 8.6e0<br>3.5e1<br>9.8e-1 | MTN<br>WTN              | p. p. a                     | 2.7e0<br>5.2e1<br>3.1e1<br>9.8e-1 | MT'N<br>MT'N<br>MT'N     | 9.2e1                            | 2.7e0<br>5.2e1<br>3.1e1<br>9.8e-1 | P P P                       | 2.7e0                        | 3.1e1<br>3.1e1<br>9.8e-1         |
| 2-hexanore<br>3-Hexanore<br>Beroskitchyde<br>Beroskitchyde, 4-ethyl-                                  | 591-78-6<br>589-30-8<br>100-52-7<br>4748-78-1  | 7.4e1<br>6.1e1<br>3.5e2  | M,LM<br>M,LM<br>M,LM    | P<br>P                      | 3.9e1<br>3.1e1<br>2.4e2<br>1.9e1 | M,L,M<br>M,L,M<br>M,L,M<br>M,L,M | 200                         | 3.1e1<br>2.2e2          | NJ,M<br>NJ,M   | P                           | 2.2e1<br>2.2e2           | N.I.M<br>M.I.M          | P                           | 7,4e1<br>6,1e1<br>3,5e2<br>1,9e1  | MLN<br>MLN<br>MLN        | 1.0e2<br>7.0e1<br>3.6e2          | 7,4e1<br>6.1e1<br>3.5e2<br>1.9e1  | PPP                         | 7.4e1<br>4.6e1<br>2.8e2      | 3.9e1<br>2.6e1<br>2.3e2<br>1.9e1 |
| Berozidehyde, ethyl-<br>Berozojejpyrene<br>Cyclododecane<br>Dodecane                                  | 53951-50-1<br>192-97-2<br>294-62-2<br>112-40-3 | 9.9e0<br>2.1e1           | M,LM<br>M,LM            | P                           | 9.8e0<br>1.6e1                   | NJ,M<br>NJ,M                     | p                           | 4.5e0<br>1.8e0<br>1.8e1 | N.Y.W<br>N.Y.O | 0.00                        | 1.6e1<br>4.0e0<br>1.1e1  | N,I,M<br>N,I,M<br>M,I,M | P                           | 1.9e1<br>4.5e0<br>9.9e0<br>2.1e1  | ML/A<br>ML/A<br>ML/A     | 1.5e1<br>2.5e1                   | 1.9e1<br>4.5e0<br>9.9e0<br>2.1e1  | 0 0 0 0                     | 4.5e0<br>5.9e0<br>2.0e1      | 1.9e1<br>6.9e0<br>1.4e1          |
| Elcosane<br>Formic acid, phenylmethyl ester<br>Furan, 2,5-dimethyl-<br>Henelcosane                    | 112-95-8<br>104-57-4<br>625-86-5<br>629-94-7   | 2.0e0<br>4.5e0<br>6.4e-1 | N.J.M<br>N.J.M          | 0 0 0                       | 2.4e1<br>2.6e0                   | NJM                              | P                           | 3.2e0                   | N,J,M          | P                           | 5.6e0<br>2.9e1<br>2.8e0  | MLN<br>MLN              | P                           | 5.8e0<br>2.9e1<br>4.5e0<br>2.6e0  | MLW<br>MLW<br>MLW<br>MLW | 9.4e0<br>3.4e1<br>5.4e0<br>4.8e0 | 5.8e0<br>2.9e1<br>4.5e0<br>2.8e0  | 200                         | 2.0e0<br>3.8e0<br>6.4e-1     | 5.5e0<br>2.6e1<br>2.6e0<br>2.8e0 |
| Heptacosane<br>Heptadocane<br>Heptane, 2,3-dimethyl-<br>Heptane, 2,5-dimethyl-                        | 593-49-7<br>629-78-7<br>3074-71-3<br>2216-30-0 | 2.8e0                    | M,I,M                   | P                           | 1.3e0<br>3.2e0                   | N.I.M<br>N.I.M                   | P<br>P                      | 2.360                   | N.J.M          | p                           | 2.6e1                    | N,J,M                   | P                           | 2.5e1<br>2.5e0<br>3.2e0<br>2.3e0  | MLM<br>MLM<br>MLM<br>MLM | 4.3+0                            | 2.6e1<br>2.6e0<br>3.2e0<br>2.3e0  | 0.0.0                       | 2.8e0<br>2.3e0               | 2.6e1<br>1.3e0<br>3.2e0          |
| Hesacosane<br>Hesadecanoic acid<br>Hesanedicic acid, bis(2-ethylh)<br>Hesatriacontane                 | 630-01-3<br>57-10-3<br>103-23-1<br>630-06-8    | 1.7e0                    | M,I,M                   | Р                           |                                  |                                  |                             | 3.2e0                   | N,J,Q          | P                           | 2.0e1                    | NJM                     | P                           | 2.0e1<br>1.7e0<br>3.2e0<br>1.8e0  | MLM<br>DLM<br>MLM        |                                  | 2.0e1<br>1.7e0<br>3.2e0<br>1.8e0  | 9 9                         | 1.7e0<br>3.2e0               | 2.0e1                            |
| Naphthalene, 1-methyl-<br>Octadecanoic acid<br>Octane, 3-methyl-<br>Pentacosane                       | 90-12-0<br>57-11-4<br>2216-33-3<br>629-99-2    | 1.2e0<br>2.5e0           | NJ,M                    | P                           | 6.5e-1                           | M,L,M                            | P                           | 2.5e0                   | D,L,M          | р                           | 1.1e1                    | NJM                     | P                           | 2.5e0<br>1.2e0<br>2.5e0<br>1.1e1  | MLM<br>MLM<br>MLM        | 1.6e0                            | 2.5e0<br>1.2e0<br>2.5e0<br>1.1e1  | p<br>p<br>p                 | 2.5e0<br>1.2e0<br>2.5e0      | 6.5e-1<br>1.1e1                  |
| Pertadecane<br>Phosphine oxide, triphenyl-<br>Phosphoric acid tributyl ester<br>Tetracospres          | 629-62-9<br>791-28-6<br>126-73-8<br>646-31-1   | 4.5e0<br>2.6e0<br>7.4e0  | M'T'N<br>M'T'N<br>M'T'N |                             | 5.2eG                            | NJM                              | Р                           |                         |                |                             | 7.4e0<br>8.0e0           | N.I.M<br>N.I.M          | 0.0                         | 4.8e0<br>2.8e0<br>7.4e0<br>8.0e0  | NJM<br>NJM<br>NJM        | 7.9e0<br>9.1e0                   | 4.8e0<br>2.8e0<br>7.4e0<br>8.0e0  | P<br>P<br>P                 | 4.8e0<br>2.8e0<br>7.4e0      | 1.4eG<br>6.3eG<br>8.0eG          |
| Tetradecane<br>Tetratetracontane<br>Tridecane                                                         | 629-59-4<br>7096-22-8<br>629-50-5              | 2.8e0<br>2.1e0<br>5.4e0  | MALM                    | P                           | 3.1e1<br>6.9e0                   | N.J.M<br>N.J.M                   | P                           | 1.5e1<br>5.5e0          | NJ,M           | P                           | 3.0e1<br>6.5e0           | M.L.N                   | P                           | 3.1e1<br>2.1e0<br>6.9e0           | N,JM<br>N,JM             | 4.7u1<br>7:3e0                   | 3.1e1<br>2.1e0<br>6.9e0           | p<br>p                      | 1,0e1<br>2,1e0<br>6,1e0      | 3.1e1<br>6.7e0                   |

Table B-23. 0031 concentration-basis.

| Marche March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969   March 1969  | Table B-23. 0031 concentration | CAS                                     | STRT-1      | П   | Project     | END-1  | Ē   | Project      | STRT-2 | 71   | Project  | END-2  | 77    | Project  | Max value | _    | Avg+2σ 🔟                              | Results |      | Project | STRIRUN | END Run |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|-------------|-----|-------------|--------|-----|--------------|--------|------|----------|--------|-------|----------|-----------|------|---------------------------------------|---------|------|---------|---------|---------|
| Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyte                        | Registry<br>Number                      |             | ~~  | Specific    |        | lag | Specific     |        | Flag | Specific |        | Flag  | Specific |           | Flag | - 0)                                  |         | Flag |         |         |         |
| Accordance   17-14-1   3.60   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N   3.90   c   N  | Acetone                        |                                         | 8.9e1       | В   | <del></del> | 9.2e1  | В   |              | 6.3e1  | J,B  |          | 4.8e1  | <,J,B |          | 6.3e1     | J.B  | 1.2e2                                 | 6.3e1   | J.B  |         |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acrylonitrile                  | 107-13-1                                | 3.5e1       | <   | N           | 3.6e1  | <   | N            | 3.5e1  |      | N        |        |       | N        | 1         |      |                                       |         |      |         | 3.5e1   | 3.6e1   |
| Binney Commonwhale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzene                        | 71-43-2                                 | 4.9e0       | <   | P           | 3.1e0  | <   | P            | 2.8e0  | <,J  | Р        | 2.6e0  | <     | P        | 4.9e0     | <    | 5.5e0                                 | 4.9e0   | <    | Р       | 3.9e0   | 2.8e0   |
| Binomothermethene   72,574   5,60   c   N   1,50   c   N   1,50   c   N   1,50   c   N   1,50   c   N   1,50   c   N   1,50   c   N   1,50   c   N   1,50   c   N   1,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50   c   N   2,50    | Bromobenzene                   | 108-86-1                                | 1.5e0       | <   | N           | 1.5e0  | <   | N            | 1.5e0  | <    | N        | 1.5e0  | <     | N        | 1.5e0     | <    | 1.6e0                                 | 1.5e0   | <    | N I     | 1.5e0   | 1.5e0   |
| Secondary   7-55-2   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N   2-20   C   N    | Bromochloromethane             |                                         | 1.9e0       | <   | N           | 1.9e0  | <   | N            | 1.9e0  | <    | N        | 1.9e0  | <     | N        | 1.9e0     | <    | 1.9e0                                 | 1.9e0   | <    | N       | 1.9e0   | 1.9e0   |
| State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bromodichloromethane           |                                         |             | <   |             |        |     | N            |        | <    |          | 1.5e0  | <     | N        | 1.5e0     | <    | 1.6e0                                 | 1.5e0   | <    | N       | 1.5e0   | 1.5e0   |
| 28-bissone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B .                            |                                         |             |     |             | L      |     | 1            |        |      |          |        |       |          | 1         | <    | B .                                   |         | <    |         |         |         |
| nellythemeners   159-64   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159-07   159- |                                | -                                       | <del></del> |     |             |        |     |              |        |      |          |        |       | <u> </u> |           |      | · · · · · · · · · · · · · · · · · · · |         |      |         |         |         |
| See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-Euglymanne   See-   |                                |                                         |             |     |             |        |     |              |        |      |          |        |       |          | 1         |      |                                       |         |      |         |         |         |
| wite Suppliescrapes  88-06-6  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05  1761-05   | •                              |                                         |             |     |             |        |     |              |        |      |          |        |       |          | 1         |      | I .                                   |         |      | 1       |         |         |
| Garbon estudiate  67-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70  77-76-70 | 1                              | 1                                       | i .         |     |             |        |     | 1 ''         |        |      |          |        |       |          |           |      |                                       |         |      |         |         | 1       |
| Carbon intendivoted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                              |                                         | <b>.</b>    |     |             |        |     |              |        |      |          |        |       |          | 1         |      |                                       | 1       |      |         |         |         |
| Chlorothermore   124-841   1.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                         |             |     |             |        |     | l ' l        |        |      | i '      |        |       |          |           |      |                                       |         |      |         |         |         |
| Chlorophomorethame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                         |             |     | i           |        |     |              |        |      |          |        |       | 1        | •         |      |                                       |         |      |         |         |         |
| Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Coll   |                                |                                         |             |     |             |        |     |              |        |      |          |        |       | i i      |           |      | l.                                    |         |      |         |         |         |
| Chlorodom 67663 3060 < J P S.160 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00 < P P 5.00  |                                |                                         |             | <.J |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| Collectomethane 9.4-99 1.5e1 J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J P 3.7e1 < J | Chloroform                     |                                         |             |     |             |        |     | P            |        |      |          |        |       |          |           |      |                                       |         |      |         | 1 1     |         |
| 2-Chiocotolusee 96-49-8 73-01 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N 7-59-1 < N | Chloromethane                  |                                         |             |     | P           |        |     | <sub>P</sub> |        |      |          |        |       |          |           |      |                                       |         |      |         | 1       |         |
| 4-Chierotelanen 106-434 7,3-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7,5-1 < N 7, | 2-Chlorotoluene                | •                                       |             | -   | N           |        |     | N            |        |      |          | i e    |       | N        |           |      |                                       |         |      | N       | 1       | 1       |
| 12-Disconnections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-Chlorotoluene                | 106-43-4                                | 7.3e-1      | <   | N           | 7.5e-1 | <   | N            |        | <    |          |        | <     | N        |           |      |                                       | 4       |      |         |         |         |
| Distromomenhane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2-Dibromo-3-chloropropane    | 96-12-8                                 | 3.3e0       | <   | N           | 3.6e0  | <   | N            | 3.5e0  | <    | N        | 3.4e0  | <     | N        | 3.6e0     | <    | 3.7e0                                 | 3.6e0   | <    | N       | 3.4e0   | 3.5e0   |
| 1,2-Dichroreheremen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-Dibromoethane              | 106-93-4                                | 2.5e0       | <   | N           | 2.6e0  | <   | N            | 2.5e0  | <    | N        | 2.6e0  | <     | N        | 2.6e0     | <    | 2.6e0                                 | 2.6e0   | <    | N       | 2.5e0   | 2.6e0   |
| 1,3-Dichtoropeneme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dibromomethane                 |                                         |             | <   |             |        | <   | N            | 2.1e0  | <    | N        | 2.2e0  | <     | N        | 2.2e0     | <    | 2.2e0                                 | 2.2e0   | <    | N       | 2.1e0   | 2.2e0   |
| 1.4-Dichrorbenzemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .,                             |                                         | 1           | <   |             |        | <   |              | 2.3e0  | <    |          | 2.3e0  | <     |          | 2.3e0     | <    | 2.3e0                                 | 2.3e0   | <    |         | 2.2e0   | 2.3e0   |
| Dichlorodifucomethane   75-71-8   32-80   <   P   2.0e0   <   P   2.5e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <    | 1                              | 1                                       |             |     |             |        |     |              |        |      |          | i      |       |          |           |      |                                       |         | <    |         |         |         |
| 11-Dichloremane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                         |             |     |             |        |     |              |        |      |          |        |       |          |           |      | 1                                     | 1       |      |         |         |         |
| 12-Dichforcethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                         |             |     |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| 11-Dichforophene   75-35-4   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P   2.0e0   <   P     |                                |                                         |             |     |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| 1986-99-2   1.9e0   x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I '                            |                                         |             |     |             |        |     |              |        |      |          |        |       |          | 1         |      |                                       |         |      |         |         |         |
| Tams-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 *                            |                                         |             |     | 1 '         |        |     |              |        |      |          |        |       |          |           |      |                                       | B .     |      | ''      |         |         |
| 12-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                         |             |     |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| 13-Dichloropropage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                              |                                         | 1           |     |             |        |     |              |        |      |          |        |       |          | •         |      |                                       |         |      |         |         |         |
| 22-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 1                                       |             |     | 1           |        |     | N            |        |      |          |        |       |          |           |      |                                       |         |      | N       |         |         |
| 1.1-Dichloropropen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                         |             |     |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| clis-13-Dichloropropee         1061-01-5         1.8e0          N         1.7e0          N         1.7e0          N         1.7e0          N         1.7e0          N         1.7e0          N         1.9e0          N         2.9e0          N         1.9e0          N         2.9e0          N         2.9e0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                         |             | <   |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| Trans-1,3-Dichloropropene   10061-02-6   1,9e0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | 10061-01-5                              | i e         | <   | N           |        | <   | N            |        | <    | N        |        | <     | N        |           | <    | i e                                   |         |      |         |         |         |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trans-1,3-Dichloropropene      | 10061-02-6                              | 1.9e0       | <   | N           | 1.9e0  | <   | N            | 1.9e0  | <    | N        | 1.9e0  | <     | N        |           | <    | 1.9e0                                 |         | <    | N       | 1.9e0   | 1.9e0   |
| 2-Hexanore 591-78-6 8.9e0 < N 7.1e0 < N 7.0e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0 < N 7.1e0  | Ethylbenzene                   | 100-41-4                                | 1.2e0       | <   | N           | 1.2e0  | <   | N            | 1.2e0  | <    | N        | 1.2e0  | <     | N        | 1.2e0     | <    | 1.2e0                                 | 1.2e0   | <    | N       | 1.2e0   | 1.2e0   |
| Septemble   98.82-8   8,7e-1   C   N   8.9e-1   C   N   8.8e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   8.9e-1   C   N   7.9e   C   N   7.9e   C   N   7.9e   C   N   7.9e   C   N   7.9e   C   N   7.9e   C   N   7.9e   C   N   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   7.9e   C   | Hexachlorobutadiene            | 87-68-3                                 | 2.7e0       | <   | N           | 2.8e0  | <   | N            | 2.8e0  | <    | N        | 2.9e0  | <     | N        | 2.9e0     | <    | 3.0e0                                 | 2.9e0   | <    | N       | 2.7e0   | 2.9e0   |
| p-Isopropytoluene 99-87-6 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N 1.4e0 < N  | 2-Hexanone                     |                                         | 6.9e0       | <   |             | 7.1e0  | <   | N            | 7.0e0  | <    | N        | 7.1e0  | <     | N        | 7.1e0     | <    | 7.3e0                                 | 7.1e0   | <    | N       | 7.0e0   | 7.1e0   |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Isopropylbenzene               |                                         |             |     |             |        |     |              |        | <    |          | 8.9e-1 | <     | N        | 8.9e-1    | <    | 9.1e-1                                | 8.9e-1  | <    |         |         |         |
| 4-Methyl-2-pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | ~ · · · · · · · · · · · · · · · · · · · |             |     |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| Naphthalene 91-20-3 2.6e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0 < N 2.7e0  | 1 '                            |                                         |             |     |             |        |     | l 1          |        |      |          |        |       |          |           |      |                                       | 1       |      |         |         | 1       |
| 103-65-1   8.3e-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                         |             |     |             | _      |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| Styrene   100-42-5   9.7e-1   <   N   1.0e0   <   N   9.8e-1   <   N   9.9e-1   <   N   1.0e0   <   N   9.9e-1   <   N   1.0e0   <   N   9.7e-1   <   N   1.0e0   <   N   9.7e-1   <   N   1.0e0   <   N   9.7e-1   <   N   1.0e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N   1.3e0   <   N      | B '                            |                                         |             |     |             |        |     |              |        |      | 1        |        | - 1   |          |           |      |                                       |         |      |         |         |         |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                         |             |     |             | ~      | _   |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                         |             |     |             |        |     |              |        |      |          |        |       | ,,,      |           |      |                                       |         |      |         | 1       | 1       |
| Tetrachloroethene 127-18-4 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N 1.9e0 < N |                                |                                         |             |     |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| Toluene 108-88-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ., ., .,                       |                                         |             |     |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                         |             |     |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                         |             |     |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2,4-Trichlorobenzene         |                                         |             |     |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         | 1 1     |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1-Trichloroethane          |                                         |             | <   |             |        |     |              |        | •    |          |        |       |          |           |      |                                       |         |      |         |         |         |
| Trichloroethene 79-01-6 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2.0e0 < N 2. | 1,1,2-Trichloroethane          |                                         |             | <   |             | ··-    | <   |              |        | <    |          |        | <     |          |           | <    |                                       |         | <    |         |         |         |
| 1,2,3-Trichloropropane       96-18-4       3.0e0        N       3.1e0        N       1.3e0        N       1.3e0        N       1.3e0        N       1.3e0        N       7.5e-1        N       7.5e-1        N       7.5e-1        N       7.5e-1        N       7.5e-1        N       7.5e-1        N       7.5e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trichloroethene                | 79-01-6                                 | 2.0e0       | <   | N           | 2.0e0  | <   | N            | 2.0e0  | <    | N        |        | <     | N        |           | <    |                                       |         | <    | N       | 2.0e0   | 2.0e0   |
| 1,2,4-Trimethylbenzene 95-63-6 1.2e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 < N 1.3e0 | Trichlorofluoromethane         | 75-69-4                                 | 2.0e0       | ٧,> |             | 2.0e0  | <,J | Р            | 2.0e0  | <,J  | P        | 2.0e0  | <,J   | Ρ        | 2.0e0     | <,J  | 2.1e0                                 | 2.0e0   | <,J  | Р       | 2.0e0   | 2.0e0   |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-Trichloropropane         |                                         | 3.0e0       | <   |             | 3.1e0  | <   |              | 3.0e0  |      | <u>N</u> | 3.1e0  | <     | N        | 3.1e0     |      | 3.1e0                                 | 3.1e0   |      | N       | 3.0e0   | 3.1e0   |
| Vinyl chloride 75-01-4 1.6e0 <,J P 2.3e0 <,J P 1.6e0 <,J P 2.2e0 <,J P 2.3e0 <,J P 2.3e0 <,J P 2.3e0 <,J P 1.6e0 2.2e0   m-Xylene & p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2,4-Trimethylbenzene         |                                         |             | <   |             |        |     |              | 1.3e0  | <    | N        | 1.3e0  | <     | N        | 1.3e0     | <    | 1.3e0                                 | 1.3e0   | <    | N       | 1.2e0   |         |
| m-Xylene & p-Xylene 136777-61-2 5.4e0 < N 5.6e0 < N 5.5e0 < N 5.6e0 < N 5.6e0 < 5.7e0 5.6e0 < N 5.5e0 5.6e0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,3,5-Trimethylbenzene         |                                         |             |     |             |        |     |              |        | - 1  |          |        |       |          |           |      |                                       |         | <    |         |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vinyl chloride                 |                                         |             |     |             |        |     | -            |        |      | - 1      |        |       | ,        |           |      |                                       |         |      |         |         |         |
| o-xyiene 95-47-6 9.5e-1 < N 1.0e0 <,J P 9.8e-1 < N 9.8e-1 < J P 1.0e0 <,J 1.0e0   1.0e0 <,J P 9.6e-1 9.9e-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m-Xylene & p-Xylene            |                                         |             |     |             |        |     |              |        |      |          |        |       |          |           |      |                                       |         |      |         |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o-Xylene                       | 95-47-6                                 | 9.5e-1      | <   | N           | 1.0e0  | <,J | Р            | 9.8e-1 | <    | N        | 9.8e-1 | <,J   | Р        | 1.0e0     | <,J  | 1.0e0                                 | 1.0e0   | <,J  | Р       | 9.6e-1  | 9.9e-1  |

Table B-23. 0031 concentration-basis.

| TICs                           | CAS<br>Registry<br>Number | STRT-1<br>µg/dscm |       | Project<br>Specific<br>Flag | END-1<br>μg/dscm | Flag  | Project<br>Specific<br>Flag | STRT-2<br>µg/dscm | Flag  | Project<br>Specific<br>Flag | END-2<br>μg/dscm | Flag  | Project<br>Specific<br>Flag | Max value<br>μg/dscm | Flag  | Avg+2σ<br>μg/dscm   | Flag | Results<br>μg/dscm | Flag  | Project<br>Specific<br>Flag | STRT Run<br>Avgs<br>µg/dscm | END Run<br>Avgs<br>µg/dscm |
|--------------------------------|---------------------------|-------------------|-------|-----------------------------|------------------|-------|-----------------------------|-------------------|-------|-----------------------------|------------------|-------|-----------------------------|----------------------|-------|---------------------|------|--------------------|-------|-----------------------------|-----------------------------|----------------------------|
| 1-Heptene                      | 592-76-7                  | 6.7e-1            | N,J,M | Р                           |                  |       |                             |                   |       |                             |                  |       |                             |                      | N,J,M |                     |      | 6.7e-1             | N,J,M | Р                           | 6.7e-1                      |                            |
| Benzonitrile                   | 100-47-0                  |                   |       |                             | 2.4e0            | N,J,M | Р                           | 9.0e-1            | N,J,M | P                           | 6.0e-1           | N,J,M | Р                           | 2.4e0                | N,J,M | 3.3e0               | - 1  | 2.4e0              | N,J,M | Р                           | 9.0e-1                      | 1.5e0                      |
| Butane, 1-chloro-              | 109-69-3                  | 7.1e-1            | N,J,M | P                           | l                |       |                             |                   |       |                             |                  |       |                             | 7.1e-1               | N,J,M |                     | - 1  | 7.1e-1             | N,J,M | Р                           | 7.1e-1                      |                            |
| Cyclobutane, ethenyl-          | 2597-49-1                 | L                 |       |                             | 1.5e0            | N,J,M | P                           |                   |       |                             |                  |       |                             | 1.5e0                | N,J,M |                     |      | 1.5e0              | N,J,M | P                           | 1 1                         | 1.5e0                      |
| Cyclohexane, hexyl-            | 4292-75-5                 | 7.3e-1            | N,J,M | Р                           |                  |       |                             |                   |       |                             |                  |       |                             | 7.3e-1               | N,J,M |                     |      | 7.3e-1             | N,J,M | Р                           | 7.3e-1                      |                            |
| Cyclohexane, methyl-           | 108-87-2                  | 1.4e0             | N,J,M | P                           | 2.6e0            | N,J,M | Р                           | 2.5e0             | N,J,M | Р                           | 1.5e0            | N,J,M | Р                           | 2.6e0                | N,J,M | 3.2e0               |      | 2.6e0              | N,J,M | Р                           | 1.9e0                       | 2.0e0                      |
| Cyclohexene                    | 110-83-8                  | 1.2e0             | N,J,M | Р                           | 4.6e-1           | N,J,M | Р                           | 2.3e0             | N,J,M | P                           | 3.3e-1           | N,J,M | Р                           | 2.3e0                | N,J,M | 2.8e0               |      | 2.3e0              | N,J,M | Р                           | 1.7e0                       | 4.0e-1                     |
| Cyclopentane, 1,2-dimethyl-    | 2452-99-5                 |                   |       |                             | l                |       |                             | 6.6e-1            | N,J,M | P                           |                  |       |                             | 6.6e-1               | N,J,M | 9.9 <del>e</del> -1 |      | 6.6e-1             | N,J,M | Р                           | 3.3e-1                      | 1 1                        |
| Cyclopentane, 1,2-dimethyl-, t | 822-50-4                  |                   |       | i                           | 1.0e0            | N,J,M | Р                           |                   |       |                             | 3.8e-1           | N,J,M | Р                           | 1.0e0                | N,J,M | 1.6e0               |      | 1.0e0              | N,J,M | Р                           |                             | 7.0e-1                     |
| Cyclopentane, ethyl-           | 1640-89-7                 | 3.5e-1            | N,J,M | P                           | 5.2e-1           | N,J,M | Р                           | 4.5e-1            | N,J,M | Р                           |                  |       |                             | 5.2e-1               | N,J,M | 7.9e-1              |      | 5.2e-1             | N,J,M | Р                           | 4.0e-1                      | 2.6e-1                     |
| Decane                         | 124-18-5                  | 1.5e0             | N,J,M | P                           |                  |       |                             |                   |       |                             |                  |       |                             | 1.5e0                | N,J,M |                     |      | 1.5e0              | N,J,M | Р                           | 1.5e0                       | 1 1                        |
| Decane, 2,2,5-trimethyl-       | 62237-96-1                |                   |       |                             |                  |       |                             | 7.5e-1            | N,J,M | Р                           |                  |       |                             | 7.5e-1               | N,J,M |                     |      | 7.5e-1             | N,J,M | Р                           | 7.5e-1                      | 1 1                        |
| Decane, 2,9-dimethyl-          | 1002-17-1                 | 7.9e-1            | N,J,M | Р                           |                  |       |                             |                   |       |                             |                  |       |                             | 7.9e-1               | N,J,M |                     |      | 7.9e-1             | N,J,M | Р                           | 7.9e-1                      |                            |
| Dodecane                       | 112-40-3                  | 3.8e2             | N,J,M | P                           | 3.3e2            | N,J,M | Р                           | 2.8e2             | N,J,M | Р                           | 2.2e2            | N,J,M | Р                           |                      | N,J,M | 4.5e2               |      | 3.8e2              | N,J,M | Р                           | 3.3e2                       | 2.7e2                      |
| Dodecane, 6-methyl-            | 6044-71-9                 |                   |       |                             |                  |       |                             | 6.5e-1            | N,J,M | Р                           |                  |       |                             |                      | N,J,M |                     |      | 6.5e-1             | N,J,M | Р                           | 6.5e-1                      |                            |
| Hexadecane                     | 544-76-3                  |                   |       |                             | 2.7e0            | N,J,M | Р                           |                   |       |                             |                  |       |                             | 2.7e0                | N,J,M |                     |      | 2.7e0              | N,J,M | P                           | 1 1                         | 2.7e0                      |
| Hexane, 2,4-dimethyl-          | 589-43-5                  | 1.4e0             | N,J,M | Р                           | 2.3e0            | N,J,M | Р                           | 2.5e0             | N,J,M | Р                           | 1.2e0            | N,J,M | Р                           | 2.5e0                | N,J,M | 3.2e0               |      | 2.5e0              | N,J,M | Р                           | 1.9e0                       | 1.7e0                      |
| Hexane, 2-methyl-              | 591-76-4                  | 2.1e0             | N,J,M | P                           | 4.0e0            | N,J,M | Р                           | 3.8e0             | N,J,M | Р                           | 3.1e0            | N,J,M | Р                           | 4.0e0                | N,J,M | 4.9e0               | - 1  | 4.0e0              | N,J,M | Р                           | 2.9e0                       | 3.5e0                      |
| Hexane, 3-methyl-              | 589-34-4                  | 4.7e0             | N,J,M | Р                           | 9.7e0            | N,J,M | Р                           | 3.4e0             | N,J,M | Р                           | 4.3e0            | N,J,M | Р                           | 9.7e0                | N,J,M | 1.1e1               |      | 9.7e0              | N,J,M | Р                           | 4.0e0                       | 7.0e0                      |
| Methane, trichloronitro-       | 76-06-2                   | į                 |       |                             | 4.6e0            | N,J,M | Р                           |                   |       |                             |                  |       |                             | 4.6e0                | N,J,M |                     |      | 4.6e0              | N,J,M | Р                           | 1 1                         | 4.6e0                      |
| Octane                         | 111-65-9                  | 3.3e-1            | N,J,M | Р                           |                  |       |                             |                   |       |                             |                  |       |                             |                      | N.J.M |                     |      | 3.3e-1             | N,J,M | Р                           | 3.3e-1                      |                            |
| Pentane, 2,3-dimethyl-         | 565-59-3                  | 2.2e0             | N,J,M | Р                           | 4.0e-1           | N,J,M | Р                           | 1.4e0             | N,J,M | Р                           | 1.8e0            | N,J,M | Р                           | 2.2e0                | N,J,M | 3.0e0               | 1    | 2.2e0              | N,J,M | Р                           | 1.8e0                       | 1.1e0                      |
| Pentane, 3,3-dimethyl-         | 562-49-2                  |                   |       |                             | 7.5e-1           | N,J,M | Р                           |                   |       |                             |                  |       |                             |                      | N.J.M | 9.4e-1              | ı    | 7.5e-1             | N,J,M | Р                           |                             | 3.8e-1                     |
| Pentane, 3-ethyl-              | 617-78-7                  |                   |       |                             |                  |       |                             | 4.3e-1            | N,J,M | Р                           | 4.1e-1           | N.J.M | Р                           | 4.3e-1               | N,J,M | 6.9e-1              | I    | 4.3e-1             | N,J,M | Р                           | 2.1e-1                      | 2.0e-1                     |
| Tetradecane                    | 629-59-4                  | 1.4e0             | N,J,M | Р                           | 1.3e1            | N,J,M | P                           | 1.2e1             | N,J,M | Р                           | 1.8e1            | N,J,M | P                           |                      | N.J.M | 2.5e1               |      | 1.8e1              | N,J,M | Р                           | 6.8e0                       | 1.5e1                      |
| Tridecane                      | 629-50-5                  | 3.5e1             | N,J,M | Р                           | 4.0e1            | N,J,M | Р                           | 1.0e0             | N,J,M | P                           | 4.0e1            | N,J,M | P                           |                      | N,J,M | 6.6e1               |      | 4.0e1              | N,J,M | Р                           | 1.8e1                       | 4.0e1                      |
| Undecane                       | 1120-21-4                 | 1.2e1             | N,J,M | Р                           | 6.4e0            | N,J,M | Р                           | 3.0e0             | N,J,M | Р                           | 1.5e0            | N,J,M | P                           |                      | N,J,M | 1.5e1               |      | 1.2e1              | N J M | P                           | 7.7e0                       | 4.0e0                      |
| Undecane, 2,6-dimethyl-        | 17301-23-4                | 1.4e0             | N,J,M | Р                           |                  |       |                             | 5.8e-1            | N,J,M | Р                           | 1.1e0            | N,J,M | P                           |                      | N,J,M | 1.8e0               |      | 1.4e0              | N,J,M | P                           | 9.7e-1                      | 1.1e0                      |
| Undecane, 5-methyl-            | 1632-70-8                 | 7.9e0             | N,J,M | Р                           | 2.3e0            | N,J,M | P                           | 2.6e0             | N,J,M | Р                           | 2.3e0            | N,J,M | P                           |                      | N,J,M | 9.3e0               |      | 7.9e0              | N,J,M | Р                           | 5.3e0                       | 2.3e0                      |

Table B-24. 0050 concentration-basis.

| Analyte                                | STRT-1<br>ppmv, dry | Flag   | END-1<br>ppmv, dry | Flag   | STRT-2<br>ppmv, dry | Flag   | END-2<br>ppmv, dry | 0)     | Max value<br>ppmv, dry | Flag   | Avg+2o ፲<br>ppmv, dry 🚨 | Results<br>ppmv, dry | Flag   | STRT<br>Run Avgs<br>ppmv, dry | END Run<br>Avgs<br>ppmv, dry |
|----------------------------------------|---------------------|--------|--------------------|--------|---------------------|--------|--------------------|--------|------------------------|--------|-------------------------|----------------------|--------|-------------------------------|------------------------------|
| Chloride (as HCl)<br>Chloride (as Cl2) | 6.1e-1<br>3.1e-2    | B<br>< | 5.7e-1<br>5.7e-2   | B<br>B | 6.4e-1<br>3.2e-2    | B<br>< | 6.2e-1<br>3.2e-2   | B<br>< | 6.4e-1<br>5.7e-2       | B<br>B | 6.7e-1<br>6.4e-2        | 6.4e-1<br>5.7e-2     | B<br>B | 6.3e-1<br>3.2e-2              | 6.0e-1<br>4.5e-2             |
| Particulate                            | mg/dscm<br>1.1e0    | В      | mg/dscm<br>8.6e-1  | В      | mg/dscm<br>3.7e-1   |        | mg/dscm<br>2.6e-1  | В      | mg/dscm<br>1.1e0       | В      | mg/dscm<br>1.5e0        | mg/dscm<br>1.1e0     | В      | mg/dscm<br>7.4e-1             | mg/dscm<br>5.6e-1            |

Table B-25, 0060 concentration-basis.

| Analyte        | CAS<br>Registry<br>Number | STRT-1<br>µg/dscm | Flag | Project<br>Specific<br>Flags | END-1<br>µg/dscm | Flag | Project<br>Specific<br>Flags | STRT-2<br>µg/dscm | Flag | Project<br>Specific<br>Flags | END-2<br>µg/dscm | Flag | Project<br>Specific<br>Flags | Max value<br>µg/dscm | ~~  | Avg+2o ਜ਼ੁ<br>µg/dscm o | Results<br>µg/dscm | Flag | Project<br>Specific<br>Flag | STRT<br>Run Avgs<br>µg/dscm | END Run<br>Avgs<br>μg/dscm |
|----------------|---------------------------|-------------------|------|------------------------------|------------------|------|------------------------------|-------------------|------|------------------------------|------------------|------|------------------------------|----------------------|-----|-------------------------|--------------------|------|-----------------------------|-----------------------------|----------------------------|
| Aluminum (AI)  | 7429-90-5                 | 4.6e1             |      | Α                            | 7.4e1            |      | Α                            | 2.3e1             |      | Α                            | 2.4e1            |      | Α                            | 7.4e1                |     | 9.0e1                   | 7.4e1              |      | Α                           | 3.4e1                       | 4.9e1                      |
| Antimony (Sb)  | 7440-36-0                 | 1.5e0             | В    | A                            | 1.4e0            | В    | Α                            | 1.4e0             | В    | Α                            | 1.3e0            | В    | Α                            | 1.5e0                | В   | 1.5e0                   | 1.5e0              |      | Α                           | 1.4e0                       | 1.4e0                      |
| Arsenic (As)   | 7440-38-2                 | 5.2e-1            | <,B  | Р                            | 4.4e-1           | <    | N                            | 4.9e-1            | <    | N                            | 5.2e-1           | <    | N                            | 5.2e-1               | <,B | 5.7e-1                  | 5.2e-1             |      | Р                           | 5.1e-1                      | 4.8e-1                     |
| Barium (Ba)    | 7440-39-3                 | 2.2e0             | В    | A                            | 2.7e0            | В    | Α                            | 1.6e0             | В    | A                            | 1.5e0            | В    | Α                            | 2.7e0                | В   | 3.2e0                   | 2.7e0              |      | Α                           | 1.9e0                       | 2.1e0                      |
| Beryllium (Be) | 7440-41-7                 | 2.1e-1            | <,B  | Р                            | 1.8e-1           | <,B  | Р                            | 2.0e-1            | <,B  | Р                            | 2.1e-1           | <,B  | P                            | 2.1e-1               | <,B | 2.3e-1                  | 2.1e-1             |      | Р                           | 2.1e-1                      | 2.0e-1                     |
| Cadmium (Cd)   | 7440-43-9                 | 1.5e-1            | В    | A                            | 2.2e-1           | B    | Α .                          | 8.2e-2            | <,B  | P                            | 8.8e-2           | <    | N                            | 2.2e-1               | В   | 2.7e-1                  | 2.2e-1             |      | Р                           | 1.2e-1                      | 1.6e-1                     |
| Chromium (Cr)  | 7440-47-3                 | 9.8e-1            |      | A                            | 1.3e0            |      | Α                            | 7.6e-1            |      | A                            | 1.7e0            |      | Α                            | 1.7e0                |     | 2.0e0                   | 1.7e0              |      | Α                           | 8.7e-1                      | 1.5e0                      |
| Cobalt (Co)    | 7440-48-4                 | 8.8e-1            | В    | A                            | 7.4e-1           | <    | N .                          | 8.2e-1            | <    | N                            | 8.8e-1           | <    | N                            | 8.8e-1               | В   | 9.7e-1                  | 8.8e-1             |      | P                           | 8.5e-1                      | 8.1e-1                     |
| Copper (Cu)    | 7440-50-8                 | 1.4e0             | В    | Α                            | 9.9e-1           | В    | A                            | 7.0e-1            | В    | Α                            | 4.6e-1           | <,B  | Р                            | 1.4e0                | В   | 1.7e0                   | 1.4e0              |      | Р                           | 1.1e0                       | 7.2e-1                     |
| Lead (Pb)      | 7439-92-1                 | 4.3e-1            | <,B  | P                            | 3,6e-1           | В    | Α                            | 4.3e-1            | <,B  | P                            | 3.9e-1           | <,B  | Р                            | 4.3e-1               | <,B | 4.7e-1                  | 4.3e-1             |      | Р                           | 4.3e-1                      | 3.7e-1                     |
| Manganese (Mn) | 7439-96-5                 | 6.2e0             |      | Α                            | 6.3e0            |      | Α                            | 1.2e1             |      | A                            | 2.4e1            |      | Α .                          | 2.4e1                |     | 2.8e1                   | 2.4e1              |      | Α                           | 8.9e0                       | 1.5e1                      |
| Mercury (Hg)   | 7439-97-6                 | 3.3e1             |      | Α                            | 4.1e1            |      | Р                            | 3.4e1             |      | P                            | 3.6e1            |      | Р                            | 4.1e1                |     | 4.3e1                   | 4.1e1              |      | P                           | 3.3e1                       | 3.9e1                      |
| Nickel (Ni)    | 7440-02-0                 | 1.6e0             | В    | Α                            | 1.6e0            | В    | Ā                            | 1.4e0             | В    | Α                            | 1.3e0            | В    | Α                            | 1.6e0                | В   | 1.8e0                   | 1.6e0              |      | Α                           | 1.5e0                       | 1.5e0                      |
| Selenium (Se)  | 7782-49-2                 | 1.0e0             | В    | A                            | 5.7e-1           | <    | Р                            | 7.9e-1            | В    | A .                          | 7.5e-1           | В    | Α                            | 1.0e0                | В   | 1.2e0                   | 1.0e0              |      | Р                           | 9.2e-1                      | 6.6e-1                     |
| Silver (Ag)    | 7440-22-4                 | 8.5e-1            | <    | N                            | 7.1e-1           | <    | N                            | 7.9e-1            | <    | N j                          | 8.5e-1           | <    | N                            | 8.5e-1               | <   | 9.3e-1                  | 8.5e-1             |      | N                           | 8.2e-1                      | 7.8e-1                     |
| Thallium (TI)  | 7440-28-0                 | 8.2e-1            | <    | N                            | 6.6e-1           | <    | N                            | 7.6e-1            | <    | N                            | 7.8e-1           | · <  | N                            | 8.2e-1               | <   | 8.9e-1                  | 8.2e-1             |      | N                           | 7.9e-1                      | 7.2e-1                     |
| Vanadium (V)   | 7440-62-2                 | 8.8e-1            | <    | N                            | 7.4e-1           | <    | N                            | 8.2e-1            | <    | N                            | 8.8e-1           | <    | N                            | 8.8e-1               | <   | 9.7e-1                  | 8.8e-1             |      | N                           | 8.5e-1                      | 8.1e-1                     |
| Zinc (Zn)      | 7440-66-6                 | 2.0e1             |      | Α                            | 3,3e1            |      | Α                            | 9.1e0             |      | A                            | 5.6e0            |      | Α                            | 3.3e1                |     | 4.1e1                   | 3.3e1              |      | Α                           | 1.5e1                       | 1.9e1                      |

 Total Metals
 1.9e2

 Total Detected Metals
 1.8e2

Table B-26. 0060 blank corrected concentration-basis.

| Analyte        | CAS<br>Registry<br>Number | STRT-1<br>µg/dscm | Flag | Project<br>Specific<br>Flags | END-1<br>µg/dscm | Flag | Project<br>Specific<br>Flags | STRT-2<br>µg/dscm | Flag | Project<br>Specific<br>Flags | END-2<br>μg/dscm | Flag | Project<br>Specific<br>Flags | Max value<br>µg/dscm | Flag | Avg+2σ<br>μg/dscm | Flag | Results<br>µg/dscm | Flag | Project<br>Specific<br>Flag | STRT Run<br>Avgs<br>µg/dscm | END Run<br>Avgs<br>μg/dscm |
|----------------|---------------------------|-------------------|------|------------------------------|------------------|------|------------------------------|-------------------|------|------------------------------|------------------|------|------------------------------|----------------------|------|-------------------|------|--------------------|------|-----------------------------|-----------------------------|----------------------------|
| Aluminum (AI)  | 7429-90-5                 | 4.2e1             |      | Α                            | 7.0e1            |      | Α                            | 2.1e1             |      | Α                            | 2.2e1            |      | Α                            | 7.0e1                |      | 8,5e1             |      | 7.0e1              |      | Α                           | 3.2e1                       | 4.6e1                      |
| Antimony (Sb)  | 7440-36-0                 | 3.4e-1            | В    | Α                            | 4.2e-1           | В    | A                            | 2.9e-1            | В    | Α                            | 1.8e-1           | В    | Α                            | 4.2e-1               | В    | 5.1e-1            | l    | 4.2e-1             |      | Α                           | 3.1e-1                      | 3.0e-1                     |
| Arsenic (As)   | 7440-38-2                 | 2.8e-1            | <,B  | P                            | 2.4e-1           | <    | N                            | 2.6e-1            | <    | N                            | 2.8e-1           | <    | N                            | 2.8e-1               | <,B  | 3.1e-1            |      | 2.8e-1             |      | Р                           | 2.7e-1                      | 2.6e-1                     |
| Barium (Ba)    | 7440-39-3                 | 7.0e-1            | В    | Α                            | 1.5e0            | В    | Α                            | 1.6e-1            | В    | Α                            | 4.6e-2           | В    | Α                            | 1.5e0                | В    | 1.9e0             |      | 1.5e0              |      | Α                           | 4.3e-1                      | 7.8e-1                     |
| Beryllium (Be) | 7440-41-7                 | 1.5e-1            | <,B  | Р                            | 1.2e-1           | <,B  | Р                            | 1.4e-1            | <,B  | P                            | 1.5e-1           | <,B  | Р                            | 1.5e-1               | <,B  | 1.6e-1            |      | 1.5e-1             |      | P                           | 1.4e-1                      | 1.4e-1                     |
| Cadmium (Cd)   | 7440-43-9                 | 1.3e-1            | В    | Α                            | 2.1e-1           | В    | Α                            | 6. <b>4e-</b> 2   | <,B  | P                            | 6.9e-2           | <    | N                            | 2.1e-1               | В    | 2.5e-1            |      | 2.1e-1             |      | Р                           | 9.8e-2                      | 1.4e-1                     |
| Chromium (Cr)  | 7440-47-3                 | 3.8e-1            |      | Α .                          | 7.9e-1           |      | Α                            | 2.0e-1            |      | Α                            | 1.1e0            |      | Α                            | 1.1e0                |      | 1.4e0             |      | 1.1e0              |      | Α                           | 2.9e-1                      | 9.3e-1                     |
| Cobalt (Co)    | 7440-48-4                 | 8.8e-1            | В    | Α                            | 7.4e-1           | <    | N                            | 8.2e-1            | <    | N                            | 8.8e-1           | <    | N                            | 8.8e-1               | В    | 9.7e-1            |      | 8.8e-1             |      | P                           | 8.5e-1                      | 8.1e-1                     |
| Copper (Cu)    | 7440-50-8                 | 1.4e0             | В    | A .                          | 9.9e-1           | В    | Α                            | 6.9e-1            | В    | Α                            | 4.5e-1           | <,B  | Р                            | 1.4e0                | В    | 1.7e0             |      | 1.4e0              |      | Р                           | 1.1e0                       | 7.2e-1                     |
| Lead (Pb)      | 7439-92-1                 | 2.8e-1            | <,B  | P                            | 2.4e-1           | В    | Α .                          | 3.0e-1            | <,B  | Р                            | 2.5e-1           | <,B  | P                            | 3.0e-1               | <,B  | 3.2e-1            |      | 3.0e-1             |      | P                           | 2.9e-1                      | 2.4e-1                     |
| Manganese (Mn) | 7439-96-5                 | 5.7e0             |      | Α .                          | 6.0 <b>e0</b>    |      | Α .                          | 1.1e1             |      | Α                            | 2.3e1            |      | Α                            | 2.3e1                |      | 2.7e1             |      | 2.3e1              |      | A                           | 8.4e0                       | 1.4e1                      |
| Mercury (Hg)   | 7439-97-6                 | 3.3e1             |      | Α                            | 4.1e1            |      | Р                            | 3.4e1             |      | Р                            | 3.6e1            |      | P                            | 4.1e1                |      | 4.3e1             |      | 4.1e1              |      | P                           | 3.3e1                       | 3.9e1                      |
| Nickel (Ni)    | 7440-02-0                 | 5.0e-1            | В    | Α                            | 7.0e-1           | В    | Α                            | 3.2e-1            | В    | Α                            | 2.1e-1           | В    | Α                            | 7.0e-1               | В    | 8.6e-1            |      | 7.0e-1             |      | Α                           | 4.1e-1                      | 4.5e-1                     |
| Selenium (Se)  | 7782-49-2                 | 3.3e-11           | В    | A                            | 2.7e-11          | <    | P                            | 3.0e-11           | В    | Α                            | 3.3e-11          | В    | A                            | 3.3e-11              | В    | 3.6e-11           |      | 3.3e-11            |      | Р                           | 3.2e-11                     | 3.0e-11                    |
| Silver (Ag)    | 7440-22-4                 | 8.5e-1            | <    | N                            | 7.1e-1           | <    | N                            | 8.0e-1            | <    | N                            | 8.5e-1           | <    | N                            | 8.5e-1               | <    | 9.4e-1            |      | 8.5e-1             |      | N                           | 8.2e-1                      | 7.8e-1                     |
| Thallium (TI)  | 7440-28-0                 | 8.2e-1            | <    | N                            | 6.6e-1           | <    | N                            | 7.6e-1            | <    | N                            | 7.8e-1           | <    | N                            | 8.2e-1               | <    | 8.9e-1            |      | 8.2e-1             |      | N                           | 7.9e-1                      | 7.2e-1                     |
| Vanadium (V)   | 7440-62-2                 | 8.8e-1            | <    | N                            | 7.4e-1           | <    | N                            | 8.2e-1            | <    | N                            | 8.8e-1           | <    | N                            | 8.8e-1               | <    | 9.7e-1            |      | 8.8e-1             |      | N                           | 8.5e-1                      | 8.1e-1                     |
| Zinc (Zn)      | 7440-66-6                 | 1.8e1             |      | Α                            | 3.1e1            |      | Α                            | 7.9e0             |      | Α                            | 4.1e0            |      | A                            | 3.1e1                |      | 4.0e1             |      | 3.1e1              |      | Α                           | 1.3e1                       | 1.8e1                      |
| Total Metals   |                           |                   |      |                              |                  |      |                              |                   |      |                              |                  |      |                              |                      |      | -                 |      | 1.7e2              |      |                             |                             | <del></del>                |

Total Detected Metals

1.7e2

# APPENDIX C

PROCESS STREAM SAMPLING DATA

|  |  | , |  |  |
|--|--|---|--|--|
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |

Table C-1. VOC target analyte list reported by the INTEC ALD.

| CAS#     | Compound                 | CAS#                                  | Compound                       |
|----------|--------------------------|---------------------------------------|--------------------------------|
| 74-87-3  | Chloromethane            | 79-01 <b>-</b> 6                      | Trichloroethene                |
| 75-01-04 | Vinyl Chloride           | 78-87 <b>-</b> 5                      | 1,2-Dichloropropane            |
| 74-83-9  | Bromomethane             | 75-27-4                               | Bromodichloromethane           |
| 75-00-3  | Chloroethane             | 10061-01-5                            | Cis-1,3-dichloropropene        |
| 75-69-4  | Trichlorofluoromethane   | 108-10-1                              | 4-Methyl-2-pentanone           |
| 75-35-4  | 1,1-Dichloroethene       | 108-88-3                              | Toluene                        |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-   | 10061-02-6                            | Trans-1,3-dichloropropene      |
|          | trifluoroethane          |                                       |                                |
| 75-15-0  | Carbon disulfide         | 79-00-5                               | 1,1,2-Trichloroethane          |
| 67-64-1  | Acetone                  | 127-18-4                              | Tetrachloroethene              |
| 75-09-2  | Methylene chloride       | 591-78-6                              | 2-Hexanone                     |
|          | (Dichloromethane)        |                                       |                                |
| 156-60-5 | Trans-1,2-dichloroethene | 124-48-1                              | Dibromochloromethane           |
| 75-34-3  | 1,1-Dichloroethane       | 108-90-7                              | Chlorobenzene                  |
| 156-59-2 | Cis-1,2-dichloroethene   | 100-41-4                              | Ethylbenzene                   |
| 78-93-3  | 2-Butanone               | 108-38-3                              | M-xylene and 106-42-3 p-xylene |
| 67-66-3  | Chloroform               | 95-47-6                               | O-xylene                       |
| 71-55-6  | 1,1,1-Trichloroethane    | 100-42-5                              | Styrene                        |
| 56-23-5  | Carbon tetrachloride     | 75-25-2                               | Bromoform                      |
| 71-43-2  | Benzene                  | 79-34-5                               | 1,1,2,2-Tetrachloroethane      |
| 107-06-2 | 1,2-Dichloroethane       | · · · · · · · · · · · · · · · · · · · |                                |

Table C-2. SVOC target analyte list reported by the INTEC ALD.

| CAS#             | Compound                    | CAS#      | Compound                   |
|------------------|-----------------------------|-----------|----------------------------|
| 62-75-9          | N-Nitrosodimethylamine      | 83-32-9   | Acenaphthene               |
| 110-86-1         | Pyridine                    | 51-28-5   | 2,4-Dinitrophenol          |
| 108-95-2         | Phenol                      | 100-02-7  | 4-Nitrophenol              |
| 111-44-4         | bis(2-Chloroethyl)ether     | 132-64-9  | Dibenzofuran               |
| 95-57 <b>-</b> 8 | 2-Chlorophenol              | 121-14-2  | 2,4-Dinitrotoluene         |
| 541-73-1         | 1,3-Dichlorobenzene         | 84-66-2   | Diethylphthalate           |
| 106-46-7         | 1,4-Dichlorobenzene         | 7005-72-3 | 4-Chlorophenyl-phenylether |
| 95-50-1          | 1,2-Dichlorobenzene         | 86-73-7   | Fluorene                   |
| 95-48-7          | 2-Methylphenol              | 100-01-6  | 4-Nitroaniline             |
| 108-60-1         | bis(2-Chloroisopropyl)ether | 534-52-1  | 4,6-Dinitro-2-methylphenol |
| 106-44-5         | 3 & 4-Methylphenol          | 86-30-6   | N-Nitrosodiphenylamine     |
| 621-64-7         | N-Nitroso-di-n-propylamine  | 126-73-8  | Tri-n-butyl phosphate      |
| 67-72-1          | Hexachloroethane            | 103-33-3  | Azobenzene                 |
| 98-95-3          | Nitrobenzene                | 101-55-3  | 4-Bromophenyl-phenylether  |
| 78-59-1          | Isophorone                  | 118-74-1  | Hexachlorobenzene          |
| 88-75-5          | 2-Nitrophenol               | 87-86-5   | Pentachlorophenol          |
| 105-67-9         | 2,4-Dimethylphenol          | 85-01-8   | Phenanthrene               |
| 111-91-1         | bis(2-Chloroethoxy)methane) | 120-12-7  | Anthracene                 |
| 120-83-2         | 2,4-Dichlorophenol          | 86-74-8   | Carbazole                  |
| 120-82-1         | 1,2,4-Trichlorobenzene      | 84-74-2   | Di-n-butylphthalate        |
| 91-20-3          | Naphthalene                 | 206-44-0  | Fluoranthene               |
| 106-47-8         | 4-Chloroaniline             | 129-00-0  | Pyrene                     |
| 87-68-3          | Hexachlorobutadiene         | 85-68-7   | Butylbenzylphthalate       |
| 59-50-7          | 4-Chloro-3-methylphenol     | 91-94-1   | 3,3'-Dichlorobenzidine     |
| 91-57-6          | 2-Methylnaphthalene         | 218-01-9  | Chrysene                   |
| 77-47-4          | Hexachlorocyclopentadiene   | 56-55-3   | Benzo(a)anthracene         |
| 88-06-2          | 2,4,6-Trichlorophenol       | 117-81-7  | bis(2-Ethylhexyl)phthalate |
| 95-95-4          | 2,4,5-Trichlorophenol       | 117-84-0  | Di-n-octylphthalate        |
| 91-58-7          | 2-Chloronaphthalene         | 205-99-2  | Benzo(b)fluoranthene       |
| 88-74-4          | 2-Nitroaniline              | 207-08-9  | Benzo(k)fluoranthene       |
| 131-11-3         | Dimethylphthalate           | 50-32-8   | Benzo(a)pyrene             |
| 606-20-2         | 2,6-Dinitrotoluene          | 193-39-5  | Indeno(1,2,3-cd)pyrene     |
| 208-96-8         | Acenaphthylene              | 53-70-3   | Dibenzo(a,h)anthracene     |
| 99-09-2          | 3-Nitroaniline              | 191-24-2  | Benzo(g,h,I)perylene       |

FEED SAMPLES ANALYSIS REPORTS

FINAL REPORT for 150WM:181 198

Log Type: \*\* RCRA - PLANT \*\*

Log Number : 00-09272 Phone Number : 6-3226 Report for : NWCFMailstop : 5116

Date Approved : Feb 21 2001 Time Approved : 09:01 Date Received : Sep 27 2000

Time Received : 10:38

GWA charged : 561211110 Reviewed by BRIAN STORMS

MSA mR/hr : ? Signature

Hazard Index : >1E4 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature \_\_\_\_

COMMENTS:

Lab Field

Analysis Spl ID Spl ID Method Analyst Results \_\_\_\_\_

Total Sr 0CD15 150WM/NEOPRENE 23381 BJS 7.549E+05 +- 4.0E+03 D/S/ML Tritium 0CD15 150WM/NEOPRENE 33011 WDT 5.85E+02 +- 5.0E+01 D/S/ML End of Report -- 2 results.

## F I N A L R E P O R T for 150FEED:103 198/181

Log Type: \*\* PLANT \*\*

Log Number : 00-09274
Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Feb 20 2001 Time Approved : 10:11 Date Received : Sep 27 2000

Time Received : 11:11

Reviewed by TIFFANY PARK GWA charged : 561211110

Signature \_\_\_\_\_ MSA mR/hr : COLD

Hazard Index : <1E4 Lab QC/QA reviewed by

Signature \_\_\_\_\_ PCBs >50 ppm : NO

COMMENTS:

|               | Lab    | Field           |                                            |
|---------------|--------|-----------------|--------------------------------------------|
| Analysis      | Spl ID | Spl ID          | Method Analyst Results                     |
|               |        |                 | FROM DRU 1 FC4F-00 - 0 OF 02 Normal Agid   |
| Acid          | 0CD21  | 150WM/NEOPRENE  | 57012 RAH 1.564E+00 +- 8.8E-02 Normal Acid |
| Aluminum      | 0CD25  | FEED150/PLASTIC | 87100 BCS 2.209E-01 +- 3.2E-03 MOLAR       |
| Boron         | 0CD25  | FEED150/PLASTIC | 87100 BCS 1.30E-02 +- 2.9E-03 MOLAR        |
| Cadmium       | 0CD25  | FEED150/PLASTIC | 87100 BCS 4.11E-03 +- 8.8E-04 MOLAR        |
| Calcium       | 0CD25  | FEED150/PLASTIC | 87100 BCS 4.376E-02 +- 7.4E-04 MOLAR       |
| Chloride      | 0CD21  | 150WM/NEOPRENE  | 57171 AWO 6.34E+02 +- 2.0E+01 ug/mL        |
| Chromium      | 0CD25  | FEED150/PLASTIC | 87100 BCS 2.75E-03 +- 7.0E-04 MOLAR        |
| Co60          | 0CD21  | 150WM/NEOPRENE  | 83993 SJH 2.61E+03 +- 1.3E+02 d/s/ml       |
| Cs134         | 0CD21  | 150WM/NEOPRENE  | 83993 SJH 2.61E+03 +- 1.4E+02 d/s/ml       |
| Cs137         | 0CD21  | 150WM/NEOPRENE  | 83993 SJH 9.56E+05 +- 3.5E+04 d/s/ml       |
| Eu154         | 0CD21  | 150WM/NEOPRENE  | 83993 SJH 7.91E+03 +- 5.0E+02 d/s/ml       |
| Eu155         | 0CD21  | 150WM/NEOPRENE  | 83993 SJH 1.79E+03 +- 2.2E+02 d/s/ml       |
| Fluoride      | 0CD21  | 150WM/NEOPRENE  | 57093 BCS 1.612E+03 +- 1.8E+01 ug/mL       |
| Iron          | 0CD25  | FEED150/PLASTIC | 87100 BCS 1.13E-02 +- 1.4E-03 MOLAR        |
| Mercury       | 0CD25  | FEED150/PLASTIC | 87802 RDW 3.98E+02 +- 2.5E+01 ug/ml        |
| NB94          | 0CD21  | 150WM/NEOPRENE  | 83993 SJH 1.17E+02 +- 1.2E+01 d/s/ml       |
| Nitrate       | 0CD21  | 150WM/NEOPRENE  | 97074 BCS 2.839E+00 +- 2.7E-02 Molar       |
| Potassium     | 0CD25  | FEED150/PLASTIC | 12800 SDN 3.21 E+04 ug/mL                  |
| Sodium        | 0CD25  | FEED150/PLASTIC | 12800 SDN 1.31 E+05 ug/mL                  |
| SpGr          | 0CD21  | 150WM/NEOPRENE  | 47981 AWO 1.16019E+00 +- 2.7E-04 @ 25/4    |
| Sulfate       | 0CD21  | 150WM/NEOPRENE  | 97168 BCS 3.04E+03 +- 8.4E+02 ug/ml        |
| Uranium PreP  | 0CD21  | 150WM/NEOPRENE  | 17929 BGP 1.0E+00 ml                       |
| Zirconium     | 0CD25  | FEED150/PLASTIC | 87100 BCS 5.3E-03 +- 2.9E-03 MOLAR         |
| Zr95          | 0CD21  | 150WM/NEOPRENE  | 83993 SJH $4.63E+02 +- 3.4E+01 d/s/ml$     |
| End of Report | 24 r   | esults.         |                                            |

#### FINAL REPORT for 150FEED:103 199

Log Type: \*\* PLANT \*\*

Log Number : 00-10022 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Mar 28 2001 Time Approved : 10:26 Date Received : Oct 12 2000

Time Received : 15:33

Reviewed by KIMBERLY HONAS GWA charged : 561211290

Signature \_\_\_\_\_ MSA mR/hr : CELL

Hazard Index : 1E8 Lab QC/QA reviewed by

Signature \_\_\_\_\_ PCBs >50 ppm : NO

COMMENTS:

|                  | Lab            | Field                               |                                            |
|------------------|----------------|-------------------------------------|--------------------------------------------|
| Analysis         | Spl ID         | Spl ID                              | Method Analyst Results                     |
| Acid             | 0CD94          | FEED150/NEOPRENE                    | 57012 AWO 1.596E+00 +- 8.8E-02 Normal Acid |
| Aluminum         |                | FEED150/PLASTIC                     | 87100 NWJ 2.189E-01 +- 6.3E-03 MOLAR       |
|                  | 0CD95          | FEED150/PLASTIC                     | 87100 NWJ 1.34E-02 +- 2.9E-03 MOLAR        |
| Boron<br>Cadmium | 0CD95          | FEED150/PLASTIC                     | 87100 NWJ 4.26E-03 +- 8.8E-04 MOLAR        |
| Calcium          | 0CD95          | FEED150/PLASTIC                     | 87100 NWJ 4.526E-02 +- 7.4E-04 MOLAR       |
|                  | 0CD95<br>0CD94 | FEED150/PLASTIC FEED150/NEOPRENE    | 57171 AWO 4.15E+02 +- 1.7E+01 ug/mL        |
| Chloride         | 0CD94<br>0CD95 | FEED150/PLASTIC                     | 87100 NWJ 2.52E-03 +- 7.0E-04 MOLAR        |
| Chromium         | 0CD95<br>0CD94 | FEED150/PLASTIC<br>FEED150/NEOPRENE | 93993 SJH 2.40E+03 +- 2.0E+02 d/s/ml       |
| C060             |                | •                                   | 93993 SJH 2.35E+03 +- 1.4E+02 d/s/ml       |
| Cs134            | 0CD94          | FEED150/NEOPRENE                    |                                            |
| Cs137            | 0CD94          | FEED150/NEOPRENE                    |                                            |
| Eul54            | 0CD94          | FEED150/NEOPRENE                    | 93993 SJH 8.28E+03 +- 8.1E+02 d/s/ml       |
| Eu155            | 0CD94          | FEED150/NEOPRENE                    | 93993 SJH 1.67E+03 +- 2.4E+02 d/s/ml       |
| Fluoride         | 0CD94          | FEED150/NEOPRENE                    | 57093 BGP 2.594E+03 +- 3.8E+01 ug/mL       |
| Iron             | 0CD95          | FEED150/PLASTIC                     | 87100 NWJ 1.21E-02 +- 1.4E-03 MOLAR        |
| Mercury          | 0CD95          | FEED150/PLASTIC                     | 87802 BET 2.05E+02 +- 2.6E+01 ug/ml        |
| NB94             | 0CD94          | FEED150/NEOPRENE                    | 93993 SJH 1.140E+02 +- 9.9E+00 d/s/ml      |
| Nitrate          | 0CD94          | FEED150/NEOPRENE                    | 97074 BET 3.111E+00 +- 2.7E-02 Molar       |
| Potassium        | 0CD95          | FEED150/PLASTIC                     | 12800 RHH 4.86E+03 ug/mL                   |
| Sb125            | 0CD94          | FEED150/NEOPRENE                    | 93993 SJH 1.85E+03 +- 1.8E+02 d/s/ml       |
| Sodium           | 0CD95          | FEED150/PLASTIC                     | 12800 RHH 1.95E+04 ug/mL                   |
| SpGr             | 0CD94          | FEED150/NEOPRENE                    | 47981 AWO 1.15490E+00 +- 2.7E-04 @ 25/4    |
| Sulfate          | 0CD94          | FEED150/NEOPRENE                    | 97168 BET 3.43E-02 +- 8.7E-03 molar        |
| Uranium          | 0CD94          | FEED150/NEOPRENE                    | 17920 RAH 7.5E-02 +- 1.4E-02 G/L           |
| Zirconium        | 0CD95          | FEED150/PLASTIC                     | 87100 NWJ 5.4E-03 +- 2.9E-03 MOLAR         |
| Zr95             |                | FEED150/NEOPRENE                    | 93993 SJH 4.27E+02 +- 5.2E+01 d/s/ml       |
| End of Report    | 25 r           |                                     |                                            |

#### FINAL REPORT for 150WM:181 199

Log Type: \*\* RCRA - PLANT \*\*

Log Number : 00-100415 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Feb 21 2001 Time Approved : 09:00 Date Received : Oct 05 2000

Time Received : 11:35

Reviewed by BRIAN STORMS GWA charged : 591211290

MSA mR/hr : HOT Signature \_\_\_\_

Hazard Index : >1E4 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature \_\_\_\_\_

COMMENTS:

Lab Field Analysis Spl ID Spl ID

Method Analyst Results

Total Sr 0CF26 150WM/NEOPRENE 23381 BJS 8.983E+05 +- 4.3E+03 D/S/ML
Tritium 0CF26 150WM/NEOPRENE 33011 WDT 5.71E+02 +- 4.9E+01 D/S/ML
End of Report -- 2 results.

FINAL REPORT for 150WM:181 200

Log Type: \*\* RCRA - PLANT \*\*

Log Number : 00-10164 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Feb 21 2001 Time Approved : 08:59 Date Received : Oct 17 2000

Time Received: 17:04

Reviewed by BRIAN STORMS GWA charged : 561211290

MSA mR/hr : CELL Signature \_\_\_\_

Hazard Index : 1E8 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature \_\_\_\_

COMMENTS:

Analysis Spl ID Spl ID Method Analyst Results

Total Sr 0CG62 WM181/NEOPREN 23381 BJS 7.656E+05 +- 4.3E+03 D/S/ML

Tritium 0CG62 WM181/NEOPREN 33011 WDT 4.66E+02 +- 4.0E+01 D/S/ML

End of Report -- 2 results.

#### FINAL REPORT for 150FEED:103 200

Log Type: \*\* PLANT \*\*

Report for : NWCF Mailstop : 5116 Log Number : 00-10167 Phone Number : 6-3226

Date Approved : Nov 02 2000 Time Approved : 10:54 Date Received : Oct 17 2000

Time Received: 05:53

GWA charged : 561211290 Reviewed by JEFF LAUG

MSA mR/hr : COLD Signature \_\_\_\_

Lab QC/QA reviewed by Hazard Index : <1E4

PCBs >50 ppm : NO Signature \_\_\_\_\_

|               | Lab   | Field   |           |                                        |
|---------------|-------|---------|-----------|----------------------------------------|
| Analysis      |       | Spl ID  | Method An | alyst Results                          |
| Acid          | 0CG70 | 103     | 57012 RA  | LH 1.633E+00 +- 8.8E-02 Normal Acid    |
| Aluminum      | 0CG70 | 103     | 87100 BC  |                                        |
| Aluminum      | 00070 | 0CG74   | 87100 BC  |                                        |
| Boron         | 0CG70 | 103     | 87100 NW  |                                        |
| Cadmium       | 0CG70 | 103     | 87100 NW  |                                        |
|               |       | 103     | 87100 NW  |                                        |
| Calcium       | 0CG70 |         | 57171 RA  |                                        |
| Chloride      | 0CG70 | 103     | 87100 NW  | —————————————————————————————————————— |
| Chromium      | 0CG70 | 103     |           |                                        |
| Co60          | 0CG70 | 103     | 93993 SJ  | , ,                                    |
| Cs134         | 0CG70 | 103     | 93993 SJ  | • •                                    |
| Cs137         | 0CG70 | 103     | 93993 SJ  |                                        |
| Eu154         | 0CG70 | 103     | 93993 SJ  |                                        |
| Eu155         | 0CG70 | 103     | 93993 SJ  |                                        |
| Fluoride      | 0CG70 | 103     |           | S 1.543E+03 +- 8.4E+01 ug/mL           |
| Iron          | 0CG70 | 103     | 87100 NW  |                                        |
| Mercury       |       | 0CG74   |           | H 1.21E+02 +- 2.7E+01 ug/ml            |
| NB94          | 0CG70 | 103     | 93993 SJ  |                                        |
| Nitrate       | 0CG70 | 103     | 97074 BG  | P 3.222E+00 +- 2.7E-02 Molar           |
| Potassium     |       | 0CG74   | 12800 RH  | [H 4.97E+03 ug/mL                      |
| Sb125         | 0CG70 | 103     | 93993 SJ  | H 1.36E+03 +- 1.2E+02 d/s/ml           |
| Sodium        |       | 0CG74   | 12800 RH  | [H 1.96E+04 ug/mL                      |
| SpGr          | 0CG70 | 103     | 47981 RA  | H 1.15786E+00 +- 2.7E-04 @ 25/4        |
| Sulfate       | 0CG70 | 103     | 97168 BG  | P 3.70E+03 +- 8.5E+02 ug/ml            |
| Uranium       | 0CG70 | 103     | 17920 RA  | H 7.4E-02 +- 1.4E-02 G/L               |
| Zirconium     | 0CG70 | 103     | 87100 NW  | J 5.3E-03 +- 2.8E-03 MOLAR             |
| Zr95          | 0CG70 | 103     | 93993 SJ  | H 4.49E+02 +- 5.2E+01 d/s/ml           |
| End of Report | 26 r  | esults. |           |                                        |

#### FINAL REPORT for 150FEED:184

Log Type: \*\* PLANT \*\*

Log Number : 01-04103 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Apr 24 2001 Time Approved : 15:44 Date Received : Apr 10 2001

Time Received: 13:42

GWA charged : 561211290 Reviewed by KIMBERLY HONAS

MSA mR/hr : HOT Signature \_\_\_\_

Hazard Index : <1E4 Lab QC/QA reviewed by

Signature \_\_\_\_\_ PCBs >50 ppm : NO

|               | Lab    | Field            |                                            |   |
|---------------|--------|------------------|--------------------------------------------|---|
| Analysis      | Spl ID | Spl ID           | Method Analyst Results                     | _ |
| Acid          | 1AU03  | FEED150/NEOPRENE | 57012 RAH 1.842E+00 +- 5.5E-02 Normal Acid |   |
| Aluminum      | 1AU03  | FEED150/NEOPRENE | 87100 RAH 5.26E-01 +- 2.4E-02 MOLAR        |   |
| Boron         |        | FEED150/PLASTIC  | 87100 RAH 7.6E-03 +- 1.4E-03 MOLAR         |   |
| Cadmium       |        | FEED150/PLASTIC  | 87100 RAH < 9.47983E-04 MOLAR              |   |
| Calcium       |        | FEED150/PLASTIC  | 87100 RAH 1.618E-02 +- 3.8E-04 MOLAR       |   |
| Chloride      | 1AU03  | FEED150/NEOPRENE | 57171 RAH 9.77E+02 +- 1.8E+01 ug/mL        |   |
| Chromium      | 1AU04  | FEED150/PLASTIC  | 87100 RAH 1.69E-03 +- 4.7E-04 MOLAR        |   |
| Co57          | 1AU03  | FEED150/NEOPRENE | 43993 MLE 1.171E+04 +- 7.2E+02 pC/ml       |   |
| Co60          | 1AU03  | FEED150/NEOPRENE | 43993 MLE 1.357E+04 +- 6.0E+02 pC/ml       |   |
| Cs137         | 1AU03  | FEED150/NEOPRENE | 43993 MLE 1.280E+07 +- 2.8E+05 pC/ml       |   |
| Eu154         | 1.AU03 | FEED150/NEOPRENE | 43993 MLE 2.99E+04 +- 3.5E+03 pC/ml        |   |
| Fluoride      | 1AU03  | FEED150/NEOPRENE | 57093 BGP 5.52E+02 +- 4.3E+01 ug/mL        |   |
| Iron          | 1AU04  | FEED150/PLASTIC  | 87100 RAH 1.422E-02 +- 8.5E-04 MOLAR       |   |
| Mercury       | 1AU04  | FEED150/PLASTIC  | 87802 RDW 1.50E+02 +- 1.2E+01 ug/ml        |   |
| Nitrate       | 1AU03  | FEED150/NEOPRENE | 97074 BCS 3.91E+00 +- 1.2E-01 Molar        |   |
| PREP          | 1AU03  | FEED150/NEOPRENE | 17961 BCS Prep Completed 2001-04-12 10:07  |   |
| Potassium     | 1AU04  | FEED150/PLASTIC  | 12800 SDN 3.50 E+03 ug/mL                  |   |
| Sodium        | 1AU04  | FEED150/PLASTIC  | 12800 SDN 3.04 E+04 ug/mL                  |   |
| SpGr          | 1AU03  | FEED150/NEOPRENE | 47981 RAH 1.22196E+00 +- 3.7E-04 @ 25/4    |   |
| Sulfate       | 1AU03  | FEED150/NEOPRENE | 97168 BCS                                  |   |
| Uranium       | 1AU03  | FEED150/NEOPRENE | 17920 RAH 4.41E-02 +- 1.7E-03 G/L          |   |
| Zirconium     | 1AU04  | FEED150/PLASTIC  | 87100 RAH < 2.78182E-03 MOLAR              |   |
| End of Report | 22 re  | sults.           |                                            |   |

#### FINAL REPORT for 150FEED:184 281

Log Type: \*\* PLANT \*\*

Log Number : 01-04125 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 01 2001 Time Approved : 08:15 Date Received : Apr 13 2001

Time Received: 00:15

Reviewed by TIFFANY PARK GWA charged : 561211290

Signature \_\_\_\_ MSA mR/hr : COLD

Hazard Index : <1E4 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature \_\_\_\_\_

| Analysis  |       | Field<br>Spl ID  | Method Analyst Results                     |
|-----------|-------|------------------|--------------------------------------------|
| Acid      | 1AU88 | FEED150/NEOPRENE | 57012 RDW 1.823E+00 +- 1.9E-02 Normal Acid |
| Aluminum  | 1AU89 | FEED150/PLASTIC  | 87100 BCS 5.37E-01 +- 2.0E-02 MOLAR        |
|           | 1AU89 | FEED150/PLASTIC  | 87100 BCS > 1.34297E-01 MOLAR              |
| Boron     | 1AU89 | FEED150/PLASTIC  | 87100 BCS 8.2E+01 +- 1.5E+01 UG/ML         |
| Cadmium   | 1AU89 | FEED150/PLASTIC  | 87100 BCS < 1.06553E+02 UG/ML              |
| Calcium   | 1AU89 | FEED150/PLASTIC  | 87100 BCS 6.53E+02 +- 1.5E+01 UG/ML        |
| Chloride  | 1AU88 | FEED150/NEOPRENE | 57171 BCS 9.87E+02 +- 1.8E+01 ug/mL        |
| Chromium  | 1AU89 | FEED150/PLASTIC  | 87100 BCS 8.6E+01 +- 2.4E+01 UG/ML         |
| Co60      | 1AU88 | FEED150/NEOPRENE |                                            |
| Cs134     | 1AU88 | FEED150/NEOPRENE | 83993 SJH 5.46E+06 +- 3.2E+05 pC/l         |
| Cs137     | 1AU88 | FEED150/NEOPRENE | 83993 SJH 1.424E+10 +- 4.6E+08 pC/l        |
| Eul54     | 1AU88 | FEED150/NEOPRENE | 83993 SJH 3.19E+07 +- 2.5E+06 pC/l         |
| Fluoride  | 1AU88 | FEED150/NEOPRENE | 57093 AWO 4.90E+02 +- 4.1E+01 ug/mL        |
| Iron      | 1AU89 | FEED150/PLASTIC  | 87100 BCS 7.72E+02 +- 4.8E+01 UG/ML        |
| Mercury   | 1AU89 | FEED150/PLASTIC  | 87802 RDW 1.27E+02 +- 1.2E+01 ug/ml        |
| Nitrate   | 1AU88 | FEED150/NEOPRENE | 97074 BCS 3.89E+00 +- 1.2E-01 Molar        |
| Potassium | 1AU89 | FEED150/PLASTIC  | 12800 RHH 3.44E+03 ug/mL                   |
| Sodium    | 1AU89 | FEED150/PLASTIC  | 12800 RHH 3.02E+04 ug/mL                   |
| SpGr      | 1AU88 | FEED150/NEOPRENE | 47981 BCS 1.22008E+00 +- 3.7E-04 @ 25/4    |
| Sulfate   | 1AU88 | FEED150/NEOPRENE | 97168 BCS 8.4E+02 +- 1.1E+02 ug/ml         |
| Uranium   | 1AU88 | FEED150/NEOPRENE | 17920 BCS 4.40E-02 +- 1.7E-03 G/L          |
| Zirconium | 1AU89 | FEED150/PLASTIC  | 87100 BCS < 2.53758E+02 UG/ML              |
|           | 22 r  |                  |                                            |

#### FINAL REPORT for 150FEED:184 WM184

Log Type: \*\* PLANT \*\*

Report for : NWCF Mailstop : 5116 Log Number : 01-04142 Phone Number : 6-3226

Date Approved : May 01 2001 Time Approved : 08:16 Date Received : Apr 14 2001 Time Received : 12:25

Reviewed by TIFFANY PARK GWA charged : 561211290

MSA mR/hr : CELL Signature \_\_\_\_\_

Lab QC/QA reviewed by Hazard Index : 1E7

Signature \_\_\_\_\_ PCBs >50 ppm : NO

|                | Lab    | Field            |                                            |
|----------------|--------|------------------|--------------------------------------------|
| Analysis       | Spl II | Spl ID           | Method Analyst Results                     |
|                |        |                  |                                            |
| Acid           | 1AU93  | FEED150/NEOPRENE | 57012 RDW 1.854E+00 +- 1.9E-02 Normal Acid |
| Aluminum       | 1AU94  | FEED150/PLASTIC  | 87100 BCS 5.21E-01 +- 2.0E-02 MOLAR        |
| Am241          | 1AU93  | FEED150/NEOPRENE | 83993 SJH 1.30E+08 +- 1.4E+07 pC/l         |
| Boron          | 1AU93  | FEED150/NEOPRENE | 87100 BCS 8.9E+01 +- 1.5E+01 UG/ML         |
| Cadmium        | 1AU93  | FEED150/NEOPRENE | 87100 BCS < 1.06553E+02 UG/ML              |
| Calcium        | 1AU93  | FEED150/NEOPRENE | 87100 BCS 6.77E+02 +- 1.5E+01 UG/ML        |
| Chloride       | 1AU93  | FEED150/NEOPRENE | 57171 BCS 1.005E+03 +- 1.8E+01 ug/mL       |
| Chromium       | 1AU93  | FEED150/NEOPRENE | 87100 BCS 9.2E+01 +- 2.4E+01 UG/ML         |
| Co60           | 1AU93  | FEED150/NEOPRENE | 83993 SJH 1.697E+07 +- 7.9E+05 pC/l        |
| Cs134          | 1AU93  | FEED150/NEOPRENE | 83993 SJH 5.55E+06 +- 3.1E+05 pC/l         |
| Cs137          | 1AU93  | FEED150/NEOPRENE | 83993 SJH 1.438E+10 +- 5.5E+08 pC/l        |
| Eu154          | 1AU93  | FEED150/NEOPRENE | 83993 SJH 3.24E+07 +- 2.8E+06 pC/l         |
| Fluoride       | 1AU93  | FEED150/NEOPRENE | 57093 AWO 4.94E+02 +- 4.2E+01 ug/mL        |
| Iron           | 1AU93  | FEED150/NEOPRENE | 87100 BCS 8.32E+02 +- 4.8E+01 UG/ML        |
| Mercury        | 1AU94  | FEED150/PLASTIC  | 87802 RAH 1.36E+02 +- 1.2E+01 ug/ml        |
| Nitrate        | 1AU93  | FEED150/NEOPRENE | 97074 BCS 3.96E+00 +- 1.2E-01 Molar        |
| Potassium      | 1AU94  | FEED150/PLASTIC  | 12800 RHH 3.44E+03 ug/mL                   |
| Sodium         | 1AU94  | FEED150/PLASTIC  | 12800 RHH 3.12E+04 ug/mL                   |
| SpGr           | 1AU93  | FEED150/NEOPRENE | 47981 AWO 1.24092E+00 +- 4.0E-04 @ 25/4    |
| Sulfate        | 1AU93  | FEED150/NEOPRENE | 97168 BCS 1.02E+03 +- 1.1E+02 ug/ml        |
| Uranium        | 1AU93  | FEED150/NEOPRENE | 17920 RAH 3.99E-02 +- 1.5E-03 G/L          |
| Zirconium      |        | FEED150/NEOPRENE | 87100 BCS < 2.53758E+02 UG/ML              |
|                |        | esults.          |                                            |
| Tild Of Report | 22 1   |                  |                                            |

#### FINAL REPORT for 150FEED:101 294

Log Type: \*\* PLANT \*\*

Log Number : 01-05062 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 24 2001 Time Approved : 13:26 Date Received : May 06 2001

Time Received: 15:45

Reviewed by TIFFANY PARK GWA charged : 561211290

MSA mR/hr : CELL Signature \_\_\_\_

Hazard Index : 1E8 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature \_\_\_\_

| 7 1           |        | Field            | Method Analyst Results                     |
|---------------|--------|------------------|--------------------------------------------|
| Analysis      | Spr in | Spl ID           | method Analyst Results                     |
| Acid          | 1BB06  | FEED150/NEOPRENE | 57012 RNR 1.781E+00 +- 5.4E-02 Normal Acid |
| Aluminum      | 1BB07  | FEED150/PLASTIC  | 87100 BCS 4.51E-01 +- 2.4E-02 MOLAR        |
| Boron         | 1BB07  | FEED150/PLASTIC  | 87100 BCS 1.05E+02 +- 1.5E+01 UG/ML        |
| Cadmium       | 1BB07  | FEED150/PLASTIC  | 87100 BCS 1.75E+02 +- 4.8E+01 UG/ML        |
| Calcium       | 1BB07  | FEED150/PLASTIC  | 87100 BCS 1.013E+03 +- 1.5E+01 UG/ML       |
| Chloride      | 1BB06  | FEED150/NEOPRENE | 57171 RNR 8.02E+02 +- 1.7E+01 ug/mL        |
| Chromium      | 1BB07  | FEED150/PLASTIC  | 87100 BCS 1.01E+02 +- 2.4E+01 UG/ML        |
| Cs134         | 1BB06  | FEED150/NEOPRENE | 93993 SJH 2.12E+07 +- 2.1E+06 pC/l         |
| Cs137         | 1BB06  | FEED150/NEOPRENE | 93993 SJH 1.94E+10 +- 1.3E+09 pC/l         |
| Fluoride      | 1BB06  | FEED150/NEOPRENE | 57093 BCS 9.49E+02 +- 6.0E+01 ug/mL        |
| Iron          | 1BB07  | FEED150/PLASTIC  | 87100 BCS 7.42E+02 +- 4.8E+01 UG/ML        |
| Mercury       | 1BB07  | FEED150/PLASTIC  | 87802 RAH 1.23E+02 +- 2.9E+01 ug/ml        |
| NB94          | 1BB06  | FEED150/NEOPRENE | 93993 SJH 2.09E+06 +- 2.8E+05 pC/l         |
| Nitrate       | 1BB06  | FEED150/NEOPRENE | 97074 BGP 3.279E+00 +- 4.5E-02 Molar       |
| PREP          | 1BB06  | FEED150/NEOPRENE | 17961 BCS Prep Completed 2001-05-15 08:46  |
| Potassium     | 1BB07  | FEED150/PLASTIC  | 12800 RHH 3.86E+03 ug/mL                   |
| Sodium        | 1BB07  | FEED150/PLASTIC  | 12800 RHH 2.69E+04 ug/mL                   |
| SpGr          | 1BB06  | FEED150/NEOPRENE | 47981 BGP 1.19761E+00 +- 3.4E-04 @ 25/4    |
| Sulfate       | 1BB06  | FEED150/NEOPRENE | 97168 BGP 2.77E+03 +- 4.0E+02 ug/ml        |
| Uranium       | 1BB06  | FEED150/NEOPRENE | 17920 BCS 4.90E-02 +- 2.9E-03 G/L          |
| Zirconium     | 1BB07  | FEED150/PLASTIC  | 87100 BCS < 2.54584E+02 UG/ML              |
| Zr95          | 1BB06  | FEED150/NEOPRENE | 93993 SJH 4.77E+06 +- 7.4E+05 pC/l         |
| End of Report | 22 r   | esults.          |                                            |

FINAL REPORT for 150WM:101 294

Log Type: \*\* RCRA - PLANT \*\*

Log Number : 01-05063 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 30 2001 Time Approved : 13:13 Date Received : May 06 2001

Time Received: 15:55

GWA charged : 561211290 Reviewed by TIFFANY PARK

MSA mR/hr : CELL Signature \_\_\_\_\_

Hazard Index : 1E8 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature \_\_\_\_\_

COMMENTS:

Analysis Spl ID Spl ID Method Analyst Results

PREP 1BB08 150WM/NEOPRENE 17961 BGP Prep Completed 2001-05-16 06:07

Total Sr 1BB08 150WM/NEOPRENE 23381 BJS 2.50E+05 +- 3.6E+04 D/S/ML

Tritium 1BB08 150WM/NEOPRENE 33011 WDT 8.26E+02 +- 7.1E+01 D/S/ML

End of Report -- 3 results.

FINAL REPORT for 150WM:101 298

Log Type: \*\* RCRA - PLANT \*\*

Log Number : 01-05112 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 30 2001 Time Approved : 13:13 Date Received : May 11 2001

Time Received : 09:43

Reviewed by TIFFANY PARK GWA charged : 561211290

MSA mR/hr : ? Signature \_\_\_\_

Lab QC/QA reviewed by Hazard Index : >1E4

Signature \_\_\_\_\_ PCBs >50 ppm : NO

COMMENTS:

Lab Field Analysis Spl ID Spl ID Method Analyst Results

PREP 1BD35 150WM/NEOPRENE 17961 BCS Prep Completed 2001-05-15 08:48
Total Sr 1BD35 150WM/NEOPRENE 23381 BJS 6.19E+05 +- 6.5E+04 D/S/ML
Tritium 1BD35 150WM/NEOPRENE 33011 WDT 8.11E+02 +- 6.9E+01 D/S/ML
End of Report -- 3 results.

#### INTERIM REPORT for BOPR: NCC-101

Log Type: \*\* RCRA \*\*

Log Number : 01-06071 Phone Number : 6-7552 Report for : JD LONG Mailstop : 5218

Date Received : Jun 07 2001 Time Received : 09:00

GWA charged : 561C022A9

MSA mR/hr : HOT

Hazard Index : >1E4

PCBs >50 ppm : NO

COMMENTS: If fail to get a acid result in range then run pH. pH does not

need to be RCRA

|               |       | Spl ID     | Method Analyst Results                                           |
|---------------|-------|------------|------------------------------------------------------------------|
| Agid          |       |            | 57012 RNR 1.711E+00 +- 5.4E-02 Normal Acid                       |
| Aluminum      | 1B126 | BP10120101 | 42900 LAM 1.14534E+07 ug/L                                       |
| Antimony      | 1BT26 | BP10120101 | 42900 LAM Not Detected: IDL= 235 ug/L                            |
| Arsenic       | 1BT26 | BP10120101 | 42900 LAM Not Detected: IDL= 235 ug/L<br>42900 LAM 3.35E+02 ug/L |
| Barium        |       |            | 42900 LAM 3.985E+03 ug/L                                         |
| Beryllium     | 1BT26 | BP10120101 |                                                                  |
| Cadmium       |       | BP10120101 |                                                                  |
| Chromium      |       | BP10120101 |                                                                  |
| Cobalt        | 1BI26 | BP10120101 |                                                                  |
| Copper        |       | BP10120101 |                                                                  |
| Fluoride      | 1BI26 | BP10120101 | 57093 AWO 8.26654E+02 ug/mL                                      |
| Lead          | 1BI26 | BP10120101 | 42900 LAM 1.1125E+05 ug/L                                        |
| Manganese     | 1BI26 | BP10120101 | 42900 LAM 4.30765E+05 ug/L                                       |
| Mercury       | 1BI26 | BP10120101 | 12800 SDN 1.49E+05 ug/L                                          |
| Nickel        | 1BI26 | BP10120101 | 42900 LAM 6.64E+04 ug/L                                          |
| SVOA (TOTAL)  | 1BI26 | BP10120101 | 9270                                                             |
| Selenium      | 1BI26 | BP10120101 | 42900 LAM Not Detected: IDL= 240 ug/L                            |
| Silver        | 1BI26 | BP10120101 | 42900 LAM 1.2E+02 ug/L                                           |
| TIC           | 1BI26 | BP10120101 | 18060 RDW MDL=119.004 ug/ml                                      |
| TOC           |       | BP10120101 | 18060 RDW 6.08462E+02 ug/ml                                      |
| Thallium      |       |            | 42900 LAM Not Detected: IDL= 200 ug/L                            |
| UDS           | 1BI26 | BP10120101 | 17972 BCS 0.619 g(UDS)/ L                                        |
| Uranium       |       | BP10120101 | 17920 BCS 4.98E-02 +- 2.9E-03 G/L                                |
| VOA (TOTAL)   | 1BI26 | BP10120101 | 9260                                                             |
|               |       | BP10120201 |                                                                  |
| Vanadium      | 1BI26 | BP10120101 | 42900 LAM 6.1E+02 ug/L                                           |
| Zinc          | 1BI26 | BP10120101 | 42900 LAM 6.1E+02 ug/L<br>42900 LAM 4.12784E+04 ug/L             |
| End of Report | 27 re | esults.    |                                                                  |

| CONCENTRATED BOTTOMS SAMPLES ANALYSIS REPORTS |
|-----------------------------------------------|
|                                               |
|                                               |

#### F I N A L R E P O R T for 150B0T119 296/297

Log Type: \*\* PLANT \*\*

Log Number : 01-05106 Phone Number : 6-3226 Report for : NWCF Mailstop : 5216

Date Approved : Feb 04 2002 Time Approved : 13:07 Date Received : May 10 2001 Time Received : 23:55

GWA charged : 561211295 Reviewed by BRIAN STORMS

MSA mR/hr : HOT Signature \_\_\_\_

Hazard Index : 1E8 Lab QC/QA reviewed by

Signature \_\_\_\_\_ PCBs >50 ppm : NO

|               | Lab    | Field         |        |     |                                  |
|---------------|--------|---------------|--------|-----|----------------------------------|
| Analysis      | Spl ID | Spl ID        | Method | Ana | lyst Results                     |
| Acid          | 1BD27  | 150BOT119PLAS | 57012  | BGP | 2.559E+00 +- 6.0E-02 Normal Acid |
| Aluminum      |        | 150BOT119PLAS |        |     | 5.18E-01 +- 2.4E-02 MOLAR        |
|               | 1BD27  | 150BOT119PLAS | 57171  | BGP | 8.02E+02 +- 1.7E+01 ug/mL        |
| Co60          | 1BD28  | 150BOT119     | 93993  | SJH | 3.32E+07 +- 2.6E+06 pC/l         |
|               | 1BE80  | 150BOT119 DUP | 83993  | SJH | 3.71E+07 +- 1.8E+06 pC/l         |
| Cs134         | 1BD28  | 150BOT119     | 93993  | SJH | 2.33E+07 +- 1.8E+06 pC/l         |
|               | 1BE80  | 150BOT119 DUP | 83993  | SJH | 2.38E+07 +- 1.2E+06 pC/l         |
| Cs137         | 1BD28  | 150BOT119     | 93993  | SJH | 2.13E+10 +- 1.6E+09 pC/l         |
|               | 1BE80  | 150BOT119 DUP |        |     | 2.116E+10 +- 7.0E+08 pC/l        |
| Eu154         | 1BD28  | 150BOT119     | 93993  | SJH | 8.42E+07 +- 7.8E+06 pC/l         |
|               | 1BE80  | 150BOT119 DUP | 83993  | SJH | 9.66E+07 +- 7.8E+06 pC/l         |
| Fluoride      | 1BD27  | 150BOT119PLAS | 57093  | BGP | 8.85E+02 +- 7.8E+01 ug/mL        |
| Nitrate       | 1BD27  | 150BOT119PLAS | 97074  | BGP | 4.03E+00 +- 1.2E-01 Molar        |
| PREP          | 1BD27  | 150BOT119PLAS |        |     | Prep Completed 2001-05-11 02:41  |
|               | 1BD28  | 150BOT119     |        |     | Prep Completed 2001-05-15 08:47  |
| Phosphorous   | 1BD27  | 150BOT119PLAS |        |     | 1.19887E+02 ug/ml                |
| Potassium     | 1BD28  | 150BOT119     |        |     | 6.20E+02 ug/mL                   |
| Sodium        | 1BD28  | 150BOT119     |        |     | 1.16E+04 ug/mL                   |
| SpGr          | 1BD27  | 150BOT119PLAS |        |     | 1.07469E+00 +- 1.7E-04 @ 25/4    |
| Tritium       | 1BD27  | 150BOT119PLAS |        |     | 4.01E+02 +- 3.4E+01 D/S/ML       |
| UDS           | 1BD27  | 150BOT119PLAS |        |     | 5.3 G/L                          |
| Uranium       | 1BD28  | 150BOT119     |        |     | 5.87E-02 +- 2.4E-03 G/L          |
| Zr95          | 1BD28  | 150BOT119     |        |     | 5.52E+06 +- 4.4E+05 pC/l         |
|               |        | 150BOT119 DUP | 83993  | SJH | 5.04E+06 +- 3.5E+05 pC/1         |
| End of Report | 24 r   | esults.       |        |     |                                  |

#### INTERIM REPORT for 150BOT119 324

Log Type: \*\* PLANT \*\*

Report for : NWCF Log Number : 01-06146 Mailstop : 5216 Phone Number : 6-3226

Date Received : Jun 15 2001

Time Received : 00:15

GWA charged : 561211295

MSA mR/hr : HOT

Hazard Index : 1E8

PCBs >50 ppm : NO

| Analysis                 | Lab Field<br>Spl ID Spl ID         | Method Analyst Results                                                            |
|--------------------------|------------------------------------|-----------------------------------------------------------------------------------|
| Acid Aluminum            | 1BK68 150BOT119<br>1BK68 150BOT119 | 57012 BGP 2.868E+00 +- 6.2E-02 Normal Acid<br>87100 BCS 8.59E-01 +- 3.0E-02 MOLAR |
| Chloride                 | 1BK68 150BOT119                    | 57171 BGP 1.016E+03 +- 1.8E+01 ug/mL                                              |
| Fluoride<br>I129         | 1BK68 150BOT119<br>1BK68 150BOT119 | 57093 AWO 1.71E+03 +- 1.2E+02 ug/mL<br>3539                                       |
| Nitrate                  | 1BK68 150BOT119<br>1BK68 150BOT119 | 97074 BCS 5.27E+00 +- 1.8E-01 Molar<br>17961 RAH Prep Completed 2001-07-02 13:24  |
| PREP                     | 1BK68 150BOT119<br>1BK68 150BOT119 | 17961 BCS Prep Completed 2001-06-17 17:06                                         |
| Phosphorous<br>Potassium | 1BK68 150BOT119<br>1BK68 150BOT119 | 42900 RHH 4.33229E+02 ug/ml<br>12800 SDN 5.06E+03 ug/mL                           |
| Sodium                   | 1BK68 150BOT119                    | 12800 SDN 3.59E+04 ug/mL                                                          |
| SpGr<br>Tritium          | 1BK68 150BOT119<br>1BK68 150BOT119 | 47981 BGP 1.35635E+00 +- 5.6E-04 @ 25/4<br>33011 WDT 5.6E+02 +- 1.0E+02 D/S/ML    |
| UDS<br>Uranium           | 1BK68 150BOT119<br>1BK68 150BOT119 | 17972 RNR 1.187 g/L<br>17920 RAH 7.39E-02 +- 3.7E-03 G/L                          |
| End of Report            | 15 results.                        | 1/920 1011 /.392 02 1 3.72 03 072                                                 |

#### INTERIM REPORT for BOPR: NCC-119

Log Type: \*\* RCRA \*\*

Report for : JD LONG Log Number : 01-06214 Mailstop : 5218 Phone Number : 6-7552

Date Received : Jun 21 2001

Time Received : 12:51

GWA charged : 561C022AA

MSA mR/hr : HOT

Hazard Index : >1E4

PCBs >50 ppm : NO

COMMENTS: If fail to get a acid result in range then run pH. pH does not

need to be RCRA samples to include trip blank (BP10130201)

|               | Lab    |            |        |                                      |
|---------------|--------|------------|--------|--------------------------------------|
| Analysis      | Spl ID | Spl ID     | Method | Analyst Results                      |
|               |        |            |        |                                      |
|               |        | BP10130101 | 57012  | BET 1.741E+00 +- 5.4E-02 Normal Acid |
| Aluminum      |        | BP10130101 |        |                                      |
| Antimony      |        | BP10130101 | 42900  | LAM 1.56E+03 ug/L                    |
| Arsenic       |        | BP10130101 | 42900  | LAM Not Detected: IDL= 580 ug/L      |
| Barium        |        | BP10130101 |        |                                      |
| Beryllium     |        | BP10130101 |        |                                      |
| Cadmium       |        | BP10130101 |        |                                      |
| Chromium      | 1BL27  | BP10130101 |        |                                      |
| Cobalt        | 1BL27  | BP10130101 | 42900  |                                      |
| Copper        | 1BL27  | BP10130101 | 42900  |                                      |
| Fluoride      | 1BL27  | BP10130101 |        |                                      |
| Lead          | 1BL27  | BP10130101 | 42900  | LAM 8.628E+04 ug/L                   |
| Manganese     |        | BP10130101 |        |                                      |
| Mercury       | 1BL27  | BP10130101 | 12800  | SDN 1.14E+05 ug/L                    |
| Nickel        |        | BP10130101 | 42900  | LAM 5.532E+04 ug/L                   |
| SVOA (TOTAL)  | 1BL27  | BP10130101 | 9270   |                                      |
| Selenium      | 1BL27  | BP10130101 | 42900  | LAM Not Detected: IDL= 960 ug/L      |
| Silver        | 1BL27  | BP10130101 | 42900  | LAM Not Detected: IDL= 400 ug/L      |
| TIC           | 1BL27  | BP10130101 | 18060  | RDW MDL=119.004 ug/ml                |
| TOC           | 1BL27  | BP10130101 | 18060  | RDW 7.5499E+02 ug/ml                 |
| Thallium      | 1BL27  |            |        | LAM Not Detected: IDL= 800 ug/L      |
| UDS           | 1BL27  | BP10130101 | 17972  | RNR 1.288 g/L                        |
| Uranium       | 1BL27  | BP10130101 | 17920  | BCS 6.22E-02 +- 3.3E-03 G/L          |
| VOA (TOTAL)   | 1BL27  | BP10130101 | 9260   |                                      |
|               | 1BL28  | BP10130201 | 9260   |                                      |
| Vanadium      | 1BL27  | BP10130101 | 42900  | LAM 5.6E+02 ug/L                     |
| Zinc          |        | BP10130101 |        |                                      |
| End of Report |        |            |        |                                      |

#### INTERIM REPORT for 150BOT119 333/334

Log Type: \*\* PLANT \*\*

Report for : NWCF Log Number : 01-06233 Mailstop : 5216 Phone Number : 6-3226

Date Received : Jun 24 2001

Time Received : 11:42

GWA charged : 561211295

MSA mR/hr : CELL

Hazard Index : 1E8

PCBs >50 ppm : NO

| Analysis                                                            | Lab Field<br>Spl ID Spl ID                                                                                                                  | Method Analyst Results                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acid Aluminum Chloride Fluoride I129 Nitrate PREP                   | 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119             | 57012 RDW 2.830E+00 +- 6.2E-02 Normal Acid<br>87100 BCS 7.11E-01 +- 2.9E-02 MOLAR<br>57171 RDW 1.323E+03 +- 2.2E+01 ug/mL<br>57093 BGP 1.30E+03 +- 1.0E+02 ug/mL<br>3539<br>97074 BCS 7.22E+00 +- 1.7E-01 Molar<br>17961 RAH Prep Completed 2001-07-02 13:23 |
| Phosphorous Potassium Sodium SpGr Tritium UDS Uranium End of Report | 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119 1BL41 150BOT119 1A results. | 42900 RHH                                                                                                                                                                                                                                                    |

**CONDENSED OVERHEADS SAMPLES ANALYSIS REPORTS** 

Log Type: \*\* PLANT \*\*

Log Number : 01-05061 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 06 2001 Time Approved : 17:51 Date Received : May 06 2001

Time Received: 12:17

Reviewed by W. (BILL) STRONG GWA charged : 561211296

MSA mR/hr : HOT Signature \_\_\_\_\_

Hazard Index : 1E5 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature \_\_\_\_

| Analysis      | Lab<br>Spl ID | Field<br>Spl ID     | Method Analyst Results                     |
|---------------|---------------|---------------------|--------------------------------------------|
| AL/F RATIO    | 1BB04         | 150COND122/NEOPRENE | 11023 BCS Ratio Not Performed              |
| Acid          | 1BB04         | 150COND122/NEOPRENE | 57012 RDW 4.67E-01 +- 1.2E-02 Normal Acid  |
| Aluminum      | 1BB05         | 150COND122/PLASTIC  | 87100 BCS 1.08E-03 +- 2.3E-04 MOLAR        |
| Chloride      | 1BB04         | 150COND122/NEOPRENE | 57171 BCS 1.747E+02 +- 6.5E+00 ug/mL       |
| Flash Point   | 1BB04         | 150COND122/NEOPRENE | 17985 BCS NO FLASH @ 60.00 deg C corrected |
| Fluoride      | 1BB04         | 150COND122/NEOPRENE | 57093 BCS Not Detected: MDL=7.757 ug/mL    |
| GROSS BETA    | 1BB04         | 150COND122/NEOPRENE | 87970 BCS 3.96E+05 +- 2.0E+04 B/Min/ml     |
| Mercury       | 1BB05         | 150COND122/PLASTIC  | 87802 RDW 4.59E+00 +- 4.6E-01 ug/ml        |
| Nitrate       | 1BB04         | 150COND122/NEOPRENE | 97074 BCS 4.011E-01 +- 4.7E-03 Molar       |
| SpGr          | 1BB04         | 150COND122/NEOPRENE | 47981 BCS 1.01272E+00 +- 1.0E-04 @ 25/4    |
| Sulfate       | 1BB04         | 150COND122/NEOPRENE | 97168 BCS 1.47E+01 +- 3.9E+00 ug/ml        |
| TOC           | 1BB04         | 150COND122/NEOPRENE | 18060 RDW 1.517E+02 +- 9.1E+00 ug/ml       |
| UDS           | 1BB04         | 150COND122/NEOPRENE | 17972 BCS No Visible Solids.               |
| Uranium       | 1BB04         | 150COND122/NEOPRENE | 17920 BCS < 3.24219E-04 G/L                |
|               | 1BB04         | 150COND122/NEOPRENE | 17920 BCS < 3.24219E-04 G/L                |
| End of Report | 15 r          | esults.             |                                            |

# FINAL REPORT for 150COND122 294 Log Type: \*\* PLANT \*\*

Log Number : 01-05073 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 08 2001 Time Approved : 11:11 Date Received : May 07 2001 Time Received : 17:33

GWA charged : 561211296 Reviewed by CLAYNE GRIGG

MSA mR/hr : 1.0 Signature \_\_\_\_\_

Hazard Index : 1E5 Lab QC/QA reviewed by

Signature \_\_\_\_\_ PCBs >50 ppm : NO

|               | Lab    | Field               |                                            |
|---------------|--------|---------------------|--------------------------------------------|
| Analysis      | Spl ID | Spl ID              | Method Analyst Results                     |
| AL/F RATIO    | 1BB24  | 150COND122/NEOPRENE | 11023 BGP Ratio Not Performed              |
| Acid          | 1BB24  | 150COND122/NEOPRENE | 57012 BGP 4.50E-01 +- 1.2E-02 Normal Acid  |
| Aluminum      | 1BB25  | 150COND122/PLASTIC  | 87100 RAH < 7.55977E-04 MOLAR              |
| Chloride      | 1BB24  | 150COND122/NEOPRENE | 57171 BGP 1.72E+02 +- 1.1E+01 ug/mL        |
| Flash Point   | 1BB24  | 150COND122/NEOPRENE | 17985 BET NO FLASH @ 60.00 deg C corrected |
| Fluoride      | 1BB24  | 150COND122/NEOPRENE | 57093 BGP Not Detected: MDL=6.982 ug/mL    |
| GROSS BETA    | 1BB24  | 150COND122/NEOPRENE | 87970 RAH 4.94E+04 +- 2.9E+03 B/Min/ml     |
| Mercury       | 1BB25  | 150COND122/PLASTIC  | 87802 RAH 3.80E+00 +- 2.3E-01 ug/ml        |
| Nitrate       | 1BB24  | 150COND122/NEOPRENE | 97074 BGP 4.198E-01 +- 4.8E-03 Molar       |
| SpGr          | 1BB24  | 150COND122/NEOPRENE | 47981 BGP 1.01208E+00 +- 1.0E-04 @ 25/4    |
| Sulfate       | 1BB24  | 150COND122/NEOPRENE | 97168 BGP 1.15E+01 +- 4.0E+00 ug/ml        |
| TOC           | 1BB24  | 150COND122/NEOPRENE | 18060 BGP 1.313E+02 +- 9.1E+00 ug/ml       |
| UDS           | 1BB24  | 150COND122/NEOPRENE | 17972 BGP No Visible Solids.               |
| Uranium       | 1BB24  | 150COND122/NEOPRENE | 17920 RAH < 3.24219E-04 G/L                |
|               | 1BB24  | 150COND122/NEOPRENE | 17920 RAH < 3.24219E-04 G/L                |
| End of Report | 15 r   | esults.             |                                            |

Log Type: \*\* PLANT \*\*

Log Number : 01-05087
Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 09 2001 Time Approved : 02:13 Date Received : May 08 2001

Time Received : 14:53

Reviewed by BRIAN PASSMORE GWA charged : 561211296

MSA mR/hr : HOT Signature \_\_\_\_\_

Hazard Index : >1E4 Lab QC/QA reviewed by

Signature \_\_\_\_\_ PCBs >50 ppm : NO

| Analysis                       | Lab<br>Spl ID           | Field<br>Spl ID                                                   | Method Analyst Results                                                                                                          |  |
|--------------------------------|-------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| AL/F RATIO<br>Acid<br>Aluminum | 1BB54<br>1BB54<br>1BB55 | 150COND122/NEOPRENE<br>150COND122/NEOPRENE<br>150COND122/PLASTIC  | 11023 BCS Ratio Not Performed<br>57012 RNR 4.76E-01 +- 1.2E-02 Normal Acid<br>87100 BCS < 4.20091E-04 MOLAR                     |  |
| Chloride                       | 1BB54                   | 150COND122/NEOPRENE                                               | 57171 RNR 1.828E+02 +- 6.6E+00 ug/mL                                                                                            |  |
| Flash Point Fluoride           | 1BB54<br>1BB54<br>1BB54 | 150COND122/NEOPRENE<br>150COND122/NEOPRENE<br>150COND122/NEOPRENE | 17985 BET NO FLASH @ 60.00 deg C corrected<br>57093 BCS Not Detected: MDL=6.982 ug/mL<br>87970 RAH 5.01E+03 +- 7.3E+02 B/Min/ml |  |
| GROSS BETA<br>Mercury          | 1BB55                   | 150COND122/PLASTIC                                                | 87802 RAH 3.73E+00 +- 2.3E-01 ug/ml                                                                                             |  |
| Nitrate<br>SpGr                | 1BB54<br>1BB54          | 150COND122/NEOPRENE<br>150COND122/NEOPRENE                        | 97074 RAH 2.049E-02 +- 2.2E-04 Molar<br>47981 BET 1.01314E+00 +- 1.0E-04 @ 25/4                                                 |  |
| Sulfate                        | 1BB54                   | 150COND122/NEOPRENE                                               | 97168 RAH < 2.86967E+00 ug/ml                                                                                                   |  |
| TOC                            | 1BB54<br>1BB54          | 150COND122/NEOPRENE<br>150COND122/NEOPRENE                        | 18060 BET 1.286E+02 +- 9.0E+00 ug/ml<br>17972 BET no visible solids                                                             |  |
| Uranium                        | 1BB54<br>1BB54          | 150COND122/NEOPRENE<br>150COND122/NEOPRENE                        | 17920 BCS < 3.24219E-04 G/L<br>17920 BGP < 3.24219E-04 G/L                                                                      |  |
| End of Report                  |                         | esults.                                                           | 1,520 201 1 0.111111                                                                                                            |  |

Log Type: \*\* PLANT \*\*

Log Number : 01-05092 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 10 2001 Time Approved : 01:06 Date Received : May 09 2001

Time Received: 18:47

GWA charged : 561211296 Reviewed by BRIAN PASSMORE

MSA mR/hr : HOT Signature \_\_\_\_\_

Hazard Index : >1E4 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature \_\_\_\_\_

|                  | Lab    | Field               | Mathad | Analyst Dogulta                      |
|------------------|--------|---------------------|--------|--------------------------------------|
| Analysis         | SpI ID | Spl ID              | меспоа | Analyst Results                      |
|                  |        |                     |        |                                      |
| AL/F RATIO       | 1BB93  | 150COND122/NEOPRENE |        | RAH Ratio Not Performed              |
| Acid             | 1BB93  | 150COND122/NEOPRENE | 57012  | BGP 4.80E-01 +- 1.2E-02 Normal Acid  |
| Aluminum         | 1BB94  | 150COND122/PLASTIC  | 87100  | RAH < 7.51772E-04 MOLAR              |
| Chloride         | 1BB93  | 150COND122/NEOPRENE | 57171  | BGP 1.86E+02 +- 1.1E+01 ug/mL        |
| Flash Point      | 1BB93  | 150COND122/NEOPRENE | 17985  | BGP NO FLASH @ 60.00 deg C corrected |
| Fluoride         | 1BB93  | 150COND122/NEOPRENE | 57093  | BGP Not Detected: MDL=6.982 ug/mL    |
| GROSS BETA       | 1BB93  | 150COND122/NEOPRENE | 87970  | RAH 3.52E+04 +- 2.2E+03 B/Min/ml     |
| Mercury          | 1BB94  | 150COND122/PLASTIC  | 87802  | RAH 2.31E+00 +- 2.3E-01 ug/ml        |
| Nitrate          | 1BB93  | 150COND122/NEOPRENE | 97074  | BGP 4.233E-01 +- 4.7E-03 Molar       |
| SpGr             | 1BB93  | 150COND122/NEOPRENE | 47981  | BGP 1.01307E+00 +- 1.0E-04 @ 25/4    |
| Sulfate          | 1BB93  | 150COND122/NEOPRENE | 97168  | BGP 1.08E+01 +- 4.0E+00 ug/ml        |
| TOC              | 1BB93  | 150COND122/NEOPRENE | 18060  | BGP 1.468E+02 +- 9.1E+00 ug/ml       |
| UDS              | 1BB93  | 150COND122/NEOPRENE | 17972  | BGP No visible solids.               |
| Uranium          | 1BB93  | 150COND122/NEOPRENE | 17920  | RAH < 3.24219E-04 G/L                |
|                  | 1BB93  | 150COND122/NEOPRENE | 17920  | RAH < 3.24219E-04 G/L                |
| Deal of December | 1      | 1 + .               |        |                                      |

Log Type: \*\* PLANT \*\*

Log Number : 01-06145 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Jun 17 2001 Time Approved : 14:04 Date Received : Jun 14 2001

Time Received : 23:07

Reviewed by W. (BILL) STRONG GWA charged : 561211296

MSA mR/hr : HOT Signature \_\_\_\_\_

Hazard Index : >1E4 Lab QC/QA reviewed by

Signature \_\_\_\_\_ PCBs >50 ppm : NO

| Analysis      | Lab<br>Spl ID | Field<br>Spl ID     | Method | Ana | lyst Results                     |
|---------------|---------------|---------------------|--------|-----|----------------------------------|
| AL/F RATIO    | 1BK66         | 150COND122/NEOPRENE |        |     | Ratio Not Performed              |
| Acid          | 1BK66         | 150COND122/NEOPRENE | 57012  |     |                                  |
| Aluminum      | 1BK67         | 150COND122/PLASTIC  | •      |     | < 4.20091E-04 MOLAR              |
| Chloride      | 1BK66         | 150COND122/NEOPRENE | 57171  | BGP | 1.986E+02 +- 6.8E+00 ug/mL       |
| Flash Point   | 1BK66         | 150COND122/NEOPRENE |        |     | NO FLASH @ 60.00 deg C corrected |
| Fluoride      | 1BK66         | 150COND122/NEOPRENE | 87092  | BCS | Not Detected: MDL=3.504 ug/ml    |
| GROSS BETA    | 1BK66         | 150COND122/NEOPRENE | 87970  | RAH | •                                |
| Mercury       | 1BK67         | 150COND122/PLASTIC  | 87802  | RDW | 5.49E+00 +- 2.4E-01 ug/ml        |
| Nitrate       | 1BK66         | 150COND122/NEOPRENE | 97074  |     |                                  |
| SpGr          | 1BK66         | 150COND122/NEOPRENE | 47981  | BGP | 1.01377E+00 +- 1.0E-04 @ 25/4    |
| Sulfate       | 1BK66         | 150COND122/NEOPRENE | 97168  | RAH | <b>3</b> .                       |
| TOC           | 1BK66         | 150COND122/NEOPRENE | 18060  | BGP | 1.442E+02 +- 9.1E+00 ug/ml       |
| UDS           | 1BK66         | 150COND122/NEOPRENE | 17972  | BCS | No Visible Solids                |
| Uranium       | 1BK66         | 150COND122/NEOPRENE |        |     | < 3.24219E-04 G/L                |
|               | 1BK66         | 150COND122/NEOPRENE | 17920  | RAH | < 3.24219E-04 G/L                |
| End of Report | 15 r          | esults.             |        |     |                                  |

#### INTERIM REPORT for BOPR:NCC-122

Log Type: \*\* RCRA \*\*

Report for : JD LONG Log Number : 01-06221 Mailstop : 5218 Phone Number : 6-7552

Date Received : Aug 13 2001

Time Received: 10:53

GWA charged : 561C022AB

MSA mR/hr : HOT

Hazard Index : >1E4

PCBs >50 ppm : NO

COMMENTS: If fail to get a acid result in range then run pH. pH does not

need to be RCRA

|               | Lab Field        |                                           |
|---------------|------------------|-------------------------------------------|
| Analysis      | spl ID spl ID    | Method Analyst Results                    |
| Acid          | 1BL29 BP10140101 | 57012 BGP 5.14E-01 +- 1.2E-02 Normal Acid |
| Aluminum      | 1BL29 BP10140101 | 42900 LAM 1.703E+03 ug/L                  |
| Antimony      | 1BL29 BP10140101 | 42900 LAM Not Detected: IDL= 47 ug/L      |
| Arsenic       | 1BL29 BP10140101 | 42900 LAM Not Detected: IDL= 29 ug/L      |
| Barium        | 1BL29 BP10140101 | 42900 LAM 9.0E+00 ug/L                    |
| Beryllium     | 1BL29 BP10140101 | 42900 LAM Not Detected: IDL= 1 $ug/L$     |
| Cadmium       | 1BL29 BP10140101 | 42900 LAM Not Detected: IDL= 4 ug/L       |
| Chromium      | 1BL29 BP10140101 | 42900 LAM 2.7E+01 ug/L                    |
| Cobalt        | 1BL29 BP10140101 | 42900 LAM Not Detected: IDL= 10 ug/L      |
| Copper        | 1BL29 BP10140101 | 42900 LAM Not Detected: IDL= 14 $ug/L$    |
| Fluoride      | 1BL29 BP10140101 | 57093 BET 3.40346E+00 mg/L                |
| Lead          | 1BL29 BP10140101 | 42900 LAM Not Detected: IDL= 63 ug/L      |
| Manganese     | 1BL29 BP10140101 | 42900 LAM 1.3E+01 ug/L                    |
| Mercury       | 1BL29 BP10140101 | 12800 SDN 3950. ug/L                      |
| Nickel        | 1BL29 BP10140101 | 42900 LAM 3.2E+01 ug/L                    |
| SVOA (TOTAL)  | 1BL29 BP10140101 | 9270                                      |
| Selenium      | 1BL29 BP10140101 | 42900 LAM Not Detected: IDL= 48 ug/L      |
| Silver        | 1BL29 BP10140101 | 42900 LAM Not Detected: IDL= 20 ug/L      |
| TIC           | 1BL29 BP10140101 | 18060 RDW mdl=23.8008 ug/ml               |
| TOC           | 1BL29 BP10140101 | 18060 RDW 1.47853E+02 ug/ml               |
| Thallium      | 1BL29 BP10140101 | 42900 LAM Not Detected: IDL= 40 ug/L      |
| UDS           | 1BL29 BP10140101 | 17972 RNR 0.0 g/L                         |
| Uranium       | 1BL29 BP10140101 | 17920 BCS < 3.24219E-04 G/L               |
| VOA (TOTAL)   | 1BL29 BP10140101 | 9260                                      |
|               | 1BL30 BP10140201 | 9260                                      |
| Vanadium      | 1BL29 BP10140101 | 42900 LAM Not Detected: IDL= 10 ug/L      |
| Zinc          | 1BL29 BP10140101 | 42900 LAM 5.3E+01 ug/L                    |
| End of Report | 27 results.      |                                           |

Log Type: \*\* PLANT \*\*

Log Number : 01-06241 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Jun 25 2001 Time Approved : 16:38 Date Received : Jun 24 2001

Time Received : 11:44

Reviewed by CLAYNE GRIGG GWA charged : 561211296

Signature \_\_\_\_ MSA mR/hr : CELL

Hazard Index : 1E5 Lab QC/QA reviewed by

Signature \_\_\_\_\_ PCBs >50 ppm : NO

| Analysis                                                                                                       | Lab<br>Spl ID                                                                                                              | Field<br>Spl ID                                                                                                                                                                                                                                                                                                                                                       | Method Analyst Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AL/F RATIO Acid Aluminum Chloride Flash Point Fluoride GROSS BETA Mercury Nitrate SpGr Sulfate TOC UDS Uranium | 1BL43<br>1BL44<br>1BL43<br>1BL43<br>1BL43<br>1BL43<br>1BL43<br>1BL43<br>1BL43<br>1BL43<br>1BL43<br>1BL43<br>1BL43<br>1BL43 | 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/PLASTIC 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/PLASTIC 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/NEOPRENE 150COND122/NEOPRENE | 11023 BCS Ratio Not Performed 57012 RDW 4.71E-01 +- 1.2E-02 Normal Acid 87100 BCS < 4.20091E-04 MOLAR 57171 RDW 1.91E+02 +- 1.1E+01 ug/mL 17985 BCS NO FLASH @ 60.00 deg C corrected 87092 BCS Not Detected: MDL=3.504 ug/ml 87970 BCS 6.90E+03 +- 7.9E+02 B/Min/ml 87802 RDW 3.27E+00 +- 4.6E-01 ug/ml 97074 BCS 4.007E-01 +- 9.0E-03 Molar 47981 BCS 1.01299E+00 +- 1.0E-04 @ 25/4 97168 BCS < 5.63559E+00 ug/ml 18060 RDW 1.888E+02 +- 9.3E+00 ug/ml 17972 BCS No Visible Solids 17920 BCS < 3.24219E-04 G/L 17920 BCS < 3.24219E-04 G/L |
| End of Report                                                                                                  | 1BL43<br>15 re                                                                                                             | 150COND122/NEOPRENE<br>esults.                                                                                                                                                                                                                                                                                                                                        | 1/920 DC3 < 3.242196-04 G/H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### LAB QUALIFIER LIST

For volatile and semi-volatile organic analytical results, the INEEL qualifiers to be used are as follows:

- U Indicates the compound was analyzed for but not detected. The sample quantification limit, or method detection limit (MDL) for EPA Method 524.2 (see Section C, Part I), must be corrected for dilution. For example, 10 U for phenol in water if the sample final volume is the protocol-specified final volume and the method quantification limit for phenol is  $10 \mu g/L$ . If a 1 to 10 dilution of extract is necessary, the reported limit is 100 U.
  - If an analyte is detected at a concentration that is less than the MDL, it shall be reported at the estimated quantification limit (EQL) (concentration of the low standard in the initial calibration) and a "U" flag shall be used on the Form I.
- Indicates an estimated value. This flag is used under the following circumstances: 1) either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample estimated quantification limit but greater than the method detection limit (MDL), and 3) when the retention time data indicates the presence of a compound that meets the pesticide/polychlorinated bisphenyls (PCBs) identification criteria and the result is less that the EQL but greater than zero. For example, if the sample quantification limit is 10 μg/L, but a concentration of 3 μg/L is calculated, report the result as 3 J. The sample estimated quantification limit must be adjusted for the U flag, so that if a sample with 24% moisture and a 1 to 10 dilution factor has a calculated concentration of 300 μg/kg and a sample quantification limit of 4300 μg/kg, report the concentration as 300 J on Form I. Note: The "J" code is not used and the compound is not reported as being identified for pesticide/PCBs results less than the Contract-Required Quantification Limit (CRQL), if the technical judgement of the pesticide residue analysis expert determines that the peaks used for compound identification resulted from instrument noise or other interferences (column bleed, solvent contamination, etc).
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. The N flag is applicable only to tentatively identified compound results. For generic characterization of a tentatively identified compound, such as chlorinated hydrocarbon, the N code is not used.
- B This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action. This flag shall be used for a TIC as well as for a positively identified target compound. This flag shall not be used for flagging results on Forms I for the method blank analyses.
- E This flag identifies compounds whose concentrations exceed the calibration range of the gas chromatography (GC) or gas chromatography/mass spectrometry (GC/MS) instrument for that specific analysis. If one or more compounds has a response representing a concentration greater than the highest concentration used in the initial calibration of the instrument, the sample or extract shall be diluted and re-analyzed. All such compounds with a response greater than the highest concentration used in the initial calibration shall have the

concentration flagged with an "E" on the Form I for the original analysis. If the dilution of the extract causes any compounds identified in the first analysis to be below the calibration range in the second analysis, then the results of both analyses shall be reported on separate Forms I. The Form I for the diluted sample shall have the "DL" suffix appended to the sample number. NOTE: For total xylenes, where three isomers are quantified as two peaks when using capillary column chromatography, the calibration range of each peak should be considered separately, e.g., a diluted analysis is not required for total xylenes unless the concentration of either peak separately exceeds  $200 \mu g/L$ .

- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and all concentration and quantification limit values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- S This optional flag indicates that the compound is a matrix spike and thus, the concentration is not reported on Form I.
- P This flag is used for a pesticide/PCBs target analyte when there is greater than 25% difference for detected concentrations between the two GC Columns (See Form X). The lower of the two values is reported on the Form I and flagged with a "P".
- M This flag indicates that the analyte was quantified using a calibration curve constructed using a first or higher order regression fit as specified in and allowed by SW-846 methods 8260A (paragraph 7.3.6.1) and 8270B (paragraph 7.3.5.1).
- H The extraction holding time was exceeded.
- X, Y, or Z Other specific flags may be required to properly define the results. If used, they must be fully described and such description attached to the Sample Data Summary Package and the Sample Delivery Group (SDG) Narrative. For the data contained in this report, "Y" indicates that the data is to be used for qualitative purposes only and "Z" indicates that the initial calibration contains one less point than required by the method.

The combination of flags "BU" or "UB" is expressly prohibited. Blank contaminants are flagged "B" only when they are also detected in the sample.

For the analyses, other than volatile and semi-volatile organic compounds the lab qualifiers are as follows:

- U Used if the reported value is less than the instrument's detection limit (IDL).
- B Used if the reported value is less than ten times the IDL, but is greater than or equal to the IDL.
- N Used when spike recovery of either the matrix spike or matrix spike duplicate is not within the limits of 80 120%.
- E Used when the serial dilution or analytical spike is not within the SOW-156 limits.

# APPENDIX D DCS DATA

Table D-1. Evaporator parameters.

EVAPORATOR PARAMETERS, 0060STRT-1

| Evapo                                    | orator Paran        | OR PARAME<br>neters  | 1 ERS, 0060                             | 51KI-1                |                      |                        |                      |                      |                      |                       |     |                      |                       |                      | FGAS PARAM            | IETERS           |                   |                   |                     |                     |                     |                      | _                 |                        |                               |                        |                          |                                    |
|------------------------------------------|---------------------|----------------------|-----------------------------------------|-----------------------|----------------------|------------------------|----------------------|----------------------|----------------------|-----------------------|-----|----------------------|-----------------------|----------------------|-----------------------|------------------|-------------------|-------------------|---------------------|---------------------|---------------------|----------------------|-------------------|------------------------|-------------------------------|------------------------|--------------------------|------------------------------------|
|                                          |                     |                      |                                         |                       |                      |                        |                      |                      |                      |                       | e   | D-150-1<br>vaporator | L-150-1<br>evaporator | F350-1<br>evaporator |                       |                  |                   |                   |                     |                     |                     |                      |                   |                        |                               |                        |                          |                                    |
| Time                                     |                     | T-150-2<br>degrees C |                                         |                       | T-150-5<br>degrees C |                        | T-150-7<br>degrees C | T-150-8<br>degrees C | T-150-9<br>degrees C | T-150-10<br>degrees C | ave | density<br>ms/ml ir  | level<br>nches II     | steam flow<br>o/hour | T-336-1C<br>degrees F | F 136-1 I        | P-122-1<br>"wcvac | P-130-2<br>"wcvac | PD-130-1-1<br>IN WC | PD-130-2-1<br>IN WC | PD-130-3-1<br>IN WC | PD-130-4-1<br>IN WC  | PD-130-1<br>IN WC | T-335-2 1<br>degrees F | <b>F-130-1-1</b><br>degrees F | T-130-2-1<br>degrees F | T-130-3-1 T<br>degrees F | -130-4-1 F-130-1<br>degrees F scfm |
| 05 JUN 01 09:30:00                       | 70.274              | 72.117               | 75.015                                  | 75.114                | 46.441               | 45.187                 | 36.15                | 36.742               | 37,146               | 37.729                | 53  | 1.1875               | 18.034                | -2.387               | 75.648                | 170.52           | 11.581            | 48.987            | 0.008               | -0.05€              | 3                   | 0 1.9695             | 8.1261            | 183.11                 | 105.49                        | 104.86                 | 98.824                   | 163.65 632.45                      |
| 05 JUN 01 09:45:00<br>05 JUN 01 10:00:00 | 96.436<br>97.442    | 96.992<br>98.077     | 96.509<br>97.413                        | 96,394<br>97,443      | 47.203<br>69.385     | 45.97<br>69.732        | 36.431<br>37.98      | 37.083<br>38.581     | 37.547<br>37.948     | 38.185<br>38.702      |     | 1.1867<br>1.1858     | 37.086<br>56.134      | -2.169<br>-1.95      | 75.623<br>75.662      | 170.05<br>169.59 | 11.582<br>11.583  |                   | 0.008<br>0.008      | -0.056<br>-0.056    |                     | 0 1.9699<br>0 1.9703 | 8.1282<br>8.1304  | 183.09<br>183.09       | 105.49<br>105.49              | 104.86<br>104.85       | 98.82<br>98.816          | 163.64 606.83<br>163.64 634.13     |
| 05 JUN 01 10:15:00                       | 98.377              | 99.135               | 98.247                                  | 98.44                 | 89.207               | 89.009                 | 42.735               | 43.22                | 39.106               | 40.699                |     | 1.185                | 75.182                | -1.732               | 75.701                | 169.12           | 11.583            | 48.978            | 0.008               | -0.056              | 3                   | 0 1.9707             | 8.1326            | 183.08                 | 105.48                        | 104.85                 | 98.812                   | 163.64 629.7                       |
| 05 JUN 01 10:30:00<br>05 JUN 01 10:45:00 | 99.023<br>99.273    | 99.529<br>99.77      | 99.081<br>99.393                        | 99.175<br>99.433      | 94.15<br>94.931      | 93.396<br>94.915       | 50.974<br>64.089     | 51.409<br>64.633     | 45.414<br>58.734     | 47.101<br>60.355      |     | 1.1842<br>1.1833     | 93.734<br>111.05      | -1.514<br>-1.295     | 75.74<br>75.779       | 168.66<br>168.19 | 11.584<br>11.585  | 48.974<br>49.971  | 800.0<br>800.0      |                     |                     | 0 1.9711<br>0 1.9715 | 8.1348<br>8.1369  | 183.07<br>183.06       | 105.48<br>105.48              | 104.84<br>104.83       | 98.808<br>98.804         | 163.64 630.73<br>163.64 633.6      |
| 05 JUN 01 11:00:00<br>05 JUN 01 11:15:00 | 99.524<br>99.775    | 100.01<br>100.25     | 99.644<br>99.896                        | 99.691<br>99.949      | 94.538<br>93.141     | 95.159<br>93.095       | 81.304<br>91.544     | 82.062<br>92.22      | 77.126<br>90.363     | 78.993<br>92.638      |     | 1.1825<br>1.1817     | 127.73<br>137.23      | -1.077<br>-0.859     | 75.818<br>75.857      | 167.73<br>167.26 | 11.586<br>11.587  | 48.968<br>48.965  | 0.008<br>800.0      |                     |                     | 0 1.9719<br>0 1.9722 | 8.1391<br>8.1413  | 183.05<br>183.04       | 105.48<br>105.48              | 104.83<br>104.82       | 98.8<br>98.796           | 163.63 647.47<br>163.63 625.8      |
| 05 JUN 01 11:30:00                       | 99.987              | 100.25               | 100.23                                  | 100.4                 | 92.836               | 92.706                 | 96.146               | 96.955               | 96.523               | 98.08                 |     | 1.1809               | 137.23                | 7.1828               | 75.896                | 166.8            | 11.587            | 48.961            | 0.008               |                     |                     | 0 1.9726             |                   | 183.03                 | 105.46                        | 104.82                 | 98.792                   | 163.63 651.66                      |
| 05 JUN 01 11:45:00<br>05 JUN 01 12:00:00 | 100.19<br>100.39    | 100.64<br>100.83     | 100.8<br>101.37                         | 100.9<br>101.39       | 93.912<br>94.95      | 93.801<br>94.849       | 98.103<br>99.334     | 98.901<br>100.14     | 98.436<br>99.849     | 100.03<br>101.2       |     | 1.18<br>1.1792       | 137.02<br>136.91      | 691.63<br>1125.7     | 75.935<br>75.975      | 166.33<br>165.87 | 11.588<br>11.589  | 48.958<br>48.955  | 800.0<br>800.0      | -0.056<br>-0.056    |                     | 0 1.973<br>0 1.9734  | 8.1456<br>8.1478  | 183.02<br>183.01       | 105.47<br>105.47              | 104.81<br>104.8        | 98.788<br>98.784         | 163.63 646.97<br>163.63 614.2      |
| 05 JUN 01 12:15:00                       | 100.59              | 101.02               | 101.85                                  | 101.89                | 95.988               | 95.897                 | 100.04               | 100.79               | 100.51               | 101.77                | 400 | 1.1752               | 136.81                | 1652.5               | 76.014                | 165.4            | 11.59             | 48.952            | 0.008               | -0.056              | i                   | 0 1.9738             | 8.15              | 183.00                 | 105.47                        | 104.8                  | 98.78                    | 163.62 627.16                      |
| 05 JUN 01 12:30:00                       | 100.79              | 101.22               | 101.97                                  | 102.01                | 97.025               | 96.945                 | 99.686               | 100.38               | 100.23               | 101.85                | 100 | 1.1675               | 136.7                 | 1725.5               | 76.053                | 164.93           | 11.591            | 48.949            | 0.008               | -0.056              | •                   | 0 1.9742             | 8.1522            | 182.99                 | 105.47                        | 104.79                 | 98.776                   | 163.62 636.2                       |
|                                          | EVAPORAT            | OR PARAME            | TERS, 0060                              | END-1                 |                      |                        |                      |                      |                      |                       |     |                      |                       |                      |                       |                  |                   |                   |                     |                     |                     |                      |                   |                        |                               |                        |                          |                                    |
|                                          |                     |                      |                                         |                       |                      |                        |                      |                      |                      |                       |     | D-150-1<br>vaporator | L-150-1<br>evaporator | F350-1<br>evaporator |                       |                  |                   |                   |                     |                     |                     |                      | _                 |                        |                               |                        |                          |                                    |
| Time                                     |                     |                      |                                         | T-150-4<br>degrees C  |                      |                        | T-150-7<br>degrees C | T-150-8<br>degrees C |                      | T-150-10<br>degrees C | Gra | density<br>ms/ml in  | level                 | steam flow<br>hour   | T-336-1C<br>degrees F | F 136-1 F        | P-122-1<br>"wcvac | P-130-2<br>"wcvac | PD-130-1-1<br>IN WC | PD-130-2-1<br>IN WC | PD-130-3-1<br>IN WC | PD-130-4-1<br>IN WC  | PD-130-1<br>IN WC |                        | f-130-1-1<br>degrees F        | T-130-2-1 'degrees F   | T-130-3-1 T<br>degrees F | -130-4-1 F-130-1<br>degrees F scfm |
| 05 JUN 01 16:00:00                       | 103.58              | 103.92               | 104.57                                  | 103.98                | 97.792               | 97.612                 | 101.25               | 102.32               | 101.33               | 102.7                 | 102 | 1.2091               | 134.12                | 1719.5               | 76.599                | 158.42           | 11.602            | 48.903            | 0.008               | -0.056              |                     | 0 1.9796             | 8.1826            | 182.84                 | 105.44                        | 104.71                 | 98.721                   | 163.59 619.49                      |
| 05 JUN 01 16:15:00<br>05 JUN 01 16:30:00 | 103.77<br>103.9     | 104.11<br>104.29     | 104.72<br>104.87                        | 104.17<br>104.36      | 98.301<br>98.858     | 98.126<br>98.641       | 101.4<br>101.51      | 102.49<br>102.66     | 101.61<br>102.01     | 102.95<br>103.1       |     | 1.2129<br>1.2167     | 134.78<br>135.33      | 1744<br>1725.4       | 76.638<br>76.678      | 157.95<br>157.49 | 11.602<br>11.603  | 48.9<br>48.897    | 800.0<br>800.0      | -0.056<br>-0.056    |                     | 0 1.98<br>0 1.9804   | 8.1848<br>8.1869  | 182.83<br>182.82       | 105.44<br>105.43              | 104.7<br>104.7         | 98.717<br>98.714         | 163.59 603.97<br>163.59 630.28     |
| 05 JUN 01 16:45:00                       | 104.03              | 104.41               | 105.01                                  | 104.55<br>104.74      | 99.415<br>99.778     | 99.155<br>99.555       | 101.61<br>101.72     | 102.83<br>103        | 102.41<br>102.82     | 103.25<br>103.4       |     | 1.2205               | 135.59<br>135.86      | 1732.1<br>1734.6     | 76.717<br>76.756      | 157.02<br>156.56 | 11.604<br>11.605  | 48.894<br>48.891  | 0.008<br>800.0      | -0.056<br>-0.056    |                     | 0 1.9807<br>0 1.9811 | 8.1891<br>8.1913  | 182.81<br>182.8        | 105.43                        | 104.69                 | 98.71                    | 163.59 622.32<br>163.59 627.61     |
| 05 JUN 01 17:00:00<br>05 JUN 01 17:15:00 | 104.17<br>104.3     | 104.54<br>104.67     | 105.16<br>105.31                        | 104.74                | 100.06               | 99.722                 | 101.72               | 103.12               | 103.22               | 103.55                |     | 1.2242<br>1.228      | 135.99                | 1729.7               | 76.795                | 156.09           | 11.606            | 48.887            | 0.008               | -0.056              |                     | 0 1.9815             | 8.1935            | 182.79                 | 105.43<br>105.43              | 104.69<br>104.68       | 98.706<br>98.702         | 163.58 610.26                      |
| 05 JUN 01 17:30:00<br>05 JUN 01 17:45:00 |                     | 104.79<br>104.92     | 105.46<br>105.61                        | 105.01<br>105.1       | 100.34<br>100.63     | 99.889<br>100.06       | 101.93<br>102.03     | 103.2<br>103.28      | 103.62<br>103.64     | 103.7<br>103.85       |     | 1.2318<br>1.2356     | 135.83<br>135.67      | 1721.3<br>1729.2     | 76.834<br>76.873      | 155.26<br>154.41 | 11.606<br>11.607  | 48.884<br>48.881  | 0.008<br>0.008      | -0.056<br>-0.056    |                     | 0 1.9819<br>0 1.9823 | 8.1956<br>8.1978  | 182.78<br>182.77       | 105.43<br>105.43              | 104.67<br>104.67       | 98.698<br>98.694         | 163.58 642.05<br>163.58 626.59     |
| 05 JUN 01 18:00:00                       | 104.69              | 105.05               | 105.76                                  | 105.19                | 101.04               | 100.22                 | 102.14               | 103.35               | 103.23               | 104                   |     | 1.2394               | 135.52                | 1714.8               | 76.912                | 153.55           | 11.608            | 48.878            | 0.008               | -0.056              |                     | 0 1.9827             | 8.2               | 182.76                 | 105.42                        | 104.66                 | 98.69                    | 163.58 650.26                      |
| 05 JUN 01 18:15:00<br>05 JUN 01 18:30:00 | 104.82<br>104.95    | 105.17<br>105.3      | 105.83<br>105.81                        | 105.28<br>105.37      | 101.46<br>101.87     | 100.39<br>100.74       | 102.25<br>103.18     | 103.43<br>103.51     | 103.06<br>103.68     | 104.15<br>105.07      |     | 1.2431<br>1.2469     | 135.36<br>135.56      | 1729.4<br>1725.5     | 76.951<br>76.99       | 152.69<br>151.83 | 11.609<br>11.61   | 48.874<br>48.871  | 0.008<br>0.008      | -0.056<br>-0.056    |                     | 0 1.9831<br>0 1.9835 | 8.2022<br>8.2043  | 182.75<br>182.74       | 105.42<br>105.42              | 104.66<br>104.65       | 98.686<br>98.682         | 163.58 625.62<br>163.57 618.58     |
| 05 JUN 01 18:45:00                       | 105.08              | 105.43               | 105.8                                   | 105.46                | 102.29               | 101.12                 | 103.21               | 103.59               | 103.72               | 105.12                |     | 1.2507               | 136.01                | 1730.3               | 77.029                | 150.98           | 11.61             | 48.868            | 0.008               | -0.056              |                     | 0 1.9838             | 8.2065            | 182.73                 | 105.42                        | 104.65                 | 98.678                   | 163.57 604.61                      |
| 05 JUN 01 19:00:00<br>05 JUN 01 19:15:00 | 105.21<br>105.34    | 105.55<br>105.68     | 105.78<br>105.77                        | 105.55<br>105.64      | 102.7<br>103.11      | 101.5<br>101.88        | 103.07<br>102.93     | 103.66<br>103.74     | 103.57<br>103.42     | 104.97<br>104.82      |     | 1.2545<br>1.2583     | 135.88<br>135.75      | 1714.2<br>1728.1     | 77.068<br>77.107      | 150.12<br>149.26 | 11.611<br>11.612  | 48.865<br>48.862  | 0.008<br>0.008      | -0.056<br>-0.056    |                     | 0 1.9842<br>0 1.9846 | 8.2087<br>8.2109  | 182.72<br>182.71       | 105.42<br>105.41              | 104.64<br>104.63       | 98.674<br>98.67          | 163.57 613.46<br>163.57 615.79     |
| 05 JUN 01 19:30:00<br>05 JUN 01 19:45:00 | 105.47<br>100.64    | 105.81<br>101.46     | 105.75<br>101.48                        | 105.73<br>101.16      | 103.3<br>102.86      | 102.69<br>103.02       | 102.79<br>102.65     | 103.82<br>103.89     | 103.27<br>103.12     | 104.66<br>104.51      | 104 | 1.262<br>1.2658      | 135.62<br>135.49      | 1714.5<br>1726.9     | 77.146<br>77.185      | 148.4<br>147.55  | 11.613<br>11.613  | 48.858<br>48.855  | 0.008<br>0.008      | -0.056<br>-0.056    |                     | 0 1.985<br>0 1.9854  | 8.213<br>8.2152   | 182.7<br>182.69        | 105.41<br>105.41              | 104.63<br>104.62       | 98.666<br>98.662         | 163.57 649.86<br>163.56 626.28     |
| 00 0011 01 10.40.00                      |                     | OR PARAME            |                                         |                       | 102.00               | ,00.02                 | 102.00               |                      | 700.72               | 101.01                |     |                      | 100.10                |                      | 771.00                | 147.00           | 11,010            | ,0.000            | 0.000               | 0.000               |                     | 7.5554               | 0.2102            | 102.00                 | 100.41                        | 104.02                 | 00.002                   | 100.00                             |
|                                          | 2777 01011          | 01111111111          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | <u> </u>              |                      |                        |                      |                      |                      |                       |     | D-150-1<br>vaporator | L-150-1<br>evaporator | F350-1<br>evaporator |                       |                  |                   |                   |                     |                     |                     |                      | _                 |                        |                               |                        |                          |                                    |
| Time                                     |                     |                      |                                         |                       |                      |                        | T-150-7              | T-150-8              |                      | T-150-10              |     | density              | level                 | steam flow           |                       |                  | _                 |                   |                     | PD-130-2-1          | PD-130-3-1          |                      | PD-130-1          |                        | _                             | _                      |                          | 130-4-1 F-130-1                    |
| 06 JUN 01 07:15:00                       | degrees C<br>61.829 | degrees C<br>63.465  | degrees C o<br>69.791                   | degrees C<br>70.188   | degrees C<br>43.909  | degrees C o<br>43.728  | degrees C<br>36.42   | degrees C<br>37.092  | degrees C<br>37.571  | degrees C<br>38.548   | Gra | ms/ml In<br>1.1902   | ches It<br>136.57     | /hour<br>0.969       | degrees F<br>76.543   | scfm<br>168.77   | "wcvac<br>11.553  | "wcvac<br>48.707  | IN WC<br>0.008      | IN WC<br>-0.056     | IN WC               | IN WC<br>0 2.0576    | IN WC<br>8.3564   | degrees F<br>183.03    | degrees F<br>104.61           | degrees F<br>104.43    | degrees F<br>97.829      | degrees F scfm<br>163.41 611.81    |
| 06 JUN 01 07:30:00                       | 61.688              | 62.775<br>63.93      | 70.231<br>71.572                        | 70.523<br>71.408      | 44.131<br>44.353     | 43.903<br>44.078       | 36.469<br>36.519     | 37.142<br>37.191     | 37.769<br>38.006     | 38.676<br>38.943      |     | 1.1896<br>1.1891     | 136.52<br>136.46      | -0.588<br>-0.208     | 76.558<br>76.572      | 169<br>169.24    | 11.551<br>11.549  | 48.704<br>48.7    | 0.008<br>800.0      | -0.056<br>-0.056    |                     | 0 2.0575<br>0 2.0574 | 8.3562            | 183.03                 | 104.61<br>104.61              | 104.43<br>104.43       | 97.833                   | 163.41 635.14                      |
| 06 JUN 01 07:45:00<br>06 JUN 01 08:00:00 | 62.838<br>96.666    | 97.526               | 97.21                                   | 96.776                | 44.575               | 44.445                 | 36.568               | 37.191               | 38.243               | 39.21                 |     | 1.1885               | 136.4                 | 3.6601               | 76.586                | 169.47           | 11.548            | 48.7              | 0.008               | -0.056              |                     | 0 2.0573             | 8.356<br>8.3559   | 183.02<br>183.02       | 104.61                        | 104.43                 | 97.836<br>97.84          | 163.41 639.53<br>163.4 650.84      |
| 06 JUN 01 08:15:00<br>06 JUN 01 08:30:00 | 97.881<br>98.485    | 98.537<br>99.254     | 98.028<br>98.592                        | 98.157<br>99.204      | 59.743<br>82.048     | 59.993<br>82.078       | 37.463<br>40.546     | 38.102<br>41.242     | 38.48<br>38.718      | 39.477<br>39.745      |     | 1.188<br>1.1875      | 136.35<br>136.33      | 446.62<br>871.3      | 76.6<br>76.614        | 169.71<br>169.94 | 11.546<br>11.544  | 48.7<br>48.7      | 0.008<br>0.008      | -0.056<br>-0.056    |                     | 0 2.0572<br>0 2.0571 | 8.3557<br>8.3556  | 183.02<br>183.01       | 104.62<br>104.62              | 104.44<br>104.45       | 97.844<br>97.848         | 163.4 666.56<br>163.4 633.06       |
| 06 JUN 01 08:45:00                       | 99.041              | 99.972               | 99.156                                  | 99.457                | 93.676               | 92.752                 | 47.382               | 47.542               | 41.907               | 43.421                |     | 1.1793               | 136.66                | 1335.8               | 76.629                | 170.18           | 11.543            | 48.7              | 0.008               | -0.056              |                     | 0 2.0569             | 8.3554            | 183.01                 | 104.62                        | 104.45                 | 97.851                   | 163.4 615.81                       |
| 06 JUN 01 09:00:00<br>06 JUN 01 09:15:00 | 99.559<br>99.893    | 100.3<br>100.55      | 99.72<br>100.18                         | 99.71<br>99.964       | 96.311<br>95.898     | 95.872<br>95.598       | 57.503<br>73.257     | 58.15<br>73.735      | 51.775<br>67.856     | 53.565<br>69.073      |     | 1.1735<br>1.1683     | 136.42<br>136.06      | 1736.2<br>1735.3     | 76.643<br>76.657      | 170.42<br>170.65 | 11.541<br>11.539  | 48.7<br>48.7      | 800.0<br>800.0      | -0.056<br>-0.056    |                     | 0 2.0568<br>0 2.0567 | 8.3553<br>8.3551  | 183<br>183             | 104.62<br>104.62              | 104.45<br>104.46       | 97.855<br>97.859         | 163.39 637.62<br>163.39 642.69     |
| 06 JUN 01 09:30:00                       | 100.23              | 100.81               | 100.59                                  | 100.35                | 95.484               | 95.176                 | 88.924               | 89.958               | 85.873               | 88.072                |     | 1.1631               | 135.7                 | 1721.4               | 76.671<br>76.685      | 170.89           | 11.537            | 48.7<br>48.7      | 0.008               | -0.056              |                     | 0 2.0566             | 8.355             | 182.99                 | 104.62                        | 104.46                 | 97.863                   | 163.39 643.56                      |
| 06 JUN 01 09:45:00<br>06 JUN 01 10:00:00 | 100.56<br>100.89    | 101.05<br>101.26     | 101<br>101.41                           | 100.86<br>101.36      | 93.178<br>94.269     | 94.227<br>94.711       | 94.626<br>98.045     | 96.075<br>98.89      | 94.927<br>98.442     | 96.641<br>99.804      |     | 1.1628<br>1.1668     | 132.97<br>129.4       | 1724.7<br>1731       | 76.699                | 171.12<br>171.36 | 11.536<br>11.534  | 48.7              | 800.0<br>800.0      | -0.056<br>-0.056    |                     | 0 2.0565<br>0 2.0564 | 8.3548<br>8.3547  | 182.99<br>182.99       | 104.62<br>104.63              | 104.46<br>104.47       | 97.866<br>97.87          | 163.39 652.44<br>163.38 662.49     |
| 06 JUN 01 10:15:00<br>06 JUN 01 10:30:00 | 101.14<br>101.35    | 101.47<br>101.68     | 101.82<br>102.23                        | 101.87<br>102.16      | 95.972<br>97.357     | 95.819<br>97.109       | 99.561<br>100.54     | 100.39<br>101.16     | 100.08<br>100.93     | 101.31<br>102.19      |     | 1.1714<br>1.1781     | 125.45<br>121.13      | 1726.2<br>1725.9     | 76.714<br>76.728      | 171.59<br>171.83 | 11.532<br>11.531  | 48.7<br>48.7      | 0.008<br>800.0      | -0.056<br>-0.056    |                     | 0 2.0563<br>0 2.0562 | 8.3545<br>8.3544  | 182.98<br>182.98       | 104.63<br>104.63              | 104.47<br>104.48       | 97.874<br>97.878         | 163.38 644.66<br>163.38 620.82     |
| 06 JUN 01 10:45:00                       | 101.56              | 101.89               | 102.43                                  | 102.37                | 98.629               | 98.262                 | 101.01               | 101.52               | 100.71               | 102.8                 |     | 1.1848               | 116.85                | 1724.8               | 76.742                | 172.06           | 11.529            | 48.7              | 0.008               | -0.056              |                     | 0 2.0561             | 8.3542            | 182.97                 | 104.63                        | 104.48                 | 97.881                   | 163.38 630.82                      |
| 06 JUN 01 11:00:00<br>06 JUN 01 11:15:00 | 101.77<br>101.98    | 102.1<br>102.31      | 102.56<br>102.69                        | 102.58<br>102.77      | 98.601<br>95.504     | 98.668<br>95.169       | 101.05<br>97.614     | 100.93<br>98.603     | 100.25<br>98.546     | 102.24<br>99.762      |     | 1.1916<br>1.1963     | 113.01<br>123.25      | 1730<br>1724.7       | 76.756<br>76.77       | 172.3<br>172.53  | 11.527<br>11.525  | 48.7<br>48.7      | 0.008<br>0.008      | -0.056<br>-0.056    |                     | 0 2.056<br>0 2.0559  | 8,354<br>8,3539   | 182.97<br>182.97       | 104.63<br>104.63              | 104.48<br>104.49       | 97.885<br>97.889         | 163.37 664.12<br>163.37 634.06     |
| 06 JUN 01 11:30:00                       | 102.19              | 102.52               | 102.82                                  | 102.94                | 94.835               | 95.309                 | 98.235               | 99.465               | 99.119               | 100.27                |     | 1.1994               | 124.3                 | 1725.3               | 76.785                | 172.77           | 11.524            | 48.7              | 0.008               | -0.056              |                     | 0 2.0558             | 8.3537            | 182.96                 | 104.63                        | 104.49                 | 97.893                   | 163.37 656.65                      |
| 06 JUN 01 11:45:00                       | 102.4               | 102.73               | 102.94                                  | 103.12                | 94.85                | 95.45                  | 98.661               | 99.799               | 99.472               | 100.59                |     | 1.2025               | 125.62                | 1728.1               | 76.799                | 173              | 11.522            | 48.7              | 0.008               | -0.056              |                     | 0 2.0557             | 8.3536            |                        | 104.63                        | 104.49                 | 97,897                   | 163.37 664.84                      |
|                                          | EVAPORAT            | OR PARAME            | IEKS, 0060                              | END-Z                 |                      |                        |                      |                      | •                    |                       |     | D-150-1              | L-150-1               | F350-1               |                       |                  |                   |                   |                     |                     |                     |                      | _                 |                        |                               |                        |                          |                                    |
| Time                                     |                     | T-150-2              |                                         |                       |                      | T-150-6                |                      |                      | T-150-9              |                       |     | vaporator<br>density | evaporator<br>level   |                      |                       | F 136-1 P        |                   |                   |                     |                     | PD-130-3-1          |                      |                   |                        |                               |                        |                          | 130-4-1 F-130-1                    |
| 06 JUN 01 15:00:00                       | degrees C<br>104.59 | degrees C<br>105.44  | degrees C of<br>105.51                  | degrees C o<br>105.41 | degrees C<br>99.217  | degrees C of<br>98.681 | degrees C<br>102.98  | degrees C<br>103.27  | degrees C<br>103.11  | degrees C<br>104.13   | Gra | ms/ml In<br>1.2536   | ches lb<br>128.9      | /hour<br>1732.2      | degrees F<br>76.983   | scfm<br>176.06   | "wcvac<br>11.5    | "wcvac<br>48.7    | IN WC<br>0.008      | IN WC<br>-0.056     | IN WC               | IN WC<br>2.0544      | IN WC<br>8.3516   | degrees F<br>182.91    | degrees F<br>104.65           | degrees F<br>104.54    | degrees F<br>97.945      | degrees F scfm<br>163.33 661.48    |
| 06 JUN 01 15:15:00                       | 104.76              | 105.54               | 105.63                                  | 105.59                | 99.421               | 98.844                 | 103.12               | 103.53               | 103.33               | 104.4                 |     | 1.257                | 129.23                | 1725.5               | 76.997                | 176.3            | 11.498            | 48.7              | 0.008               | -0.056              |                     | 2.0543               | 8.3514            | 182.9                  | 104.65                        | 104.55                 | 97.949                   | 163.33 641.36                      |
| 06 JUN 01 15:30:00<br>06 JUN 01 15:45:00 | 104.92<br>105.09    | 105.65<br>105.76     | 105.67<br>105.67                        | 105.77<br>105.94      | 99.626<br>99.83      | 99.007<br>99.17        | 103.27<br>103.41     | 103.79<br>104.04     | 103.49<br>103.66     | 104.67<br>104.93      |     | 1.2604<br>1.2638     | 129.47<br>129.67      | 1716.1<br>1722.5     | 77.011<br>77.026      | 176.54<br>176.77 | 11.496<br>11.495  | 48.7<br>48.7      | 0.008<br>0.008      | -0.056<br>-0.056    |                     | 2.0542<br>2.0541     | 8.3513<br>8.3511  | 182.9<br>182.9         | 104.65<br>104.65              | 104.55<br>104.55       | 97.953<br>97.957         | 163.33 620.13<br>163.33 660.25     |
| 06 JUN 01 16:00:00<br>06 JUN 01 16:15:00 | 105.25<br>105.42    | 105.87<br>105.98     | 105.67<br>105.67                        | 106.12<br>106.29      | 100.04<br>100.24     | 99.333<br>99.497       | 103.55<br>103.69     | 104.3<br>104.56      | 103.83<br>103.99     | 105.2<br>105.47       |     | 1.2672<br>1.2706     | 129.86<br>130.06      | 1724.8<br>1726.5     | 77.04<br>77.054       | 177.01<br>177.24 | 11.493<br>11.491  | 48.7<br>48.7      | 800.0<br>800.0      | -0.056<br>-0.056    | (                   | 2.054                | 8.351<br>8.3508   | 182.89<br>182.89       | 104.66<br>104.66              | 104.56<br>104.56       | 97.96<br>97.964          | 163.32 667.6<br>163.32 649.2       |
| 06 JUN 01 16:30:00                       | 105.58              | 106.09               | 105.67                                  | 106.47                | 100.44               | 99.66                  | 103.73               | 104.82               | 104.16               | 105.74                |     | 1.274                | 130.25                | 1727.6               | 77.068                | 177.48           | 11.49             | 48.7              | 0.008               | -0.056              | (                   | 2.0538               | 8.3507            | 182.88                 | 104.66                        | 104.57                 | 97.968                   | 163.32 652.49                      |
| 06 JUN 01 16:45:00<br>06 JUN 01 17:00:00 | 105.75<br>105.91    | 106.19<br>106.3      | 105.67<br>105.67                        | 106.65<br>106.82      | 100.65<br>100.85     | 99.823<br>99.986       | 103.71<br>103.68     | 104.95<br>104.79     | 104.32<br>104.49     | 106.01<br>106.27      |     | 1.2775<br>1.2809     | 130.43<br>130.03      | 1733.7<br>1731.7     | 77.082<br>77.097      | 177.71<br>177.95 | 11.488<br>11.486  | 48.7<br>48.7      | 0.008<br>0.008      | -0.056<br>-0.056    | (                   | 2.0537<br>2.0536     | 8.3505<br>8,3504  | 182.88<br>182.88       | 104.66<br>104.66              | 104.57<br>104.57       | 97.972<br>97.975         | 163.32 642.31<br>163.31 656.42     |
| 06 JUN 01 17:15:00                       | 106.08              | 106.41               | 105.67                                  | 107                   | 101.06               | 100.15                 | 103.65               | 104.62               | 104.65               | 106.54                |     | 1.2843               | 129.64                | 380.21               | 77.111                | 178.18           | 11.484            | 48.7              | 0.008               | -0.056              |                     | 2.0535               | 8.3502            | 182.87                 | 104.66                        | 104.58                 | 97.979                   | 163.31 626.64                      |
| 06 JUN 01 17:30:00<br>06 JUN 01 17:45:00 | 101.12<br>99.677    | 101.87<br>100.23     | 102<br>100.5                            | 101.54<br>99.811      | 100.8<br>100.48      | 100.31<br>99.884       | 103.62<br>103.59     | 104.46<br>104.29     | 104.53<br>104.01     | 106.04<br>105.32      |     | 1.2877<br>1.2911     | 129.31<br>128.98      | -9.053<br>-8.939     | 77.125<br>77.139      | 178.42<br>178.65 | 11.483<br>11.481  | 48.7<br>48.7      | 0.008<br>0.008      | -0.056<br>-0.056    | (                   | 2.0534<br>2.0533     | 8.3501<br>8.3499  | 182.87<br>182.86       | 104.66<br>104.66              | 104.58<br>104.58       | 97.983<br>97.987         | 163.31 668.24<br>163.31 634.91     |
| 06 JUN 01 18:00:00                       | 97.996              | 99.212               | 99.361                                  | 98.171                | 100.15               | 99.339                 | 103.29               | 104.13               | 103.32               | 104.49                |     | 1.2938               | 128.65                | -8.824               | 77.153                | 178.89           | 11.479            | 48.7              | 0.008               | -0.056              | (                   | 2.0532               | 8.3497            | 182.86                 | 104.67                        | 104.59                 | 97.99                    | 163.3 658.67                       |

Table D-1. Evaporator parameters.

EVAPORATOR PARAMETERS, 0050STRT-1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STRT-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                          | D-150-1                                                                                                                                                                                                                                         | L-150-1                                                                                                                                                                                                                            | F350-1                                                                                                                                                                                                                                    |                                                                                                                                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                  |                                                                                                                                                                                                                             |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time T-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1 T-150-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T-150-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T-150-4 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150-5 T-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50-6 T-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150-7 T-                                                                                                                                                                                                                                  | 150-8                                                                                                                                                                                                                         | T-150-9                                                                                                                                                                                                                                                                               | T-150-10                                                                                                                                                                                                                 | evaporator<br>density                                                                                                                                                                                                                           | evaporator<br>level                                                                                                                                                                                                                | evaporator<br>steam flow                                                                                                                                                                                                                  | T-336-1C                                                                                                                                                                                                               | F 136-1 P                                                                                                                                                                               | 122-1 P                                                                                                                                                                                                                                                                                                                                                                                                                                             | -130-2 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PD-130-1-1                                                                                                                                                                                                                                | PD-130-2-1                                                                                                                                                                                                                                                                                                                                                                                      | PD-130-3-1                                | PD-130-4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PD-130-1 _                                                                                                                                                                                         |                                                                                                                                                                                                                             | -130-1-1 T                                                                                                                                                                                    | -130-2-1 T                                                                                                                                                                                                                  | -130-3-1 T-                                                                                                                                                                                  | 130-4-1 F-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 07 JUN 01 08:00:00 96.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es C degrees C<br>i.912 97.913<br>'.748 98.768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.931<br>98.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees C de<br>96.902<br>97.801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | grees C deg<br>41.697<br>42.467                                                                                                                                                                                                           | grees C d<br>42.07<br>43.437                                                                                                                                                                                                  | egrees C<br>41.993<br>42.053                                                                                                                                                                                                                                                          | degrees C<br>42.81<br>42.887                                                                                                                                                                                             | Grams/ml<br>1.1742<br>1.1737                                                                                                                                                                                                                    | 136.8<br>136.74                                                                                                                                                                                                                    | lb/hour<br>4.2814<br>678.65                                                                                                                                                                                                               | degrees F<br>77.948<br>77.962                                                                                                                                                                                          | scfm<br>171.82<br>170.91                                                                                                                                                                | "wcvac<br>11.384<br>11.382                                                                                                                                                                                                                                                                                                                                                                                                                          | "wcvac<br>48.689<br>48.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IN WC<br>0.008<br>0.008                                                                                                                                                                                                                   | IN WC<br>-0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                       | IN WC                                     | IN WC<br>2.0474<br>2.0473                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IN WC<br>8.3412<br>8,341                                                                                                                                                                           | degrees F<br>182.63<br>182.63                                                                                                                                                                                               | degrees F<br>104.74<br>104.74                                                                                                                                                                 | degrees F<br>104.8<br>104.8                                                                                                                                                                                                 | degrees F<br>98.201<br>98.204                                                                                                                                                                | 163.16 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cfm<br>655.98<br>676.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 07 JUN 01 08:30:00 98.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.444 99.431<br>3.139 99.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.194<br>99.643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98.593<br>99.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.424<br>55.84                                                                                                                                                                                                                           | 48.118<br>56.547                                                                                                                                                                                                              | 43.667<br>50.83                                                                                                                                                                                                                                                                       | 45.39<br>52.693                                                                                                                                                                                                          | 1.1732<br>1.1716                                                                                                                                                                                                                                | 136.67<br>136.68                                                                                                                                                                                                                   | 1095.9<br>1522,7                                                                                                                                                                                                                          | 77.976<br>77.99                                                                                                                                                                                                        | 170<br>169.09                                                                                                                                                                           | 11.38<br>11.379                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48.692<br>48.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008<br>0.008                                                                                                                                                                                                                            | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                | Č                                         | 2.0472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.3408<br>8.3407                                                                                                                                                                                   | 182.62<br>182.62                                                                                                                                                                                                            | 104.74<br>104.74                                                                                                                                                                              | 104.81<br>104.81                                                                                                                                                                                                            | 98.208<br>98.212                                                                                                                                                                             | 163.16 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 668.63<br>629.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .561 100.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99.876<br>100.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99.768<br>100.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69.314<br>86.41                                                                                                                                                                                                                           | 70.263<br>87.072                                                                                                                                                                                                              | 65.202<br>82.498                                                                                                                                                                                                                                                                      | 66.09<br>84.708                                                                                                                                                                                                          | 1.1606<br>1.1542                                                                                                                                                                                                                                | 137.23<br>136.81                                                                                                                                                                                                                   | 1715.6<br>1723.3                                                                                                                                                                                                                          | 78.004<br>78.018                                                                                                                                                                                                       | 168.17<br>167.26                                                                                                                                                                        | 11.377<br>11.375                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.695<br>48.696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008<br>0.008                                                                                                                                                                                                                            | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                | C                                         | 2.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.3405<br>8.3404                                                                                                                                                                                   | 182.61<br>182.61                                                                                                                                                                                                            | 104.74<br>104.74<br>104.74                                                                                                                                                                    | 104.81<br>104.82                                                                                                                                                                                                            | 98.216<br>98.219                                                                                                                                                                             | 163.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 663.7<br>626.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 07 JUN 01 09:30:00 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.19 100.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.11<br>100.34<br>100.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           | 94.365<br>98.067                                                                                                                                                                                                              | 93.391<br>97.605                                                                                                                                                                                                                                                                      | 95.257<br>98.99                                                                                                                                                                                                          | 1.1574<br>1.1634                                                                                                                                                                                                                                | 134.05                                                                                                                                                                                                                             | 1736                                                                                                                                                                                                                                      | 78.033                                                                                                                                                                                                                 | 166.35                                                                                                                                                                                  | 11.373                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.008                                                                                                                                                                                                                                     | -0.056                                                                                                                                                                                                                                                                                                                                                                                          | 0                                         | 2.0468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.3402                                                                                                                                                                                             | 182.61                                                                                                                                                                                                                      | 104.74                                                                                                                                                                                        | 104.82                                                                                                                                                                                                                      | 98.223                                                                                                                                                                                       | 163.15 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 656.16<br>652.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07 JUN 01 10:00:00 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.64 101.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.815                                                                                                                                                                                                                                    | 99.615                                                                                                                                                                                                                        | 99.357                                                                                                                                                                                                                                                                                | 100.69                                                                                                                                                                                                                   | 1.1674                                                                                                                                                                                                                                          | 130,55<br>126,72                                                                                                                                                                                                                   | 1729.2<br>1729.6                                                                                                                                                                                                                          | 78.047<br>78.061                                                                                                                                                                                                       | 165.44<br>164.54                                                                                                                                                                        | 11.372                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.699<br>48.701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008<br>0.008                                                                                                                                                                                                                            | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                | C                                         | 2.0467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.3401<br>8.3399                                                                                                                                                                                   | 182.6<br>182.6                                                                                                                                                                                                              | 104.74<br>104.75                                                                                                                                                                              | 104.82<br>104.83                                                                                                                                                                                                            | 98.227<br>98.231                                                                                                                                                                             | 163.14 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 628.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 07 JUN 01 10:30:00 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.85 101.3<br>1.07 101.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.94<br>101.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101.07<br>101.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96.531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.789<br>100.34                                                                                                                                                                                                                          | 100.57                                                                                                                                                                                                                        | 100.39                                                                                                                                                                                                                                                                                | 101.61<br>102.09                                                                                                                                                                                                         | 1.1716<br>1.1758                                                                                                                                                                                                                                | 122.42<br>118.31                                                                                                                                                                                                                   | 1730<br>1730                                                                                                                                                                                                                              | 78.075<br>78.089                                                                                                                                                                                                       | 163.63<br>162.72                                                                                                                                                                        | 11.368<br>11.367                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.702<br>48.704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008<br>0.008                                                                                                                                                                                                                            | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                | 0                                         | 2.0464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.3398<br>8.3396                                                                                                                                                                                   | 182.59<br>182.59                                                                                                                                                                                                            | 104.75<br>104.75                                                                                                                                                                              | 104.83<br>104.84                                                                                                                                                                                                            | 98.234<br>98.238                                                                                                                                                                             | 163.14 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 651.21<br>619.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.28 101.66<br>01.5 101.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101.33<br>101.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101.53<br>101.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.844<br>97.425                                                                                                                                                                                                                          | 100.63<br>98.163                                                                                                                                                                                                              | 99.932<br>97.966                                                                                                                                                                                                                                                                      | 102.49<br>99.678                                                                                                                                                                                                         | 1.1798<br>1.1837                                                                                                                                                                                                                                | 114.36<br>122.13                                                                                                                                                                                                                   | 1732.5<br>1730.6                                                                                                                                                                                                                          | 78.103<br>78.117                                                                                                                                                                                                       | 161.81<br>161.61                                                                                                                                                                        | 11.365<br>11.363                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.706<br>48.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008<br>0.008                                                                                                                                                                                                                            | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                | 0                                         | 2.0463<br>2.0462                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.3394<br>8.3393                                                                                                                                                                                   | 182.59<br>182.58                                                                                                                                                                                                            | 104.75<br>104.75                                                                                                                                                                              | 104.84<br>104.84                                                                                                                                                                                                            | 98.242<br>98.246                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 641.03<br>645.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EVAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORATOR PARAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ETERS, 0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | END-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                          | D-150-1                                                                                                                                                                                                                                         | L-150-1                                                                                                                                                                                                                            | F350-1                                                                                                                                                                                                                                    |                                                                                                                                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                  |                                                                                                                                                                                                                             |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Time T-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1 T-150-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T-150-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T-150-4 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150-5 T-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50-6 T-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150-7 T-                                                                                                                                                                                                                                  | 150-8 °                                                                                                                                                                                                                       | T-150-9                                                                                                                                                                                                                                                                               | T-150-10                                                                                                                                                                                                                 | evaporator<br>density                                                                                                                                                                                                                           | evaporator<br>level                                                                                                                                                                                                                | evaporator                                                                                                                                                                                                                                | T-336-1C                                                                                                                                                                                                               | F 136-1 P-                                                                                                                                                                              | 122-1 P                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130-2 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PD-130-1-1                                                                                                                                                                                                                                | PD-130-2-1                                                                                                                                                                                                                                                                                                                                                                                      | PD-130-3-1                                | PD-130-4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PD-130-1                                                                                                                                                                                           | T-335-2 T                                                                                                                                                                                                                   | -130-1-1 T                                                                                                                                                                                    | -130-2-1 T                                                                                                                                                                                                                  | -130-3-1 T-                                                                                                                                                                                  | 130-4-1 F-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees C de<br>103.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           | rees C de<br>101.38                                                                                                                                                                                                           | egrees C<br>100.95                                                                                                                                                                                                                                                                    | degrees C<br>102.44                                                                                                                                                                                                      | Grams/ml<br>1.23                                                                                                                                                                                                                                | Inches<br>132.43                                                                                                                                                                                                                   | lb/hour<br>1731.7                                                                                                                                                                                                                         | degrees F<br>78.288                                                                                                                                                                                                    | scfm<br>163.34                                                                                                                                                                          | "wcvac<br>11.343                                                                                                                                                                                                                                                                                                                                                                                                                                    | "wcvac<br>48,725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IN WC<br>0.008                                                                                                                                                                                                                            | IN WC<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                 | IN WC                                     | IN WC<br>2.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                  |                                                                                                                                                                                                                             | degrees F<br>104.77                                                                                                                                                                           | degrees F<br>104.89                                                                                                                                                                                                         |                                                                                                                                                                                              | degrees F sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cfm<br>617.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.42 103.96<br>3.55 104.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104.02<br>104.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 103.79<br>103.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.443<br>97.973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.92<br>101.3                                                                                                                                                                                                                           | 101.72<br>102.07                                                                                                                                                                                                              | 101.21<br>101.64                                                                                                                                                                                                                                                                      | 102.67<br>103.12                                                                                                                                                                                                         | 1.2339<br>1.2377                                                                                                                                                                                                                                | 133.71<br>134.6                                                                                                                                                                                                                    | 1731.9<br>1736.1                                                                                                                                                                                                                          | 78.302<br>78.316                                                                                                                                                                                                       | 163.49<br>163.63                                                                                                                                                                        | 11.341<br>11.339                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.727<br>48.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008<br>0.008                                                                                                                                                                                                                            | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                | 0                                         | 2.0449<br>2.0448                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.3373<br>8.3371                                                                                                                                                                                   | 182.53<br>182.52                                                                                                                                                                                                            | 104.77<br>104.77                                                                                                                                                                              | 104.89<br>104.9                                                                                                                                                                                                             | 98.294<br>98.298                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 668.63<br>637.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.62 104.22<br>3.68 104.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104.41<br>104.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104.12<br>104.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101.67<br>101.92                                                                                                                                                                                                                          | 102.42<br>102.61                                                                                                                                                                                                              | 102.07<br>102.35                                                                                                                                                                                                                                                                      | 103.56<br>103.86                                                                                                                                                                                                         | 1.2416<br>1.2454                                                                                                                                                                                                                                | 134.9<br>133.81                                                                                                                                                                                                                    | 1725.1<br>1732.4                                                                                                                                                                                                                          | 78.33<br>78.344                                                                                                                                                                                                        | 163.77<br>163.92                                                                                                                                                                        | 11.338<br>11.336                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.73<br>48.732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.008<br>0.008                                                                                                                                                                                                                            | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                | 0                                         | 2.0447<br>2.0446                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.337<br>8.3368                                                                                                                                                                                    | 182.52<br>182.52                                                                                                                                                                                                            | 104.77<br>104.77                                                                                                                                                                              | 104.9<br>104.9                                                                                                                                                                                                              | 98.302<br>98.306                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 640.39<br>645.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07 JUN 01 15:15:00 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.74 104.47<br>3.79 104.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104.79<br>104.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.48<br>104.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.08<br>102.23                                                                                                                                                                                                                          | 102.76<br>102.91                                                                                                                                                                                                              | 102.53<br>102.7                                                                                                                                                                                                                                                                       | 104.05<br>104.24                                                                                                                                                                                                         | 1.2493<br>1.2531                                                                                                                                                                                                                                | 132.47<br>131.81                                                                                                                                                                                                                   | 1745.4<br>1726.2                                                                                                                                                                                                                          | 78.358<br>78.373                                                                                                                                                                                                       | 164.06<br>164.21                                                                                                                                                                        | 11.334<br>11.333                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.733<br>48.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008<br>0.008                                                                                                                                                                                                                            | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                | 0                                         | 2.0445<br>2.0444                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.3367<br>8.3365                                                                                                                                                                                   | 182.51<br>182.51                                                                                                                                                                                                            | 104.77<br>104.77                                                                                                                                                                              | 104.91<br>104.91                                                                                                                                                                                                            | 98.31<br>98.313                                                                                                                                                                              | 163.09 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 644.63<br>616.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.85 104.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 105.18<br>105.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.83<br>105.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.39<br>102.51                                                                                                                                                                                                                          | 103.06<br>103.21                                                                                                                                                                                                              | 102.88<br>102.95                                                                                                                                                                                                                                                                      | 104.43<br>104.54                                                                                                                                                                                                         | 1.257<br>1.2609                                                                                                                                                                                                                                 | 132.18<br>133.08                                                                                                                                                                                                                   | 1728.6<br>1730.2                                                                                                                                                                                                                          | 78.387<br>78.401                                                                                                                                                                                                       | 164.35<br>164.5                                                                                                                                                                         | 11.331<br>11.329                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.736<br>48.738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008<br>0.008                                                                                                                                                                                                                            | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                | 0                                         | 2.0442<br>2.0441                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.3364<br>8.3362                                                                                                                                                                                   | 182.5<br>182.5                                                                                                                                                                                                              | 104.77<br>104.78                                                                                                                                                                              | 104.91<br>104.92                                                                                                                                                                                                            | 98.317<br>98.321                                                                                                                                                                             | 163.08 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 623.87<br>631.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07 JUN 01 16:15:00 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.96 104.98<br>4.02 105.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105.36<br>105.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105.18<br>105.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.53<br>102.55                                                                                                                                                                                                                          | 103.26<br>103.27                                                                                                                                                                                                              | 103<br>103.04                                                                                                                                                                                                                                                                         | 104.59<br>104.65                                                                                                                                                                                                         | 1.2647<br>1.2686                                                                                                                                                                                                                                | 134.24<br>135.06                                                                                                                                                                                                                   | 1709<br>1725.9                                                                                                                                                                                                                            | 78.415<br>78.429                                                                                                                                                                                                       | 164.64<br>164.78                                                                                                                                                                        | 11.327<br>11.326                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.739<br>48.741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008<br>0.008                                                                                                                                                                                                                            | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                | 0                                         | 2.044<br>2.0439                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.3361<br>8.3359                                                                                                                                                                                   | 182.5<br>182.49                                                                                                                                                                                                             | 104.78<br>104.78                                                                                                                                                                              | 104.92<br>104.93                                                                                                                                                                                                            | 98.325<br>98.328                                                                                                                                                                             | 163.08 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 654.16<br>635.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07 JUN 01 16:45:00 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.07 105.23<br>4.13 105.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105.49<br>105.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105.54<br>105.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.58<br>102.6                                                                                                                                                                                                                           | 103.28                                                                                                                                                                                                                        | 103.08<br>103.13                                                                                                                                                                                                                                                                      | 104.71<br>104.77                                                                                                                                                                                                         | 1.2724<br>1.2763                                                                                                                                                                                                                                | 134.52<br>134.84                                                                                                                                                                                                                   | 1729.7<br>1727.4                                                                                                                                                                                                                          | 78.444<br>78.458                                                                                                                                                                                                       | 164.93<br>165.07                                                                                                                                                                        | 11.324<br>11.322                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.742<br>48.744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008                                                                                                                                                                                                                                     | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                | 0                                         | 2.0438<br>2.0437                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.3358<br>8.3356                                                                                                                                                                                   | 182.49<br>182.48                                                                                                                                                                                                            | 104.78<br>104.78                                                                                                                                                                              | 104.93<br>104.93                                                                                                                                                                                                            | 98.332<br>98.336                                                                                                                                                                             | 163.07 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 643.47<br>644.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.19 105.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 105.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.62                                                                                                                                                                                                                                    | 103.31                                                                                                                                                                                                                        | 103.17                                                                                                                                                                                                                                                                                | 104.83                                                                                                                                                                                                                   | 1.2802                                                                                                                                                                                                                                          | 135.36                                                                                                                                                                                                                             | 1723.2                                                                                                                                                                                                                                    | 78.472                                                                                                                                                                                                                 | 165.22                                                                                                                                                                                  | 11.321                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.008                                                                                                                                                                                                                                     | -0.056                                                                                                                                                                                                                                                                                                                                                                                          | 0                                         | 2.0436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.3355                                                                                                                                                                                             | 182.48                                                                                                                                                                                                                      | 104.78                                                                                                                                                                                        | 104.94                                                                                                                                                                                                                      | 98.34                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 651.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EVAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORATOR PARAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ETERS, 00505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STRT-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               | <del></del>                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          | D-150-1                                                                                                                                                                                                                                         | L-150-1                                                                                                                                                                                                                            | F350-1                                                                                                                                                                                                                                    |                                                                                                                                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                  |                                                                                                                                                                                                                             |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Time T-150-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0-1 T-150-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T-150-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T-150-4 T-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150-5 T-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50-6 T-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150-7 T-                                                                                                                                                                                                                                  | 150-8 1                                                                                                                                                                                                                       | T-150-9                                                                                                                                                                                                                                                                               | T-150-10                                                                                                                                                                                                                 | evaporator<br>density                                                                                                                                                                                                                           | evaporator<br>ievel                                                                                                                                                                                                                | evaporator<br>steam flow                                                                                                                                                                                                                  | T-336-1C                                                                                                                                                                                                               | F 136-1 P-                                                                                                                                                                              | 122-1 P-                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130-2 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PD-130-1-1                                                                                                                                                                                                                                | PD-130-2-1                                                                                                                                                                                                                                                                                                                                                                                      | PD-130-3-1                                | PD-130-4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PD-130-1                                                                                                                                                                                           | T 225 2 T                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                             | 120 2 1 T                                                                                                                                                                                    | 130-4-1 F-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                 | La ala a a                                                                                                                                                                                                                         | 11. 4.                                                                                                                                                                                                                                    |                                                                                                                                                                                                                        | <del></del>                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                                                                                                             |                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11 JUN 01 07:15:00 69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .962 71.629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | degrees C o<br>72.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | degrees C deg<br>73.277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rees C degr<br>45.649 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ees C deg<br>44.603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rees C deg<br>41.619                                                                                                                                                                                                                      | rees C de<br>41.541                                                                                                                                                                                                           | 41.857                                                                                                                                                                                                                                                                                | degrees C<br>42.859                                                                                                                                                                                                      | Grams/ml<br>1.1754                                                                                                                                                                                                                              | 137.02                                                                                                                                                                                                                             | lb/hour<br>-2.732                                                                                                                                                                                                                         |                                                                                                                                                                                                                        | 56.42 11                                                                                                                                                                                | "wcvac<br>8.0286                                                                                                                                                                                                                                                                                                                                                                                                                                    | "wcvac<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IN WC<br>0.008                                                                                                                                                                                                                            | IN WC<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                 | IN WC                                     | IN WC<br>2.0152                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IN WC<br>8.4546                                                                                                                                                                                    | degrees F<br>183.33                                                                                                                                                                                                         | degrees F<br>105.66                                                                                                                                                                           | degrees F<br>105.56                                                                                                                                                                                                         | degrees F<br>98.865                                                                                                                                                                          | degrees F sc<br>162.98 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cfm<br>635.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11 JUN 01 07:15:00 69.9<br>11 JUN 01 07:30:00 67.4<br>11 JUN 01 07:45:00 65.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .962 71.629<br>.499 69.081<br>.488 67.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees C o<br>72.958<br>70.876<br>69.332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73.277<br>71.367<br>69.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rees C degr<br>45.649 4<br>45.126 4<br>45.428 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ees C deg<br>14.603 4<br>14.854 4<br>15.105 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rees C deg<br>41.619<br>41.663<br>41.706                                                                                                                                                                                                  | rees C de<br>41.541<br>41.587<br>41.634                                                                                                                                                                                       | 41.857<br>41.897<br>41.937                                                                                                                                                                                                                                                            | 42.859<br>42.899<br>42.94                                                                                                                                                                                                | Grams/ml<br>1.1754<br>1.175<br>1.1746                                                                                                                                                                                                           | 137.02<br>136.99<br>136.97                                                                                                                                                                                                         | -2.732<br>-2.66<br>-2.587                                                                                                                                                                                                                 | 74.848 1<br>74.825<br>74.802                                                                                                                                                                                           | 56.42 11<br>156.5<br>156.57                                                                                                                                                             | 8.0286<br>8.0294<br>8.0302                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.008<br>0.008<br>0.008                                                                                                                                                                                                                   | IN WC<br>-0.056<br>-0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                             |                                           | IN WC<br>2.0152<br>2.0151<br>2.0151                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IN WC<br>8.4546<br>8.4571<br>8.4597                                                                                                                                                                | degrees F<br>183.33<br>183.33<br>183.33                                                                                                                                                                                     | degrees F<br>105.66<br>105.65<br>105.65                                                                                                                                                       | degrees F<br>105.56<br>105.56<br>105.56                                                                                                                                                                                     | degrees F<br>98.865<br>98.866<br>98.867                                                                                                                                                      | degrees F sc<br>162.98 6:<br>162.97 6<br>162.96 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cfm<br>635.69<br>614.51<br>649.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11 JUN 01 07:15:00 69.9<br>11 JUN 01 07:30:00 67.4<br>11 JUN 01 07:45:00 65.4<br>11 JUN 01 08:00:00 63.8<br>11 JUN 01 08:15:00 97.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .962 71.629<br>.499 69.081<br>.488 67.129<br>.843 65.437<br>.019 97.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | degrees C 72.958<br>70.876<br>69.332<br>68.129<br>97.328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | res C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C  | rees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C | ees C deg<br>44.603 4<br>44.854 4<br>45.105 4<br>45.355<br>51.182 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rees C deg<br>41.619<br>41.663<br>41.706<br>41.75<br>41.793                                                                                                                                                                               | rees C de<br>41.541<br>41.587<br>41.634<br>41.681<br>41.727                                                                                                                                                                   | 41.857<br>41.897<br>41.937<br>41.977<br>42.017                                                                                                                                                                                                                                        | 42.859<br>42.899<br>42.94<br>42.98<br>43.02                                                                                                                                                                              | Grams/ml<br>1.1754<br>1.175<br>1.1746<br>1.1742<br>1.1737                                                                                                                                                                                       | 137.02<br>136.99<br>136.97<br>136.94<br>136.92                                                                                                                                                                                     | -2.732<br>-2.66<br>-2.587<br>-2.514<br>4.5011                                                                                                                                                                                             | 74.848 1<br>74.825<br>74.802<br>74.78<br>74.757                                                                                                                                                                        | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73                                                                                                                                         | 8.0286<br>8.0294<br>8.0302<br>8.0309<br>8.0317                                                                                                                                                                                                                                                                                                                                                                                                      | 48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                                                                 | IN WC<br>-0.056<br>-0.056<br>-0.056<br>-0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                         |                                           | IN WC<br>2.0152<br>2.0151<br>2.0151<br>2.015<br>2.015                                                                                                                                                                                                                                                                                                                                                                                                                                         | IN WC<br>8.4546<br>8.4571<br>8.4597<br>8.4622<br>8.4647                                                                                                                                            | degrees F<br>183.33<br>183.33<br>183.33<br>183.33                                                                                                                                                                           | degrees F<br>105.66<br>105.65<br>105.65<br>105.65<br>105.65                                                                                                                                   | degrees F<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56                                                                                                                                                                 | degrees F<br>98.865<br>98.866<br>98.867<br>98.869<br>98.87                                                                                                                                   | degrees F sci<br>162.98 6:<br>162.97 6<br>162.96 6:<br>162.96 6:<br>162.95 6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cfm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11 JUN 01 07:15:00 69.9<br>11 JUN 01 07:30:00 67.4<br>11 JUN 01 07:45:00 65.4<br>11 JUN 01 08:00:00 63.8<br>11 JUN 01 08:15:00 97.0<br>11 JUN 01 08:30:00 97.8<br>11 JUN 01 08:45:00 94.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .962 71.629<br>.499 69.081<br>.488 67.129<br>.843 65.437<br>.019 97.79<br>.852 98.832<br>.106 95.214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C 72.958<br>70.876<br>69.332<br>68.129<br>97.328<br>98.004<br>94.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | regrees C degrees C degrees C 73.277 71.367 69.758 68.417 97.059 98.247 94.656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rees C degri<br>45.649 4<br>45.126 4<br>45.428 4<br>45.729 4<br>50.646 5<br>81.727 8<br>83.274 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ees C deg<br>44.603 4<br>44.854 4<br>45.105 4<br>45.355<br>51.182 4<br>31.871 4<br>32.282 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rees C deg<br>41.619<br>41.663<br>41.706<br>41.75<br>41.793<br>42.292<br>47.058                                                                                                                                                           | 41.541<br>41.587<br>41.634<br>41.681<br>41.727<br>42.943<br>47.149                                                                                                                                                            | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285                                                                                                                                                                                                                    | 42.859<br>42.899<br>42.94<br>42.98<br>43.02<br>43.06<br>43.323                                                                                                                                                           | Grams/ml 1.1754 1.175 1.1746 1.1742 1.1733 1.1729                                                                                                                                                                                               | 137.02<br>136.99<br>136.97<br>136.94<br>136.92<br>136.89<br>136.87                                                                                                                                                                 | -2.732<br>-2.66<br>-2.587<br>-2.514<br>4.5011<br>434.46<br>-11.47                                                                                                                                                                         | 74.848 1<br>74.825<br>74.802<br>74.78<br>74.757<br>74.735<br>74.712                                                                                                                                                    | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.88                                                                                                                      | 8.0286<br>8.0294<br>8.0302<br>8.0309<br>8.0317<br>8.0325<br>8.0333                                                                                                                                                                                                                                                                                                                                                                                  | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                                                        | IN WC<br>-0.056<br>-0.056<br>-0.056<br>-0.056<br>-0.056<br>-0.056                                                                                                                                                                                                                                                                                                                               |                                           | IN WC<br>2.0152<br>2.0151<br>2.0151<br>2.015<br>2.015<br>2.015<br>2.0149                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.4546<br>8.4571<br>8.4597<br>8.4622<br>8.4647<br>8.4673<br>8.4698                                                                                                                                 | degrees F<br>183.33<br>183.33<br>183.33<br>183.33<br>183.32<br>183.32<br>183.32                                                                                                                                             | degrees F<br>105.66<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65                                                                                                                         | degrees F<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56                                                                                                                                             | degrees F<br>98.865<br>98.866<br>98.867<br>98.869<br>98.87<br>98.871<br>98.873                                                                                                               | degrees F sci<br>162.98 6:<br>162.97 6<br>162.96 6:<br>162.96 6:<br>162.95 6:<br>162.94 6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cfm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>627.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11 JUN 01 07:15:00 69.9<br>11 JUN 01 07:30:00 67.4<br>11 JUN 01 07:45:00 65.4<br>11 JUN 01 08:00:00 63.8<br>11 JUN 01 08:30:00 97.0<br>11 JUN 01 08:45:00 94.1<br>11 JUN 01 09:15:00 98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .962 71.629<br>.499 69.081<br>.488 67.129<br>.843 65.437<br>.019 97.79<br>.852 98.832<br>.106 95.214<br>.396 93.392<br>.239 98.739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees C 72.958<br>70.876<br>69.332<br>68.129<br>97.328<br>98.004<br>94.831<br>92.62<br>98.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | regrees C degrees C 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rees C degri<br>45.649 4<br>45.126 4<br>45.428 4<br>45.729 4<br>50.646 5<br>81.727 8<br>83.274 8<br>70.97 6<br>89.366 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ees C deg 44.603 4 44.854 4 45.105 4 45.355 51.182 4 31.871 4 32.282 4 58.946 5 38.584 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rees C deg<br>41.619<br>41.663<br>41.706<br>41.75<br>41.793<br>42.292<br>47.058<br>50.947<br>52.842                                                                                                                                       | rees C de<br>41.541<br>41.587<br>41.634<br>41.681<br>41.727<br>42.943<br>47.149<br>51.152<br>53.489                                                                                                                           | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053                                                                                                                                                                                                | 42.859<br>42.899<br>42.94<br>42.98<br>43.02<br>43.06<br>43.323<br>43.894<br>50.57                                                                                                                                        | Grams/ml 1.1754 1.1754 1.1756 1.1742 1.1737 1.1733 1.1729 1.1725 1.1711                                                                                                                                                                         | 137.02<br>136.99<br>136.97<br>136.94<br>136.92<br>136.89<br>136.87<br>136.84<br>136.84                                                                                                                                             | -2.732<br>-2.66<br>-2.587<br>-2.514<br>4.5011<br>434.46<br>-11.47<br>-10.86<br>1556.5                                                                                                                                                     | 74.848 1<br>74.825<br>74.802<br>74.78<br>74.757<br>74.735<br>74.712<br>74.689<br>74.71                                                                                                                                 | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.88<br>156.77<br>156.64                                                                                                  | 8.0286<br>8.0294<br>8.0302<br>8.0309<br>8.0317<br>8.0325<br>8.0333<br>11.451<br>11.448                                                                                                                                                                                                                                                                                                                                                              | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                                      | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                                                            |                                           | IN WC 2.0152 2.0151 2.0151 2.015 2.015 2.015 2.0149 2.0149 2.0148                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.4546<br>8.4571<br>8.4597<br>8.4622<br>8.4647<br>8.4673<br>8.4698<br>8.4666<br>8.4628                                                                                                             | degrees F<br>183.33<br>183.33<br>183.33<br>183.33<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32                                                                                                                         | degrees F<br>105.66<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65                                                                                                     | degrees F<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56                                                                                                                                   | degrees F<br>98.865<br>98.866<br>98.867<br>98.869<br>98.871<br>98.871<br>98.873<br>98.874<br>98.875                                                                                          | degrees F sci<br>162.98 6:<br>162.97 6:<br>162.96 6:<br>162.96 6:<br>162.95 6:<br>162.94 6:<br>162.94 6:<br>162.94 6:<br>162.93 6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cfm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>627.71<br>661.54<br>616.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:30:00 67.4 11 JUN 01 07:45:00 63.8 11 JUN 01 08:00:00 63.8 11 JUN 01 08:15:00 97.8 11 JUN 01 08:30:00 97.8 11 JUN 01 08:45:00 94.1 11 JUN 01 09:00:00 98.2 11 JUN 01 09:30:00 98.2 11 JUN 01 09:45:00 98.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .962 71.629<br>.499 69.081<br>.488 67.129<br>.843 65.437<br>.019 97.79<br>.852 98.832<br>.106 95.214<br>.396 93.392<br>.239 98.739<br>.618 99.22<br>.997 99.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | degrees C 72,958<br>70,876<br>69,332<br>68,129<br>97,328<br>98,004<br>94,831<br>92,62<br>98,249<br>98,711<br>99,125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | regrees C det<br>73.277<br>71.367<br>69.758<br>68.417<br>97.059<br>98.247<br>94.656<br>92.682<br>98.403<br>99.065<br>99.368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rees C degr<br>45.649 4<br>45.126 4<br>45.428 4<br>45.729 4<br>50.646 5<br>81.727 8<br>83.274 8<br>70.97 6<br>89.366 9<br>96.187 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ees C deg 44.603 44.854 45.105 45.355 61.871 432.282 68.946 68.584 95.903 695.465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rees C deg<br>41.619<br>41.663<br>41.706<br>41.775<br>41.793<br>42.292<br>47.058<br>50.947<br>52.842<br>62.168<br>78.357                                                                                                                  | rees C de<br>41.541<br>41.587<br>41.634<br>41.681<br>41.727<br>42.943<br>47.149<br>51.152<br>53.489<br>62.969<br>79.12                                                                                                        | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355                                                                                                                                                                            | 42.859<br>42.899<br>42.94<br>42.98<br>43.02<br>43.06<br>43.323<br>43.894<br>50.57<br>59.538<br>74.991                                                                                                                    | Grams/ml 1.1754 1.1755 1.1746 1.1742 1.1737 1.1733 1.1729 1.1725 1.1711 1.1643                                                                                                                                                                  | 137.02<br>136.99<br>136.97<br>136.94<br>136.92<br>136.89<br>136.87<br>136.84<br>136.82<br>137.05                                                                                                                                   | -2.732<br>-2.66<br>-2.587<br>-2.514<br>4.5011<br>434.46<br>-11.47<br>-10.86<br>1556.5<br>1722.1                                                                                                                                           | 74.848 1<br>74.825<br>74.802<br>74.78<br>74.757<br>74.735<br>74.712<br>74.689<br>74.71<br>74.765<br>74.82                                                                                                              | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.78<br>156.77<br>166.64<br>156.51<br>156.39                                                                              | 8.0286<br>8.0294<br>8.0302<br>8.0309<br>8.0317<br>8.0325<br>8.0333<br>11.451<br>11.448<br>11.445                                                                                                                                                                                                                                                                                                                                                    | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                             | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                                              | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.015 2.015 2.015 2.0149 2.0149 2.0148 2.0148 2.0148                                                                                                                                                                                                                                                                                                                                                                                                               | IN WC<br>8.4546<br>8.4571<br>8.4597<br>8.4622<br>8.4647<br>8.4673<br>8.4666<br>8.4668<br>8.4591<br>8.4554                                                                                          | degrees F<br>183.33<br>183.33<br>183.33<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32                                                                                                     | degrees F<br>105.66<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.64                                                                                 | degrees F<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56                                                                                                               | degrees F<br>98.865<br>98.866<br>98.867<br>98.869<br>98.87<br>98.871<br>98.873<br>98.874<br>98.875<br>98.876<br>98.878                                                                       | 162.98 6.162.99 6.162.99 6.162.94 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162.99 6.162 | cfm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>627.71<br>6661.54<br>616.68<br>647.07<br>652.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:30:00 67.4 11 JUN 01 07:45:00 63.8 11 JUN 01 08:00:00 63.8 11 JUN 01 08:15:00 97.0 11 JUN 01 08:45:00 94.1 11 JUN 01 09:30:00 98.8 11 JUN 01 09:30:00 98.9 11 JUN 01 09:45:00 98.9 11 JUN 01 09:45:00 98.9 11 JUN 01 01:15:00 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .962 71,629<br>4499 69,081<br>488 67,129<br>.843 65,437<br>.019 97,79<br>.852 98,832<br>.106 95,214<br>.396 93,392<br>.239 98,739<br>.618 99,22<br>.997 99,63<br>.281 99,94<br>.537 100,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | range C degrees C degrees C 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403 99.065 99.368 99.672 99.932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rees C degr<br>45.649 4<br>45.126 4<br>45.128 4<br>45.729 4<br>50.646 5<br>81.727 8<br>83.274 8<br>83.274 8<br>96.187 9<br>96.187 9<br>95.804 9<br>95.804 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ees C deg 44.603 44.854 45.105 45.105 51.182 43.871 432.282 48.946 58.584 595.903 95.465 95.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rees C deg<br>41.619<br>41.663<br>41.706<br>41.775<br>41.793<br>42.292<br>47.058<br>50.947<br>52.842<br>62.168<br>78.357<br>90.481                                                                                                        | rees C de<br>41.541<br>41.587<br>41.634<br>41.681<br>41.727<br>42.943<br>47.149<br>51.152<br>53.489<br>62.969<br>79.12<br>91.678<br>96.428                                                                                    | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>95.776                                                                                                                                                        | 42.859<br>42.899<br>42.94<br>42.98<br>43.02<br>43.06<br>43.323<br>43.894<br>50.57<br>59.538<br>74.991<br>91.101<br>97.397                                                                                                | Grams/ml 1.1754 1.1754 1.1756 1.1746 1.1742 1.1737 1.1737 1.1729 1.1725 1.1711 1.1643 1.1607 1.1582                                                                                                                                             | 137.02<br>136.99<br>136.97<br>136.94<br>136.92<br>136.89<br>136.87<br>136.84<br>137.05<br>137.39<br>136.35                                                                                                                         | -2.732<br>-2.66<br>-2.587<br>-2.514<br>4.5011<br>434.46<br>-11.47<br>-10.86<br>1556.5<br>1722.1<br>1722.3<br>1733.4<br>1730.3                                                                                                             | 74.848 1 74.825 74.802 74.78 74.757 74.735 74.712 74.689 74.71 74.765 74.82 74.875 74.929                                                                                                                              | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.88<br>156.87<br>156.64<br>156.51<br>156.39<br>156.26                                                                    | 8.0286<br>8.0294<br>8.0302<br>8.0309<br>8.0317<br>8.0325<br>8.0333<br>11.451<br>11.448<br>11.445<br>11.445<br>11.439                                                                                                                                                                                                                                                                                                                                | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                    | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                                | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.015 2.015 2.015 2.0149 2.0149 2.0148 2.0148 2.0147                                                                                                                                                                                                                                                                                                                                                                                                               | IN WC<br>8.4546<br>8.4571<br>8.4597<br>8.4622<br>8.4647<br>8.4663<br>8.4668<br>8.4668<br>8.4591<br>8.4554<br>8.4557<br>8.448                                                                       | degrees F<br>183.33<br>183.33<br>183.33<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32<br>183.31<br>183.31                                                                                                               | degrees F<br>105.66<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.64<br>105.64                                                                       | degrees F<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56                                                                                                               | degrees F<br>98.865<br>98.866<br>98.867<br>98.867<br>98.871<br>98.871<br>98.874<br>98.875<br>98.876<br>98.878<br>98.879<br>98.889                                                            | 162.98 6: 162.96 6: 162.96 6: 162.95 6: 162.95 6: 162.94 6: 162.94 6: 162.94 6: 162.92 6: 162.92 6: 162.91 6: 162.91 6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cfm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>627.71<br>661.54<br>616.68<br>647.07<br>652.51<br>608.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:30:00 67.4 11 JUN 01 07:45:00 63.8 11 JUN 01 08:00:00 63.8 11 JUN 01 08:45:00 97.8 11 JUN 01 08:45:00 94.1 11 JUN 01 09:00:00 93.3 11 JUN 01 09:15:00 98.2 11 JUN 01 09:45:00 98.2 11 JUN 01 09:45:00 98.2 11 JUN 01 10:00:00 99.2 11 JUN 01 10:15:00 99.5 11 JUN 01 10:15:00 99.5 11 JUN 01 10:15:00 99.5 11 JUN 01 10:30:00 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .962 71.629<br>.499 69.081<br>.488 67.129<br>.843 65.437<br>.019 97.79<br>.98.832<br>.106 95.214<br>.396 93.392<br>.239 98.739<br>.618 99.22<br>.997 99.63<br>.281 99.94<br>.537 100.25<br>.794 100.56<br>.0.05 100.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | degrees C 72.958<br>70.876<br>69.332<br>68.129<br>97.328<br>98.004<br>94.831<br>92.62<br>98.249<br>98.711<br>99.125<br>99.792<br>100.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | range C degrees C degrees C 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403 99.065 99.368 99.672 99.932 100.14 100.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rees C degr<br>45.649 4<br>45.126 4<br>45.128 4<br>45.428 4<br>45.729 4<br>50.646 8<br>81.727 8<br>83.274 6<br>70.97 8<br>96.187 9<br>96.187 9<br>95.804 9<br>95.804 9<br>95.347 9<br>92.993 9<br>94.065 9<br>94.977 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ees C deg 44.603 44.4854 45.105 45.355 51.182 43.282 48.8946 48.8584 48.58584 48.58584 48.58584 48.58584 48.58584 48.58584 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48.5848 48. | rees C deg<br>41.619<br>41.663<br>41.706<br>41.775<br>41.793<br>42.292<br>47.058<br>50.947<br>52.842<br>62.168<br>78.357<br>90.481<br>95.004<br>97.689                                                                                    | rees C de<br>41.541<br>41.587<br>41.681<br>41.681<br>41.727<br>42.943<br>47.149<br>51.152<br>53.489<br>62.969<br>79.12<br>91.678<br>96.428<br>98.53<br>99.671                                                                 | 41.857<br>41.897<br>41.937<br>41.937<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>95.776<br>98.058<br>99.411                                                                                                                                    | 42.859<br>42.98<br>42.98<br>43.02<br>43.06<br>43.323<br>43.894<br>50.57<br>59.538<br>74.991<br>91.101<br>97.397<br>99.511<br>100.6                                                                                       | Grams/ml 1.1754 1.1754 1.1756 1.1746 1.1742 1.1733 1.1729 1.1725 1.1711 1.1643 1.1607 1.1582 1.1582 1.1633                                                                                                                                      | 137.02<br>136.99<br>136.97<br>136.94<br>136.89<br>136.87<br>136.84<br>137.05<br>137.39<br>136.35<br>132.79<br>128.99                                                                                                               | -2.732<br>-2.66<br>-2.587<br>-2.514<br>4.5011<br>434.46<br>-11.47<br>-10.86<br>1556.5<br>1722.1<br>1722.3<br>1733.4<br>1730.3<br>1734.7<br>1730.5                                                                                         | 74.848 1 74.825 74.825 74.78 74.735 74.712 74.689 74.71 74.765 74.82 74.929 74.984 75.039                                                                                                                              | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.88<br>156.77<br>156.64<br>156.51<br>156.39<br>156.26<br>156.13                                                          | 8.0286<br>8.0294<br>8.0302<br>8.0309<br>8.0317<br>8.0325<br>8.0333<br>11.451<br>11.445<br>11.445<br>11.439<br>11.439<br>11.433<br>11.431                                                                                                                                                                                                                                                                                                            | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                  | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                  | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.015 2.015 2.015 2.0149 2.0149 2.0148 2.0148 2.0147 2.0147 2.0147                                                                                                                                                                                                                                                                                                                                                                                                 | IN WC<br>8.4546<br>8.4571<br>8.4597<br>8.4622<br>8.4647<br>8.4673<br>8.4698<br>8.4666<br>8.4628<br>8.4591<br>8.4554<br>8.4517<br>8.4448<br>8.4442<br>8.4442                                        | degrees F<br>183.33<br>183.33<br>183.33<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32<br>183.31<br>183.31<br>183.31<br>183.31                                                                                 | degrees F<br>105.66<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64                                                   | degrees F<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56                                                                                                     | degrees F<br>98.865<br>98.866<br>98.867<br>98.867<br>98.871<br>98.871<br>98.874<br>98.875<br>98.876<br>98.878<br>98.879<br>98.88<br>98.881<br>98.883                                         | degrees F sci<br>162.98 6<br>162.96 6<br>162.96 6<br>162.96 6<br>162.95 6<br>162.94 6<br>162.94 6<br>162.93 6<br>162.92 6<br>162.92 6<br>162.92 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.92 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.89 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cfm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>627.71<br>661.54<br>616.68<br>647.07<br>652.51<br>608.78<br>638.46<br>643.52<br>613.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:30:00 67.4 11 JUN 01 07:45:00 63.8 11 JUN 01 08:15:00 97.8 11 JUN 01 08:45:00 94.1 11 JUN 01 08:30:00 98.6 11 JUN 01 09:30:00 98.6 11 JUN 01 09:30:00 98.6 11 JUN 01 09:45:00 98.1 11 JUN 01 09:45:00 99.2 11 JUN 01 10:00:00 99.2 11 JUN 01 10:30:00 99.2 11 JUN 01 10:45:00 99.7 11 JUN 01 10:45:00 100.1 11 JUN 01 11:45:00 100.1 11 JUN 01 11:15:00 100.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.962 71.629<br>4.499 69.081<br>4.88 67.129<br>8.843 65.437<br>0.19 97.79<br>98.852 98.832<br>1.106 95.214<br>3.396 93.392<br>2.239 98.739<br>6.18 99.22<br>9.97 99.63<br>2.281 99.94<br>100.25<br>7.794 100.56<br>0.05 100.87<br>0.31 101.17<br>0.56 10.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | degrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | regrees C der<br>73.277<br>71.367<br>69.758<br>68.417<br>97.059<br>98.247<br>94.656<br>92.682<br>99.065<br>99.368<br>99.672<br>99.932<br>100.14<br>100.35<br>100.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rees C degrides General Services C degrides General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Services General Servi | ees C deg 44.603 444.854 45.105 45.355 55.1.82 415.871 432.282 45.88.946 585.983 465 595.028 65.2831 55.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rees C deg 41.619 41.663 41.766 41.775 41.793 42.292 47.058 50.947 52.842 62.168 78.357 90.481 95.004 97.689 98.745 99.371                                                                                                                | rees C de 41.541 41.587 41.634 41.681 41.727 42.943 47.149 51.152 62.969 79.12 991.678 98.53 99.671 100.31 100.82                                                                                                             | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>99.411<br>100.01<br>100.11                                                                                                                                    | 42.859<br>42.899<br>42.94<br>42.98<br>43.02<br>43.06<br>43.323<br>43.894<br>50.57<br>59.538<br>74.991<br>91.101<br>97.397<br>99.511<br>100.6<br>101.25<br>101.72                                                         | Grams/ml 1.1754 1.1755 1.1746 1.1742 1.1737 1.1729 1.1725 1.1711 1.1643 1.1607 1.1582 1.1593 1.1675 1.1715                                                                                                                                      | 137.02<br>136.99<br>136.97<br>136.94<br>136.92<br>136.89<br>136.87<br>136.84<br>137.05<br>137.39<br>136.35<br>132.79<br>128.99<br>125.09<br>120.8                                                                                  | -2.732<br>-2.66<br>-2.587<br>-2.514<br>4.5011<br>434.46<br>-11.47<br>-10.86<br>1556.5<br>1722.1<br>1722.3<br>1733.4<br>1730.3<br>1734.7<br>1730.5<br>1731<br>1718                                                                         | 74.848 1 74.825 74.802 74.78 74.757 74.735 74.712 74.689 74.71 74.765 74.82 74.875 74.929 74.984 75.039 75.094 75.149                                                                                                  | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.88<br>156.77<br>156.64<br>156.51<br>156.26<br>156.13<br>156<br>155.87<br>155.87                                                  | 8.0286<br>8.0294<br>8.0302<br>8.0309<br>8.0317<br>8.0325<br>8.0333<br>11.451<br>11.448<br>11.445<br>11.442<br>11.433<br>11.431<br>11.432<br>11.432                                                                                                                                                                                                                                                                                                  | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                         | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                  | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.015 2.015 2.015 2.0149 2.0149 2.0148 2.0147 2.0147 2.0147 2.0146 2.0146 2.0145                                                                                                                                                                                                                                                                                                                                                                                   | IN WC 8.4546 8.4541 8.4597 8.4622 8.4647 8.46673 8.4668 8.4591 8.4554 8.4517 8.448 8.4442 8.4405 8.4368 8.4331                                                                                     | degrees F 183.33 183.33 183.33 183.33 183.32 183.32 183.32 183.32 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31                                                                                                   | degrees F<br>105.66<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64                                         | degrees F<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56                                                                                           | degrees F 98.865 98.866 98.867 98.869 98.871 98.873 98.874 98.875 98.876 98.878 98.879 98.884 98.883 98.884 98.885                                                                           | 162.98 6.162.87 6.162.89 6.162.99 6.162.91 6.162.94 6.162.92 6.162.92 6.162.91 6.162.92 6.162.91 6.162.91 6.162.91 6.162.91 6.162.91 6.162.91 6.162.91 6.162.91 6.162.91 6.162.91 6.162.91 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.102.89 6.102.89 6.102.89 6.102.89 6.102.89 6.102.89 6.102.89 6.102.89 6.102 | cfm<br>635.69<br>635.69<br>614.51<br>649.32<br>601.31<br>665.31<br>667.71<br>661.54<br>616.68<br>647.07<br>652.51<br>660.78<br>638.46<br>643.52<br>613.6<br>643.52<br>613.6<br>644.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:45:00 67.4 11 JUN 01 07:45:00 63.8 11 JUN 01 08:00:00 63.8 11 JUN 01 08:15:00 97.8 11 JUN 01 08:45:00 94.1 11 JUN 01 08:90:00 98.2 11 JUN 01 09:15:00 98.2 11 JUN 01 09:45:00 98.2 11 JUN 01 09:45:00 99.5 11 JUN 01 10:15:00 99.5 11 JUN 01 10:15:00 99.5 11 JUN 01 10:15:00 99.5 11 JUN 01 10:45:00 100. 11 JUN 01 11:15:00 100. 11 JUN 01 11:15:00 100. 11 JUN 01 11:15:00 100. 11 JUN 01 11:15:00 100.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.962 71.629<br>4.499 69.081<br>4.88 67.129<br>8.843 65.437<br>0.19 97.79<br>98.852 98.832<br>1.106 95.214<br>3.396 93.392<br>2.239 98.739<br>6.18 99.22<br>9.97 99.63<br>2.281 99.94<br>100.25<br>7.794 100.56<br>0.05 100.87<br>0.31 101.17<br>0.56 10.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | degrees C c 72.958 70.876 69.332 68.129 97.328 98.004 94.831 92.62 98.249 98.711 99.125 99.459 99.792 100.13 100.46 100.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | regrees C der<br>73.277<br>71.367<br>69.758<br>68.417<br>97.059<br>98.247<br>94.656<br>92.682<br>99.065<br>99.368<br>99.672<br>99.932<br>100.14<br>100.35<br>100.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rees C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degr | ees C deg 44.603 444.854 45.105 45.355 55.1.82 415.871 432.282 45.88.946 585.983 465 595.028 65.2831 55.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463 56.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rees C deg 41.619 41.663 41.706 41.706 41.775 41.793 42.292 47.058 50.947 52.842 62.168 78.357 90.481 95.004 99.7689 99.745 99.347                                                                                                        | rees C de 41.541 41.587 41.634 41.634 41.634 41.681 41.727 42.943 51.152 53.489 62.969 79.12 91.678 98.53 99.671 100.31                                                                                                       | 41.857<br>41.897<br>41.937<br>41.977<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>95.776<br>98.058<br>99.411<br>100.01                                                                                                                                    | 42.859<br>42.989<br>42.98<br>43.02<br>43.06<br>43.323<br>43.894<br>50.57<br>59.538<br>74.991<br>97.397<br>99.511<br>100.6<br>101.25                                                                                      | Grams/ml 1.1754 1.1754 1.1756 1.1746 1.1742 1.1733 1.1729 1.1725 1.1711 1.1643 1.1607 1.1592 1.159 1.1633 1.1675                                                                                                                                | 137.02<br>136.99<br>136.97<br>136.94<br>136.92<br>136.89<br>136.87<br>136.84<br>137.05<br>137.39<br>136.35<br>132.79<br>128.99<br>125.09                                                                                           | -2.732<br>-2.66<br>-2.587<br>-2.514<br>4.5011<br>434.46<br>-11.47<br>-10.86<br>1556.5<br>1722.1<br>1722.3<br>1733.4<br>1730.3<br>1734.7<br>1730.5<br>1731                                                                                 | 74.848 1 74.825 74.802 74.78 74.757 74.735 74.712 74.689 74.71 74.765 74.82 74.875 74.929 74.984 75.039                                                                                                                | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.88<br>156.87<br>156.64<br>156.51<br>156.39<br>156.26<br>156.13<br>156                                                   | 8.0286<br>8.0294<br>8.0302<br>8.0309<br>8.0317<br>8.0325<br>8.0333<br>11.451<br>11.448<br>11.445<br>11.439<br>11.436<br>11.433<br>11.431                                                                                                                                                                                                                                                                                                            | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                         | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                           | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.015 2.015 2.015 2.0149 2.0149 2.0148 2.0147 2.0147 2.0147 2.0146 2.0146 2.0146                                                                                                                                                                                                                                                                                                                                                                                   | IN WC<br>8.4546<br>8.4571<br>8.4597<br>8.4622<br>8.4647<br>8.4663<br>8.4668<br>8.4668<br>8.4591<br>8.4554<br>8.4517<br>8.4442<br>8.4442<br>8.4445<br>8.4445<br>8.44368                             | degrees F<br>183.33<br>183.33<br>183.33<br>183.33<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32<br>183.31<br>183.31<br>183.31<br>183.31                                                                                 | degrees F<br>105.66<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64                                                   | degrees F<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56                                                                                                     | degrees F<br>98.865<br>98.866<br>98.867<br>98.869<br>98.871<br>98.871<br>98.874<br>98.875<br>98.876<br>98.878<br>98.879<br>98.881<br>98.881<br>98.883<br>98.884                              | degrees F sci<br>162.98 6<br>162.96 6<br>162.96 6<br>162.96 6<br>162.95 6<br>162.94 6<br>162.94 6<br>162.93 6<br>162.92 6<br>162.92 6<br>162.92 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.87 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cfm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>661.54<br>616.68<br>647.07<br>652.51<br>608.78<br>638.46<br>643.52<br>643.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:30:00 67.4 11 JUN 01 07:45:00 63.8 11 JUN 01 08:00:00 63.8 11 JUN 01 08:45:00 97.0 11 JUN 01 08:45:00 94.1 11 JUN 01 09:30:00 98.2 11 JUN 01 09:45:00 98.2 11 JUN 01 09:45:00 98.2 11 JUN 01 10:00:00 99.2 11 JUN 01 10:30:00 99.7 11 JUN 01 10:30:00 99.7 11 JUN 01 10:45:00 100.1 11 JUN 01 11:30:00 100.1 11 JUN 01 11:30:00 100.1 11 JUN 01 11:30:00 100.1 11 JUN 01 11:30:00 100.1 11 JUN 01 11:30:00 100.1                                                                                                                                                                                                                                                                                                                                                                                                                                           | 962 71.629<br>499 69.081<br>488 67.129<br>843 65.437<br>019 97.79<br>98.852 98.832<br>106 95.214<br>396 93.392<br>239 98.739<br>618 99.22<br>997 99.63<br>281 99.94<br>100.25<br>7.794 100.56<br>0.05 100.87<br>0.051 101.17<br>0.56 101.31<br>0.82 10.485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees C c 72.958 70.876 69.332 68.129 97.328 98.004 94.831 92.62 98.249 98.711 99.125 99.459 99.792 100.13 100.46 100.79 101.13 101.46 101.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | regrees C dec 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403 99.065 99.368 99.672 99.932 100.14 100.35 100.56 100.77 100.98 101.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rees C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degr | ees C deg 44.603 44.854 45.105 45.355 45.355 15.182 45.355 81.871 42.282 45.365 88.584 55.903 65.5028 55.5028 55.5028 55.5028 55.5028 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 55.603 5 | rees C deg 41.619 41.663 41.706 41.706 41.775 41.793 42.292 47.058 50.947 52.842 62.168 78.357 90.481 95.004 99.7689 99.745 99.347                                                                                                        | rees C de 41.541 41.587 41.634 41.681 41.727 42.943 47.149 51.152 53.489 62.969 79.12 91.678 98.53 99.671 100.31 100.02                                                                                                       | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>95.776<br>98.058<br>99.411<br>100.01<br>100.01<br>199.637                                                                                                     | 42.859<br>42.899<br>42.94<br>42.98<br>43.02<br>43.06<br>43.323<br>43.894<br>50.57<br>59.538<br>74.991<br>91.101<br>97.397<br>99.511<br>100.6<br>101.25<br>101.72                                                         | Grams/ml 1.1754 1.1754 1.1756 1.1746 1.1742 1.1733 1.1729 1.1725 1.1711 1.1643 1.1607 1.1582 1.1582 1.1633 1.1675 1.1715 1.1755                                                                                                                 | 137.02<br>136.99<br>136.94<br>136.92<br>136.89<br>136.87<br>136.84<br>137.05<br>137.39<br>136.35<br>132.79<br>128.99<br>125.09<br>120.8<br>116.68<br>113.27                                                                        | -2.732<br>-2.66<br>-2.587<br>-2.514<br>4.5011<br>434.46<br>-11.47<br>-10.86<br>1556.5<br>1722.1<br>1722.3<br>1733.4<br>1730.3<br>1734.7<br>1730.5<br>1731<br>1718                                                                         | 74.848 1 74.825 74.802 74.78 74.735 74.712 74.689 74.71 74.765 74.82 74.875 74.929 74.984 75.039 75.149 75.204                                                                                                         | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.77<br>156.64<br>156.51<br>156.39<br>156.26<br>156.13<br>156<br>155.75<br>155.75                                         | 8.0286<br>8.0294<br>8.0309<br>8.0309<br>8.0317<br>8.0325<br>8.0325<br>11.451<br>11.448<br>11.439<br>11.433<br>11.433<br>11.431<br>11.422                                                                                                                                                                                                                                                                                                            | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                         | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                      | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.015 2.015 2.015 2.015 2.0149 2.0148 2.0148 2.0147 2.0147 2.0147 2.0146 2.0146 2.0146 2.0145                                                                                                                                                                                                                                                                                                                                                                      | IN WC<br>8.4546<br>8.4571<br>8.4597<br>8.4622<br>8.4647<br>8.4673<br>8.4698<br>8.4666<br>8.4628<br>8.4591<br>8.4554<br>8.4517<br>8.4442<br>8.4405<br>8.4368<br>8.4331<br>8.4331<br>8.4294          | degrees F<br>183.33<br>183.33<br>183.33<br>183.33<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32<br>183.31<br>183.31<br>183.31<br>183.31<br>183.31<br>183.31<br>183.31                                                   | degrees F<br>105.66<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64                     | degrees F<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56                                                                                 | degrees F<br>98.865<br>98.866<br>98.867<br>98.867<br>98.871<br>98.873<br>98.874<br>98.875<br>98.876<br>98.879<br>98.88<br>98.881<br>98.883<br>98.884<br>98.883<br>98.885<br>98.885           | degrees F sci<br>162.98 6<br>162.96 6<br>162.96 6<br>162.96 6<br>162.95 6<br>162.94 6<br>162.94 6<br>162.93 6<br>162.92 6<br>162.92 6<br>162.92 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.87 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ofm<br>635.69<br>614.51<br>649.32<br>601.31<br>655.47<br>634.15<br>627.71<br>661.68<br>647.07<br>6552.51<br>608.78<br>638.46<br>643.52<br>6413.6<br>626.29<br>640.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:30:00 67.4 11 JUN 01 07:45:00 63.8 11 JUN 01 08:00:00 63.8 11 JUN 01 08:45:00 94.1 11 JUN 01 08:45:00 94.1 11 JUN 01 09:15:00 98.2 11 JUN 01 09:45:00 98.2 11 JUN 01 09:45:00 98.2 11 JUN 01 10:00:00 99.2 11 JUN 01 10:30:00 99.7 11 JUN 01 10:30:00 99.7 11 JUN 01 10:30:00 99.7 11 JUN 01 11:30:00 100.1 11 JUN 01 11:30:00 100.1 11 JUN 01 11:30:00 100.1 11 JUN 01 11:30:00 100.1 11 JUN 01 11:30:00 100.1 11 JUN 01 11:30:00 100.1 11 JUN 01 11:30:00 100.1                                                                                                                                                                                                                                                                                                                                                                                          | 962 71.629<br>499 69.081<br>488 67.129<br>.843 65.437<br>.019 97.79<br>98.852 98.832<br>.106 95.214<br>.396 93.392<br>.239 98.739<br>.997 99.63<br>.281 99.94<br>.281 99.94<br>.281 100.25<br>.794 100.56<br>.0.05 100.87<br>.0.56 101.31<br>.0.82 101.45<br>1.07 101.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | degrees C c 72.958 70.876 69.332 68.129 97.328 98.004 94.831 92.62 98.249 98.711 99.125 99.459 99.792 100.13 100.46 100.79 101.13 101.46 101.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | regrees C dec 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403 99.065 99.368 99.672 99.932 100.14 100.35 100.56 100.77 100.98 101.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rees C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degr | ees C deg 44.603 44.854 45.105 45.355 51.182 81.871 42.282 48.8.946 88.946 88.946 88.946 88.946 88.946 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.948 89.9 | rees C deg 41.619 41.663 41.706 41.706 41.775 41.793 42.292 47.058 50.947 52.842 62.168 78.357 90.481 95.004 97.689 98.745 99.371 99.994 99.947 97.007                                                                                    | rees C de 41.541 41.587 41.634 41.681 41.727 42.943 47.149 51.152 53.489 62.969 79.12 91.678 98.53 99.671 100.31 100.82 97.942                                                                                                | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>95.776<br>98.058<br>99.411<br>100.01<br>100.01<br>199.637                                                                                                     | 42.859<br>42.899<br>42.94<br>42.98<br>43.02<br>43.06<br>43.323<br>43.894<br>50.57<br>59.538<br>74.991<br>91.101<br>97.397<br>99.511<br>100.6<br>101.25<br>101.72<br>101.25<br>98.961                                     | Grams/ml 1.1754 1.1754 1.1756 1.1746 1.1742 1.1733 1.1729 1.1725 1.1711 1.1643 1.1607 1.1582 1.159 1.1633 1.1675 1.1715 1.1755 1.1794 1.1834                                                                                                    | 137.02<br>136.99<br>136.97<br>136.94<br>136.92<br>136.89<br>136.87<br>136.84<br>137.05<br>137.39<br>136.35<br>132.79<br>128.99<br>125.09<br>120.8<br>116.68<br>113.27<br>123.08                                                    | -2.732 -2.66 -2.587 -2.514 4.5011 434.46 -11.47 -10.86 1556.5 1722.1 1722.3 1733.4 1730.3 1734.7 1730.5 1731 1718 1713.3 1731                                                                                                             | 74.848 1 74.825 74.802 74.78 74.757 74.735 74.712 74.689 74.71 74.765 74.82 74.875 74.929 74.984 75.039 75.094 75.149 75.204                                                                                           | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.77<br>156.64<br>156.51<br>156.39<br>156.26<br>156.13<br>156<br>155.75<br>155.75                                         | 8.0286<br>8.0294<br>8.0309<br>8.0309<br>8.0317<br>8.0325<br>8.0333<br>11.451<br>11.448<br>11.439<br>11.433<br>11.431<br>11.422<br>11.431                                                                                                                                                                                                                                                                                                            | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                | N WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                       | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.0155 2.015 2.015 2.0149 2.0149 2.0148 2.0147 2.0147 2.0147 2.0146 2.0148 2.0148 2.0144 2.0145 2.0145                                                                                                                                                                                                                                                                                                                                                             | IN WC<br>8.4546<br>8.4571<br>8.4597<br>8.4622<br>8.4647<br>8.4673<br>8.4698<br>8.4666<br>8.4628<br>8.4591<br>8.4554<br>8.4517<br>8.4448<br>8.4405<br>8.4331<br>8.4294<br>8.4294                    | degrees F<br>183.33<br>183.33<br>183.33<br>183.33<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32<br>183.31<br>183.31<br>183.31<br>183.31<br>183.31<br>183.31<br>183.31                                                   | degrees F<br>105.66<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.63 | degrees F<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56                                                             | degrees F<br>98.865<br>98.866<br>98.867<br>98.867<br>98.871<br>98.873<br>98.874<br>98.875<br>98.876<br>98.879<br>98.88<br>98.881<br>98.883<br>98.884<br>98.884<br>98.885<br>98.887<br>98.887 | degrees F sci<br>162.98 6<br>162.96 6<br>162.96 6<br>162.96 6<br>162.95 6<br>162.94 6<br>162.94 6<br>162.93 6<br>162.92 6<br>162.92 6<br>162.92 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.91 6<br>162.87 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ofm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>627.71<br>661.68<br>647.07<br>6552.51<br>600.78<br>638.46<br>643.52<br>6413.6<br>626.29<br>640.44<br>624.31<br>627.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:30:00 67.4 11 JUN 01 07:30:00 63.8 11 JUN 01 08:15:00 97.0 11 JUN 01 08:30:00 97.8 11 JUN 01 08:45:00 94.1 11 JUN 01 09:30:00 98.6 11 JUN 01 09:30:00 98.6 11 JUN 01 09:45:00 98.9 11 JUN 01 09:45:00 99.2 11 JUN 01 10:15:00 99.2 11 JUN 01 10:15:00 99.7 11 JUN 01 11:30:00 99.7 11 JUN 01 11:30:00 100. 11 JUN 01 11:30:00 100. 11 JUN 01 11:45:00 100. 11 JUN 01 11:45:00 100. 11 JUN 01 11:45:00 100.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 962 71.629 499 69.081 488 67.129 843 65.437 .019 97.79 98.832 106 95.214 .396 93.392 .239 98.739 .618 99.22 .997 99.63 .281 99.94 .537 100.25 .794 100.56 .005 100.87 .0.31 101.17 .0.56 101.31 .0.82 101.45 1.07 101.59  DRATOR PARAM  DATA T-150-2  BS C degrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C of 72.958 70.876 69.332 68.129 97.328 98.004 94.831 92.62 98.249 98.711 99.125 99.459 99.792 100.13 100.46 100.79 101.13 101.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | range C degrees C degrees C 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403 99.065 99.368 99.672 99.932 100.14 100.35 100.56 100.77 100.98 101.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rees C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degrifes C degr | ees C deg 44.603 44.854 45.105 45.355 51.182 41.871 82.282 48.88.946 58.8946 58.8946 59.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 69.893 6 | rees C deg 41.619 41.663 41.766 41.776 41.775 41.793 42.292 47.058 50.947 52.842 62.168 78.357 90.481 95.004 97.689 98.745 99.371 99.994 99.377 99.907                                                                                    | rees C de 41.541 41.587 41.634 41.681 41.727 42.943 47.149 51.152 53.469 62.969 79.12 99.671 100.31 100.82 100.92 97.942                                                                                                      | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>95.776<br>98.058<br>99.411<br>100.01<br>100.11<br>99.637<br>97.735                                                                                            | 42.859<br>42.98<br>42.98<br>43.02<br>43.06<br>43.323<br>43.894<br>50.57<br>59.538<br>74.991<br>97.397<br>99.511<br>100.6<br>101.25<br>101.72<br>101.25<br>98.961                                                         | Grams/ml 1.1754 1.1754 1.1756 1.1746 1.1742 1.1737 1.1729 1.1725 1.1711 1.1643 1.1607 1.1582 1.159 1.1633 1.1675 1.1715 1.1755 1.1715 1.1755 1.1715 1.1755 1.1794 1.1834                                                                        | 137.02<br>136.99<br>136.97<br>136.94<br>136.92<br>136.89<br>136.87<br>136.84<br>137.05<br>137.39<br>136.35<br>132.79<br>128.99<br>125.09<br>120.8<br>116.68<br>113.27<br>123.08                                                    | -2.732 -2.66 -2.587 -2.514 4.5011 434.46 -11.47 -10.86 1556.5 1722.1 1722.3 1733.4 1730.3 1734.7 1730.5 1731 1718 1713.3 1731                                                                                                             | 74.848 1 74.825 74.802 74.78 74.757 74.735 74.712 74.689 74.71 74.765 74.82 74.875 74.929 74.984 75.039 75.094 75.149 75.204                                                                                           | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.88<br>156.77<br>156.64<br>156.51<br>156.39<br>156.26<br>156.13<br>156<br>155.75<br>155.62<br>155.75                     | 8.0286<br>8.0292<br>8.0309<br>8.0317<br>8.0327<br>8.0333<br>11.451<br>11.445<br>11.445<br>11.442<br>11.433<br>11.431<br>11.425<br>11.425<br>11.425                                                                                                                                                                                                                                                                                                  | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                | N WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                       | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.015 2.015 2.015 2.0149 2.0148 2.0147 2.0147 2.0147 2.0146 2.0148 2.0144 2.0147 2.0144 2.0144 2.0145 2.0145 2.0145 2.0145                                                                                                                                                                                                                                                                                                                                         | IN WC 8.4546 8.4571 8.4597 8.4627 8.4647 8.4673 8.4698 8.4666 8.4628 8.4591 8.4554 8.4517 8.448 8.4442 8.4405 8.4331 8.4294 8.4256                                                                 | degrees F<br>183.33<br>183.33<br>183.33<br>183.32<br>183.32<br>183.32<br>183.32<br>183.32<br>183.31<br>183.31<br>183.31<br>183.31<br>183.31<br>183.31<br>183.31<br>183.31                                                   | degrees F<br>105.66<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.65<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64<br>105.64                               | degrees F<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56<br>105.56                                                                                           | degrees F<br>98.865<br>98.866<br>98.867<br>98.867<br>98.871<br>98.871<br>98.875<br>98.876<br>98.876<br>98.879<br>98.881<br>98.883<br>98.884<br>98.885<br>98.887                              | 162.98 6.162.91 6.162.92 6.162.92 6.162.92 6.162.91 6.162.91 6.162.91 6.162.91 6.162.93 6.162.93 6.162.93 6.162.93 6.162.94 6.162.94 6.162.95 6.162.95 6.162.95 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.162.89 6.102.89 6.102.89 6.102.89 6.102.89 6.102.89 6.102.89 6.102.89 6.102.89 6.102.89 6.102 | ofm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>627.71<br>661.68<br>647.07<br>6552.51<br>600.78<br>638.46<br>643.52<br>6413.6<br>626.29<br>640.44<br>624.31<br>627.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:30:00 67.4 11 JUN 01 07:45:00 63.8 11 JUN 01 08:00:00 63.8 11 JUN 01 08:15:00 97.0 11 JUN 01 08:30:00 97.8 11 JUN 01 08:45:00 94.1 11 JUN 01 09:30:00 98.6 11 JUN 01 09:30:00 98.6 11 JUN 01 09:45:00 98.2 11 JUN 01 09:45:00 99.5 11 JUN 01 10:30:00 99.7 11 JUN 01 10:30:00 99.7 11 JUN 01 10:30:00 99.7 11 JUN 01 11:15:00 100. 11 JUN 01 11:15:00 100. 11 JUN 01 11:15:00 100. 11 JUN 01 11:45:00 101.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.962 71.629 69.081 489 69.081 488 67.129 8.43 65.437 0.19 97.79 8.52 98.832 1.06 95.214 3.396 93.392 2.39 98.739 6.18 99.22 9.997 99.63 2.81 99.94 1.00.56 100.87 0.31 101.17 0.56 101.31 0.82 101.45 1.07 101.59  DRATOR PARAM  D-1 T-150-2 as C degrees C 2.78 103.02 2.78 103.02 2.78 103.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees C of 72.958 70.876 69.332 68.129 97.328 98.004 94.831 92.62 98.249 98.711 99.125 99.459 99.792 100.13 100.46 100.79 101.13 101.46 Total for the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the first section of the firs | range C degrees C degrees C 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403 99.065 99.368 99.672 99.932 100.14 100.35 100.56 100.77 100.98 101.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C | ees C deg 44.603 44.854 45.105 45.355 45.355 31.871 42.282 43.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,946 53.85,9 | rees C deg 41.619 41.663 41.706 41.706 41.775 41.793 42.292 47.058 50.947 52.842 62.168 78.357 90.481 95.004 97.689 98.745 99.371 99.994 99.377 97.007                                                                                    | rees C de 41.541 41.587 41.634 41.681 41.727 42.943 47.149 51.152 53.489 62.969 79.12 99.671 100.31 100.82 100.92 97.942                                                                                                      | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>95.776<br>98.058<br>99.411<br>100.01<br>100.11<br>99.637<br>97.735                                                                                            | 42.859 42.989 42.94 42.98 43.02 43.06 43.323 43.894 50.57 59.538 74.991 91.101 97.397 99.511 100.6 101.25 101.72 101.25 98.961                                                                                           | Grams/ml 1.1754 1.1754 1.1755 1.1746 1.1742 1.1733 1.1729 1.1725 1.1711 1.1643 1.1607 1.1582 1.159 1.1633 1.1675 1.1755 1.1794 1.1834  D-150-1 evaporator density Grams/ml                                                                      | 137.02<br>136.99<br>136.97<br>136.94<br>136.92<br>136.89<br>136.87<br>136.84<br>136.82<br>137.05<br>137.39<br>136.35<br>132.79<br>128.99<br>125.09<br>120.8<br>116.68<br>113.27<br>123.08                                          | -2.732 -2.66 -2.587 -2.514 4.5011 434.46 -11.47 -10.86 1556.5 1722.1 1722.3 1733.4 1730.3 1734.7 1730.5 1731 1718 1713.3 1731  F350-1 evaporator steam flow                                                                               | 74.848 1 74.825 74.802 74.78 74.757 74.735 74.712 74.689 74.71 74.765 74.82 74.875 74.929 74.984 75.039 75.094 75.149 75.204 75.259                                                                                    | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.88<br>156.77<br>156.64<br>156.51<br>156.39<br>156.26<br>155.87<br>156.26<br>155.87<br>155.87<br>155.87<br>155.87        | 8.0286<br>8.0292<br>8.0309<br>8.0317<br>8.0327<br>8.0325<br>11.445<br>11.445<br>11.442<br>11.433<br>11.431<br>11.425<br>11.422<br>11.422<br>11.429                                                                                                                                                                                                                                                                                                  | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                 | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.015 2.015 2.015 2.0149 2.0149 2.0148 2.0147 2.0147 2.0147 2.0146 2.0145 2.0145 2.0145                                                                                                                                                                                                                                                                                                                                                                            | IN WC 8.4546 8.4541 8.4597 8.4622 8.46673 8.4668 8.4591 8.4554 8.4517 8.448 8.4442 8.4405 8.4331 8.4294 8.4256                                                                                     | degrees F 183.33 183.33 183.33 183.33 183.32 183.32 183.32 183.32 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31                                                                              | degrees F 105.66 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.64 105.64 105.64 105.64 105.64 105.64 105.63                                                                            | degrees F 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56                                                                                                   | degrees F<br>98.865<br>98.866<br>98.867<br>98.869<br>98.871<br>98.873<br>98.874<br>98.875<br>98.876<br>98.878<br>98.879<br>98.88<br>98.881<br>98.884<br>98.885<br>98.884                     | degrees F sci 162.98 6 162.96 6 162.96 6 162.96 6 162.95 6 162.94 6 162.94 6 162.92 6 162.92 6 162.92 6 162.92 6 162.93 6 162.93 6 162.91 6 162.91 6 162.91 6 162.89 6 162.89 6 162.89 6 162.88 6 162.87 6 162.87 6 162.88 6 162.87 6 162.88 6 162.87 6 162.87 6 162.87 6 162.87 6 162.87 6 162.87 6 162.87 6 162.87 6 162.87 6 162.77 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cfm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>6534.15<br>627.71<br>661.68<br>647.07<br>552.51<br>661.54<br>661.54<br>661.54<br>661.52<br>638.46<br>643.52<br>613.6<br>626.29<br>640.44<br>624.31<br>627.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:45:00 67.4 11 JUN 01 07:45:00 63.8 11 JUN 01 08:00:00 63.8 11 JUN 01 08:15:00 97.0 11 JUN 01 08:30:00 97.0 11 JUN 01 08:30:00 98.0 11 JUN 01 09:30:00 98.0 11 JUN 01 09:15:00 98.1 11 JUN 01 09:45:00 99.2 11 JUN 01 10:00:00 99.2 11 JUN 01 10:30:00 99.2 11 JUN 01 10:30:00 100. 11 JUN 01 10:45:00 100. 11 JUN 01 11:45:00 100. 11 JUN 01 11:45:00 101. 11 JUN 01 11:30:00 100. 11 JUN 01 11:45:00 101. 11 JUN 01 11:50:00 100. 11 JUN 01 15:50:00 100. 11 JUN 01 15:50:00 100. 11 JUN 01 15:15:00 102. 11 JUN 01 15:15:00 102. 11 JUN 01 15:15:00 102. 11 JUN 01 15:15:00 102. 11 JUN 01 15:45:00 102. 11 JUN 01 15:45:00 102.                                                                                                                                                                                                                         | 9.962 71.629 4.499 69.081 4.88 67.129 8.843 65.437 0.19 97.79 98.832 1.06 95.214 3.96 93.392 2.39 98.739 6.18 99.22 9.997 99.63 2.81 99.94 1.537 100.25 7.794 100.56 0.05 100.87 0.31 101.17 0.56 101.31 1.07 101.59  DRATOR PARAM  D-1 T-150-2  DRATOR PARAM  D-1 T-150-2  DRATOR DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  D-1 T-150-2  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  DRATOR DRATOR  D | degrees C of 72.958 70.876 69.332 68.129 97.328 98.004 94.831 92.62 98.249 98.711 99.125 99.459 99.792 100.13 100.46 100.79 101.13 101.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pegrees C dec 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403 99.065 99.368 99.672 99.932 100.14 100.35 100.56 100.77 100.98 101.19 PEND-2 T-150-4 T. Regrees C dec 103.48 103.64 103.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rees C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degr | ees C deg 44.603 44.854 45.105 45.105 45.305 45.305 45.305 45.305 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 46.804 | rees C deg 41.619 41.663 41.766 41.776 41.793 42.292 47.058 50.947 52.842 62.168 78.357 90.481 95.004 97.689 98.745 99.347 97.007  150.7  T-rees C deg 100.07 100.26 100.65                                                               | rees C de 41.541 41.587 41.634 41.681 41.727 42.943 47.149 51.152 53.489 62.969 791.678 98.53 100.82 100.92 97.942                                                                                                            | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>95.776<br>98.058<br>99.411<br>100.01<br>100.11<br>99.637<br>97.735                                                                                            | 42,859 42,98 42,98 42,98 43,02 43,06 43,323 43,894 50,57 59,538 74,991 91,101 97,397 99,511 100,6 101,25 101,72 101,25 98,961  T-150-10 degrees C 102,8 103,01                                                           | Grams/ml 1.1754 1.1754 1.1755 1.1746 1.1742 1.1737 1.1733 1.1729 1.1725 1.1711 1.1643 1.1607 1.1582 1.159 1.1633 1.1675 1.1715 1.1755 1.1715 1.1755 1.1715 1.1755 1.1794 1.1834                                                                 | 137.02 136.99 136.97 136.94 136.92 136.89 136.87 136.84 136.82 137.05 137.39 136.35 132.79 128.99 125.09 120.8 116.68 113.27 123.08                                                                                                | -2.732 -2.66 -2.587 -2.514 4.5011 434.46 -11.47 -10.86 1556.5 1722.1 1722.3 1733.4 1730.3 1734.7 1730.5 1731 1718 1713.3 1731  F350-1 evaporator steam flow b/hour 1738.9                                                                 | 74.848 1 74.825 74.802 74.78 74.757 74.735 74.712 74.689 74.71 74.765 74.82 74.875 74.929 74.984 75.039 75.094 75.149 75.204 75.259                                                                                    | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.67<br>156.8<br>156.88<br>156.88<br>156.77<br>156.64<br>156.51<br>156.39<br>156.26<br>156.13<br>156<br>155.75<br>155.62<br>155.62           | 8.0286<br>8.0294<br>8.0309<br>8.0309<br>8.0317<br>8.0325<br>8.0333<br>11.451<br>11.445<br>11.442<br>11.436<br>11.433<br>11.431<br>11.425<br>11.425<br>11.425<br>11.429                                                                                                                                                                                                                                                                              | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                               | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.0155 2.015 2.015 2.0149 2.0149 2.0148 2.0147 2.0147 2.0146 2.0145 2.0145 2.0145 2.0144 PD-130-4-1 IN WC 2.0139 2.0138                                                                                                                                                                                                                                                                                                                                            | IN WC 8.4546 8.4551 8.4597 8.4622 8.4666 8.4628 8.4591 8.4554 8.4517 8.448 8.4442 8.4405 8.4381 8.4294 8.4256                                                                                      | degrees F 183.33 183.33 183.33 183.32 183.32 183.32 183.32 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31                             | degrees F 105.66 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.64 105.64 105.64 105.64 105.64 105.63 105.63                                                                            | degrees F 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56                                                                | degrees F 98.865 98.866 98.867 98.869 98.871 98.873 98.874 98.875 98.876 98.878 98.889 98.881 98.883 98.884 98.885 98.887 98.885                                                             | degrees F sci 162.98 6 162.96 6 162.96 6 162.96 6 162.95 66 162.94 66 162.94 66 162.94 66 162.94 66 162.93 66 162.93 66 162.92 6 162.92 6 162.92 6 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.87 66 162.88 66 162.88 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66 162.87 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ofm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>627.71<br>661.54<br>661.54<br>661.54<br>661.56<br>641.07<br>652.51<br>662.51<br>662.77<br>627.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:45:00 67.4 11 JUN 01 08:00:00 63.8 11 JUN 01 08:15:00 97.0 11 JUN 01 08:30:00 97.8 11 JUN 01 08:45:00 94.1 11 JUN 01 08:45:00 94.1 11 JUN 01 09:30:00 98.6 11 JUN 01 09:30:00 98.6 11 JUN 01 09:45:00 98.2 11 JUN 01 10:15:00 99.2 11 JUN 01 10:15:00 99.5 11 JUN 01 10:15:00 99.7 11 JUN 01 10:15:00 100. 11 JUN 01 11:15:00 100. 11 JUN 01 11:15:00 100. 11 JUN 01 11:15:00 100. 11 JUN 01 11:45:00 101. 11 JUN 01 11:50:00 102. 11 JUN 01 15:15:00 102. 11 JUN 01 15:50:00 102. 11 JUN 01 15:45:00 102. 11 JUN 01 15:45:00 102. 11 JUN 01 15:45:00 103. 11 JUN 01 15:45:00 103. 11 JUN 01 16:45:00 103. 11 JUN 01 16:45:00 103. 11 JUN 01 16:45:00 103.                                                                                                                                                                                                 | 962 71.629 4.499 69.081 4.88 67.129 8.843 65.437 0.19 97.79 8.852 98.832 1.106 95.214 3.396 93.392 2.39 98.739 6.618 99.22 9.997 99.63 2.81 99.94 1.537 100.25 7.794 100.56 100.31 101.17 0.56 101.31 1.07 101.59  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  **DRATOR PARAM**  | degrees C c 72.958 70.876 69.332 68.129 97.328 98.004 94.831 92.62 98.249 98.711 99.125 99.459 99.792 100.13 100.46 101.67  ETERS, 0050E  T-150-3 degrees C c 104.04 104.26 104.04 104.26 104.48 104.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pegrees C dec 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403 99.065 99.368 99.672 99.932 100.14 100.35 100.56 100.77 100.98 101.19 PEND-2 T-150-4 T-16grees C dec 103.48 103.64 103.8 103.96 104.12 104.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rees C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degrides C degr | ees C deg 44.603 44.854 45.105 45.355 51.182 41.871 42.282 48.8.946 48.8.946 49.8.946 50.028 49.9.918 50.028 49.9.918 50.028 49.9.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 49.918 50.028 4 | rees C deg 41.619 41.663 41.766 41.775 41.793 42.292 47.058 50.947 52.842 62.168 78.357 90.481 95.004 97.689 98.745 99.371 99.994 99.377 rees C deg 100.26 100.26 100.46 100.65 100.46 100.84                                             | rees C de 41.541 41.587 41.634 41.681 41.727 42.943 47.149 62.969 79.1678 96.428 98.53 99.671 100.31 100.02 97.942 1150-8 Teres C de 101.68 101.96 1102.52                                                                    | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>99.411<br>100.01<br>100.11<br>99.637<br>97.735                                                                                                                | 42.859 42.899 42.94 42.98 43.02 43.06 43.323 43.894 50.57 59.538 74.991 91.101 97.397 99.511 100.6 101.25 101.72 101.25 98.961                                                                                           | Grams/ml 1.1754 1.1754 1.1756 1.1746 1.1742 1.1737 1.1733 1.1729 1.1725 1.1711 1.1643 1.1607 1.1582 1.159 1.1633 1.1675 1.1715 1.1755 1.1794 1.1834  D-150-1 evaporator density Grams/ml 1.235 1.239 1.2459                                     | 137.02 136.99 136.97 136.94 136.92 136.89 136.87 136.84 136.82 137.05 137.39 136.35 132.79 128.99 125.09 120.8 116.68 113.27 123.08                                                                                                | -2.732 -2.66 -2.587 -2.514 4.5011 434.46 -11.47 -10.86 1556.5 1722.1 1722.3 1733.4 1730.3 1734.7 1730.5 1731 1718 1713.3 1731  F350-1 evaporator steam flow b/hour  1738.9 1738.9 1738.8                                                  | 74.848 1 74.825 74.802 74.78 74.757 74.735 74.712 74.689 74.71 74.765 74.82 74.875 74.929 74.984 75.039 75.094 75.204 75.259                                                                                           | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.8<br>156.77<br>156.64<br>156.51<br>156.39<br>156.26<br>156.13<br>156<br>155.87<br>155.62<br>155.87<br>155.62<br>155.36  | 8.0286<br>8.0294<br>8.0309<br>8.0309<br>8.0317<br>8.0325<br>8.0333<br>11.451<br>11.445<br>11.442<br>11.433<br>11.431<br>11.425<br>11.422<br>11.429<br>11.425<br>11.429<br>11.371<br>11.38<br>11.371<br>11.374<br>11.374<br>11.374<br>11.374<br>11.365                                                                                                                                                                                               | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                   | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                         | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.015 2.015 2.015 2.015 2.0149 2.0149 2.0148 2.0147 2.0147 2.0147 2.0146 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0137 | IN WC 8.4546 8.4551 8.4557 8.4627 8.4663 8.4551 8.4551 8.4551 8.4551 8.4551 8.4442 8.4405 8.4331 8.4294 8.4256 PD-130-1 IN WC 8.3773 8.3736 8.3662 8.3662 8.3662 8.3662 8.3587                     | degrees F  183.33  183.33  183.33  183.32  183.32  183.32  183.32  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31  183.31   | degrees F 105.66 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.64 105.64 105.64 105.64 105.64 105.64 105.63 105.63                                                                     | degrees F 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56                             | degrees F 98.865 98.866 98.867 98.867 98.871 98.871 98.873 98.875 98.875 98.876 98.879 98.88 98.881 98.883 98.884 98.885 98.887 98.888                                                       | degrees F sci 162.98 6: 162.96 6: 162.96 6: 162.96 6: 162.95 6: 162.94 6: 162.94 6: 162.92 6: 162.92 6: 162.92 6: 162.91 6: 162.91 6: 162.91 6: 162.89 6: 162.89 6: 162.89 6: 162.88 6: 162.88 6: 162.87 6: 162.87 6: 162.77 6: 162.77 6: 162.77 6: 162.77 6: 162.77 6: 162.77 6: 162.75 6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ofm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>627.71<br>661.68<br>647.07<br>6552.51<br>608.78<br>638.46<br>643.62<br>641.36<br>626.29<br>640.44<br>624.31<br>627.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:30:00 67.4 11 JUN 01 07:30:00 67.4 11 JUN 01 08:00:00 63.8 11 JUN 01 08:15:00 97.0 11 JUN 01 08:45:00 97.1 11 JUN 01 08:45:00 94.1 11 JUN 01 09:30:00 98.9 11 JUN 01 09:45:00 98.9 11 JUN 01 10:15:00 99.2 11 JUN 01 10:15:00 99.7 11 JUN 01 10:15:00 11 JUN 01 10:15:00 11 JUN 01 11:15:00 11 JUN 01 11:15:00 11 JUN 01 11:45:00 10.1 11 JUN 01 11:45:00 10.1 11 JUN 01 15:30:00 11 JUN 01 15:30:00 11 JUN 01 15:30:00 11 JUN 01 15:30:00 11 JUN 01 16:30:00 11 JUN 01 16:45:00 10.1 11 JUN 01 16:15:00 10.1 11 JUN 01 16:15:00 10.1 11 JUN 01 16:15:00 10.1 11 JUN 01 16:15:00 10.1 11 JUN 01 16:15:00 10.1 11 JUN 01 16:15:00 10.1 11 JUN 01 16:15:00 10.1 11 JUN 01 16:15:00 10.1 11 JUN 01 16:15:00 10.1 11 JUN 01 16:15:00 10.1 11 JUN 01 16:15:00 10.1 11 JUN 01 16:15:00 10.3 11 JUN 01 16:15:00 10.3 11 JUN 01 16:15:00 10.3                      | 9.962 71.629 69.081 488 67.129 8.43 65.437 0.19 97.79 8.52 98.832 1.06 95.214 3.396 93.392 2.39 98.739 6.18 99.22 9.997 99.63 2.81 99.94 1.00.56 100.37 1.01.17 0.56 101.31 0.82 101.45 1.07 101.59  DRATOR PARAM  D-1 T-150-2 as C degrees C 2.78 103.02 2.87 103.02 2.87 103.12 2.96 103.22 2.87 103.12 2.96 103.22 3.15 103.42 3.34 103.52 3.34 103.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees C c 72.958 70.876 69.332 68.129 97.328 98.004 94.831 92.62 98.249 98.711 99.125 99.459 99.792 100.13 100.46 100.79 101.13 101.46 101.67 ETERS, 0050E  T-150-3 degrees C c 104.04 104.26 104.48 104.71 104.92 105.02 105.12 105.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | range C degrees C 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403 99.065 99.368 99.672 99.932 100.14 100.35 100.56 100.77 100.98 101.19  END-2  T-150-4 T-legrees C deg 103.48 103.64 103.8 103.64 103.8 103.96 104.12 104.28 104.44 104.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C | ees C deg 44.603 44.854 45.105 45.355 51.182 31.871 32.282 45.593 46.88.946 48.8584 55.903 49.5046 55.465 55.465 55.465 59.628 49.642 49.642 49.642 49.643 49.642 49.643 49.644 49.644 49.644 49.644 49.645 49.645 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49.6464 49. | rees C deg 41.619 41.663 41.706 41.706 41.775 41.793 42.292 47.058 50.947 52.842 62.168 78.357 90.481 95.004 97.689 98.745 99.347 97.007  150-7 T-rees C deg 100.46 100.65 100.84 101.04 101.03 101.42                                    | rees C de 41.541 41.587 41.634 41.681 41.727 42.943 47.149 51.152 53.489 62.969 79.1678 96.428 98.671 100.31 100.02 97.942 1100.68 101.68 101.96 102.24 102.52 102.72 102.93 102.93 102.93 102.93 102.93 102.93 102.93 102.93 | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>95.776<br>98.058<br>99.411<br>100.01<br>100.11<br>99.637<br>97.735                                                                                            | 42,859 42,899 42,94 42,98 43,02 43,06 43,323 43,894 50,57 59,538 74,991 91,101 97,397 99,511 100,6 101,25 101,72 101,25 98,961  T-150-10 degrees C 102,8 103,01 103,23 103,44 103,65 103,87 104,08 103,99                | Grams/ml 1.1754 1.1754 1.1755 1.1746 1.1742 1.1737 1.1733 1.1729 1.1729 1.1755 1.1711 1.1643 1.1607 1.1582 1.159 1.1633 1.1675 1.1715 1.1755 1.1715 1.1755 1.1715 1.1755 1.1715 1.1755 1.1794 1.1834                                            | 137.02 136.99 136.97 136.94 136.92 136.89 136.87 136.84 136.82 137.05 137.39 136.35 132.79 128.99 125.09 120.8 116.68 113.27 123.08  L-150-1 evaporator level Inches 33.55 132.01 130.75 129.79 129.8                              | -2.732 -2.66 -2.587 -2.514 4.5011 434.46 -11.47 -10.86 1556.5 1722.1 1722.3 1733.4 1730.3 1734.7 1730.5 1731 1718 1713.3 1731  F350-1 evaporator steam flow b/hour 1738.9 1732.2 1727.5 1728.8 1726.9 1735.3 1724.9 1720.2                | 74.848 1 74.825 74.802 74.78 74.757 74.735 74.712 74.689 74.71 74.765 74.82 74.875 74.929 74.984 75.039 75.094 75.149 75.204 75.259  T-336-1C degrees F 75.972 76.082 76.137 76.192 76.302 76.302 76.356               | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.8<br>156.88<br>156.88<br>156.77<br>156.64<br>156.51<br>156.39<br>156.26<br>156.13<br>156<br>155.75<br>155.62<br>155.36<br>155.36 | 8.0286<br>8.0294<br>8.0309<br>8.0317<br>8.0305<br>8.0317<br>8.0325<br>8.0333<br>11.451<br>11.445<br>11.442<br>11.436<br>11.433<br>11.425<br>11.425<br>11.419                                                                                                                                                                                                                                                                                        | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                  | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.0155 2.015 2.015 2.0149 2.0149 2.0148 2.0147 2.0147 2.0147 2.0147 2.0146 2.0148 2.0145 2.0145 2.0145 2.0145 2.0145 2.0130 2.0138 2.0138 2.0137 2.0137 2.0137 2.0136                                                                                                                                                                                                                                                                                              | IN WC 8.4546 8.4551 8.4597 8.4622 8.4666 8.4653 8.4591 8.4554 8.4554 8.4517 8.448 8.4442 8.4405 8.4388 8.4331 8.4294 8.4256 PD-130-1 IN WC 8.3773 8.3736 8.3699 8.3662 8.3654 8.3557 8.3551 8.3551 | degrees F 183.33 183.33 183.33 183.32 183.32 183.32 183.32 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 | degrees F 105.66 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.64 105.64 105.64 105.64 105.64 105.63 105.63 105.63                                                                     | degrees F 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56                             | degrees F 98.865 98.866 98.867 98.867 98.871 98.873 98.874 98.875 98.876 98.878 98.881 98.883 98.884 98.883 98.884 98.885 98.887 98.888                                                      | degrees F sci 162.98 6 162.96 6 162.96 6 162.96 6 162.95 6 162.94 6 162.94 6 162.92 6 162.92 6 162.91 6 162.91 6 162.91 6 162.91 6 162.91 6 162.89 6 162.89 6 162.89 6 162.89 6 162.88 6 162.88 6 162.87 6 162.87 6 162.87 6 162.77 6 162.77 6 162.76 6 162.75 6 162.75 6 162.75 6 162.75 6 162.75 6 162.75 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ofm<br>635.69<br>614.51<br>649.32<br>601.31<br>552.47<br>634.15<br>627.71<br>661.68<br>647.07<br>652.51<br>661.54<br>661.56<br>643.52<br>6413.6<br>626.29<br>6440.44<br>624.31<br>627.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:45:00 67.4 11 JUN 01 08:00:00 63.8 11 JUN 01 08:15:00 97.0 11 JUN 01 08:30:00 97.0 11 JUN 01 08:45:00 94.1 11 JUN 01 08:45:00 94.1 11 JUN 01 09:30:00 98.6 11 JUN 01 09:30:00 98.6 11 JUN 01 09:45:00 98.2 11 JUN 01 10:30:00 99.2 11 JUN 01 10:30:00 99.2 11 JUN 01 10:30:00 99.7 11 JUN 01 10:45:00 100. 11 JUN 01 11:15:00 100. 11 JUN 01 11:45:00 101. 11 JUN 01 11:45:00 101. 11 JUN 01 11:45:00 101. 11 JUN 01 15:50:00 102. 11 JUN 01 15:50:00 102. 11 JUN 01 15:45:00 103. 11 JUN 01 15:45:00 103. 11 JUN 01 16:50:00 103. 11 JUN 01 16:50:00 103. 11 JUN 01 16:50:00 103. 11 JUN 01 16:50:00 103. 11 JUN 01 16:50:00 103. 11 JUN 01 16:50:00 103. 11 JUN 01 16:50:00 103. 11 JUN 01 16:45:00 103. 11 JUN 01 16:45:00 103. 11 JUN 01 16:45:00 103. 11 JUN 01 17:15:00 103. 11 JUN 01 17:15:00 103.                                                 | 962 71.629 499 69.081 488 67.129 843 65.437 .019 97.79 98.832 .106 95.214 .396 93.392 .239 98.739 .618 99.22 .997 99.63 .281 99.94 .537 100.25 .794 100.56 .005 100.87 .0.31 101.17 .0.56 101.31 .0.82 101.45 1.07 101.59  DRATOR PARAM  D-1 T-150-2 as C degrees C .278 103.02 .287 103.12 .296 103.22 .306 103.32 .315 103.42 .306 103.32 .315 103.42 .324 103.52 .334 103.62 .343 103.72 .352 103.82 .365 103.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T-150-3 degrees C 72.958 70.876 69.332 68.129 97.328 98.004 94.831 92.62 98.249 98.711 99.125 99.459 99.792 100.13 101.46 101.67  T-150-3 degrees C 104.04 104.26 104.48 104.71 104.92 105.02 105.02 105.12 105.22 105.32 105.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | range C dec 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403 99.065 99.672 99.932 100.14 100.35 100.56 100.77 100.98 101.19 FIND-2 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150-4 T-150 | rees C degree 45.649 445.649 445.649 445.729 445.729 45.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664 5.664  | ees C deg 44.603 44.854 45.105 45.105 45.355 45.355 45.355 45.355 45.355 45.355 46.35 46.42 46.42 47.104 48.44 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 49.8142 | rees C deg 41.619 41.663 41.766 41.776 41.793 42.292 47.058 50.947 52.842 62.168 78.357 90.481 95.004 97.689 98.745 99.371 99.347 97.007  150.7  T-rees C deg 100.07 100.26 100.46 100.65 100.84 101.04 101.23 101.42 101.62              | rees C de 41.541 41.587 41.634 41.681 41.727 42.943 47.149 51.152 53.489 62.969 98.53 99.671 100.31 100.02 97.942 100.02 97.942 100.02 97.942                                                                                 | 41.857<br>41.897<br>41.937<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>99.471<br>100.01<br>100.11<br>99.637<br>97.735<br>Pegrees C<br>101.4<br>101.62<br>101.84<br>102.06<br>102.28<br>102.5<br>102.61<br>102.37<br>102.13<br>101.88 | 42.859 42.899 42.94 42.98 43.02 43.06 43.323 43.894 50.57 59.538 74.991 91.101 97.397 99.511 100.6 101.25 101.72 101.25 98.961  T-150-10 degrees C 102.8 103.01 103.23 103.44 103.65 103.87 104.08                       | Grams/ml 1.1754 1.1754 1.1756 1.1746 1.1742 1.1737 1.1733 1.1729 1.1725 1.1711 1.1643 1.1607 1.1582 1.159 1.1633 1.1675 1.1715 1.1755 1.1794 1.1834  D-150-1 evaporator density Grams/ml 1.235 1.2469 1.2509 1.2549 1.2549                      | 137.02 136.99 136.97 136.94 136.92 136.89 136.87 136.84 136.82 137.05 137.39 136.35 132.79 128.99 125.09 120.8 116.68 113.27 123.08  L-150-1 evaporator level inches 33.55 132.21 132.65 132.01 130.75 129.79 129.89 131.13 133.32 | -2.732 -2.66 -2.587 -2.514 4.5011 434.46 -11.47 -10.86 1556.5 1722.1 1722.3 1733.4 1730.3 1734.7 1730.5 1731 1718 1713.3 1731  F350-1 evaporator steam flow b/hour  1738.9 1732.2 1727.5 1728.8 1726.9 1735.3 1724.9 1720.2 1729.2 1731.6 | 74.848 1 74.825 74.802 74.78 74.757 74.735 74.712 74.689 74.71 74.765 74.82 74.875 74.929 74.984 75.039 75.094 75.149 75.204 75.259  T-336-1C degrees F 75.972 76.082 76.192 76.192 76.247 76.302 76.356 76.411 76.466 | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.88<br>156.88<br>156.77<br>156.64<br>156.51<br>156.39<br>156.26<br>155.87<br>155.87<br>155.87<br>155.75<br>155.62<br>155.36<br>P  | 8.0286<br>8.0294<br>8.0309<br>8.0309<br>8.0317<br>8.0325<br>11.445<br>11.442<br>11.436<br>11.433<br>11.431<br>11.425<br>11.422<br>11.419<br>P-Wcvac<br>11.38<br>11.371<br>11.365<br>11.374<br>11.362<br>11.359<br>11.359<br>11.359                                                                                                                                                                                                                  | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008             | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                           | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.0155 2.0151 2.015 2.0149 2.0148 2.0148 2.0147 2.0147 2.0147 2.0146 2.0148 2.0148 2.0148 2.0147 2.0147 2.0147 2.0147 2.0146 2.0148 2.0145 2.0145 2.0138 2.0138 2.0138 2.0137 2.0137 2.0137 2.0137 2.0136 2.0135                                                                                                                                                                                                                                                   | IN WC 8.4546 8.4571 8.4597 8.4622 8.4647 8.4673 8.4698 8.4666 8.4628 8.4551 8.4554 8.4412 8.4405 8.4368 8.4331 8.4294 8.4256 IN WC 8.3773 8.3736 8.3699 8.3662 8.3624 8.3555 8.3513 8.3476 8.3438  | degrees F 183.33 183.33 183.33 183.32 183.32 183.32 183.32 183.32 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.37 183.37 183.27 183.27 183.27 183.27 183.27 183.27 183.27 183.27 183.27 183.27 | degrees F 105.66 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.64 105.64 105.64 105.64 105.64 105.64 105.63 105.63                                                                     | degrees F 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 | degrees F 98.865 98.866 98.867 98.867 98.871 98.871 98.873 98.875 98.875 98.876 98.879 98.88 98.881 98.883 98.884 98.885 98.887 98.888                                                       | degrees F sci 162.98 6 162.96 6 162.96 6 162.96 6 162.95 66 162.94 66 162.94 66 162.93 66 162.94 66 162.93 66 162.93 66 162.93 66 162.92 6 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.91 66 162.75 66 162.76 66 162.75 66 162.75 66 162.75 66 162.75 66 162.75 66 162.75 66 162.77 66 162.75 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66 162.77 66         | ofm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>627.71<br>661.54<br>661.68<br>647.07<br>652.57<br>608.78<br>638.46<br>643.52<br>6413.6<br>626.29<br>640.44<br>624.31<br>627.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11 JUN 01 07:15:00 69.9 11 JUN 01 07:45:00 67.4 11 JUN 01 08:00:00 63.8 11 JUN 01 08:15:00 97.0 11 JUN 01 08:30:00 97.8 11 JUN 01 08:45:00 94.1 11 JUN 01 08:45:00 94.1 11 JUN 01 09:30:00 98.6 11 JUN 01 09:30:00 98.6 11 JUN 01 09:45:00 98.2 11 JUN 01 10:30:00 99.7 11 JUN 01 10:30:00 99.7 11 JUN 01 10:30:00 99.7 11 JUN 01 11:15:00 100. 11 JUN 01 11:15:00 100. 11 JUN 01 11:45:00 101. 11 JUN 01 11:45:00 101. 11 JUN 01 15:45:00 101. 11 JUN 01 15:45:00 102. 11 JUN 01 15:45:00 103. 11 JUN 01 16:45:00 103. 11 JUN 01 16:45:00 103. 11 JUN 01 16:30:00 103. 11 JUN 01 16:30:00 103. 11 JUN 01 17:45:00 103. 11 JUN 01 17:50:00 103. 11 JUN 01 17:50:00 103. 11 JUN 01 17:50:00 103. 11 JUN 01 17:50:00 103. 11 JUN 01 17:50:00 103. 11 JUN 01 17:50:00 103. 11 JUN 01 17:50:00 103. 11 JUN 01 17:45:00 103. 11 JUN 01 17:45:00 103. 11 JUN 01 17:45:00 103. 11 JUN 01 17:45:00 103. | 9.962 71.629 4.89 69.081 4.88 67.129 8.43 65.437 0.19 97.79 8.52 98.832 1.06 95.214 3.396 93.392 2.39 98.739 6.18 99.22 9.997 99.63 2.81 99.94 1.00.56 101.31 0.05 101.31 1.07 101.59  DRATOR PARAM  D-1 T-150-2 BS C degrees C 2.78 103.02 2.87 103.02 2.87 103.02 2.87 103.02 2.88 103.02 2.89 103.22 3.15 103.42 3.34 103.52 3.34 103.62 3.34 103.62 3.34 103.62 3.352 103.82 3.62 103.92 3.71 104.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T-150-3  degrees C 72.958 70.876 69.332 68.129 97.328 98.004 94.831 92.62 98.249 98.711 99.125 99.459 99.792 100.13 101.46 101.67  T-150-3  degrees C 104.04 104.26 104.48 104.71 104.92 105.02 105.12 105.22 105.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | range C dec 73.277 71.367 69.758 68.417 97.059 98.247 94.656 92.682 98.403 99.065 99.368 99.368 99.368 100.14 100.35 100.56 100.77 100.98 101.19 FIND-2 T-150-4 T-16grees C dec 103.48 103.64 103.8 103.64 104.6 104.28 104.6 104.76 104.9 104.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C degrees C | ees C deg 44.603 44.643 45.105 45.355 45.355 45.355 31.871 42.282 43.815 45.903 46.84 45.903 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46.84 46. | rees C deg 41.619 41.663 41.766 41.776 41.775 41.793 42.292 47.058 50.947 52.842 62.168 78.357 90.481 95.004 97.689 98.745 99.371 99.994 99.371 99.994 99.371 00.26 100.46 100.26 100.46 100.65 100.84 101.04 101.23 101.62 101.62 101.89 | rees C de 41.541 41.587 41.634 41.681 41.727 42.943 47.149 51.152 53.489 62.969 98.53 49.671 100.31 100.02 97.942 100.02 97.942 100.02 97.942 100.02 97.942 100.02 97.942                                                     | 41.857<br>41.897<br>41.997<br>41.977<br>42.017<br>42.057<br>42.285<br>42.861<br>49.053<br>57.829<br>73.355<br>89.382<br>95.776<br>98.058<br>99.411<br>100.01<br>100.11<br>99.637<br>97.735<br>                                                                                        | 42.859 42.899 42.94 42.98 43.02 43.06 43.323 43.894 50.57 59.538 74.991 91.101 97.397 99.511 100.6 101.25 101.72 101.25 98.961   T-150-10 degrees C 102.8 103.01 103.23 103.44 103.65 103.99 103.68 103.99 103.68 103.38 | Grams/ml 1.1754 1.1754 1.1756 1.1746 1.1742 1.1737 1.1733 1.1729 1.1725 1.1711 1.1643 1.1607 1.1582 1.159 1.1633 1.1675 1.1715 1.1755 1.1794 1.1834  D-150-1 evaporator density Grams/ml 1.235 1.2469 1.2509 1.2549 1.2588 1.2628 1.2688 1.2628 | 137.02 136.99 136.97 136.94 136.92 136.89 136.87 136.84 136.82 137.05 137.39 136.35 132.79 128.99 125.09 120.8 116.68 113.27 123.08  L-150-1 evaporator level Inches 33.55 132.01 130.75 132.99 129.29 129.8 131.13                | -2.732 -2.66 -2.587 -2.514 4.5011 434.46 -11.47 -10.86 1556.5 1722.1 1722.3 1733.4 1730.3 1734.7 1730.5 1731 1718 1713.3 1731  F350-1 evaporator steam flow b/hour 1738.9 1732.2 1727.5 1728.8 1726.9 1735.3 1724.9 1720.2 1729.2         | 74.848 1 74.825 74.802 74.78 74.757 74.735 74.712 74.689 74.71 74.765 74.822 74.875 74.929 74.984 75.039 75.094 75.149 75.204 75.259  T-336-1C degrees F 75.972 76.027 76.082 76.137 76.192 76.302 76.356 76.411       | 56.42 11<br>156.5<br>156.57<br>156.65<br>156.73<br>156.88<br>156.88<br>156.77<br>156.64<br>156.51<br>156.39<br>156.26<br>155.87<br>155.75<br>155.62<br>155.49<br>155.36                 | 8.0286<br>8.0294<br>8.0309<br>8.0309<br>8.0317<br>8.0325<br>8.0333<br>11.451<br>11.445<br>11.442<br>11.436<br>11.433<br>11.431<br>11.425<br>11.422<br>11.419<br>11.37<br>11.38<br>11.37<br>11.37<br>11.37<br>11.37<br>11.37<br>11.37<br>11.37<br>11.37<br>11.37<br>11.37<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36<br>11.36 | 48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7 | 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008             | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 | IN WC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IN WC 2.0152 2.0151 2.0151 2.0155 2.015 2.015 2.0149 2.0149 2.0148 2.0147 2.0147 2.0146 2.0145 2.0145 2.0145 2.0145 2.0145 2.0145 2.0146 2.0136 2.0130 2.0139 2.0138 2.0137 2.0137 2.0136 2.0136 2.0136                                                                                                                                                                                                                                                                                       | IN WC 8.4546 8.4551 8.4557 8.4622 8.4667 8.4551 8.4551 8.4554 8.4551 8.4554 8.4405 8.4331 8.4294 8.4296 8.3773 8.3736 8.3692 8.3662 8.3662 8.3587 8.355 8.3513 8.3476                              | degrees F 183.33 183.33 183.33 183.32 183.32 183.32 183.32 183.32 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.31 183.37 183.27 183.27 183.27 183.27 183.27 183.27 183.27 183.27 183.27 183.27        | degrees F 105.66 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.64 105.64 105.64 105.64 105.64 105.63 105.63 105.63 105.61 105.61 105.61 105.61 105.61                                  | degrees F 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 | 98.865 98.866 98.867 98.869 98.87 98.871 98.873 98.874 98.875 98.876 98.878 98.881 98.883 98.884 98.885 98.884 98.885 98.888                                                                 | degrees F sci 162.98 6: 162.96 6: 162.96 6: 162.96 6: 162.94 6: 162.94 6: 162.92 6: 162.92 6: 162.92 6: 162.92 6: 162.93 6: 162.89 6: 162.89 6: 162.89 6: 162.88 6: 162.88 6: 162.88 6: 162.88 6: 162.87 6: 162.77 6: 162.77 6: 162.77 6: 162.77 6: 162.75 6: 162.75 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.73 6: 162.71 6: 162.71 6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ofm<br>635.69<br>614.51<br>649.32<br>601.31<br>652.47<br>634.15<br>627.71<br>661.54<br>661.68<br>654.57<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.54<br>661.5 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      | OR PARAMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                   |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T-150-1                                                                                                                                                                                                                                                              | T-150-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T-150-3                                                                                                                                                                                                               | T-150-4                                                                                                                                                                                                                               | T-150-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T-150-6                                                                                                                                                                                                           | T-150-7                                                                                                                                                                                                                                                     | T-150-8                                                                                                                                                                                                                                                                                                 | T-150-9                                                                                                                                                                                                                                                                          | T-150-10                                                                                                                                                                                                       | D-150-1<br>evaporator<br>density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L-150-1<br>evaporator<br>level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F350-1<br>evaporator<br>steam flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T-336-1C                                                                                                                                                                                                                                                                 | F 136-1                                                                                                                                                                                                                                                                  | P-122-1                                                                                                                                                                                                  | P-130-2 F                                                                                                                                                                                            | PD-130-1-1                                                                                                                                                                                                                                                                                                                                                                                                        | PD-130-2-1                                                                                                                                                                                                                                                                                                                                                                                                    | PD-130-3-1                                                                                                                                                                                                                                                                                                                                     | PD-130-4-1 F                                                                                                                                                                                                                                                                | PD-130-1                                                                                                                                                                                            | T-335-2 T                                                                                                                                                                                                                        | -130-1-1 T                                                                                                                                                                                                                                                     | <b>r-130-2-1</b>                                                                                                                                                                        | T-130-3-1 T                                                                                                                                                                                                                                                                                                                             | -130-4-1 F-130-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |
| 18 JUN 01 08:30:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees C<br>59.957                                                                                                                                                                                                                                                  | degrees C<br>60.965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C<br>66.25                                                                                                                                                                                                    | degrees C d<br>66.442                                                                                                                                                                                                                 | legrees C o<br>47.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | degrees C o<br>46.878                                                                                                                                                                                             | degrees C<br>43,371                                                                                                                                                                                                                                         | degrees C<br>43.595                                                                                                                                                                                                                                                                                     | degrees C<br>42.188                                                                                                                                                                                                                                                              | degrees C<br>44.149                                                                                                                                                                                            | Grams/ml<br>1.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inches<br>137.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lb/hour<br>-0.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees F<br>75.329                                                                                                                                                                                                                                                      | scfm<br>151.75                                                                                                                                                                                                                                                           | "wcvac<br>8,8057                                                                                                                                                                                         | "wcvac<br>48,912                                                                                                                                                                                     | IN WC<br>0.0085                                                                                                                                                                                                                                                                                                                                                                                                   | IN WC<br>-0.06                                                                                                                                                                                                                                                                                                                                                                                                | IN WC                                                                                                                                                                                                                                                                                                                                          | IN WC<br>2.053                                                                                                                                                                                                                                                              | IN WC<br>8.4825                                                                                                                                                                                     |                                                                                                                                                                                                                                  | degrees F<br>103.82                                                                                                                                                                                                                                            | degrees F<br>102.96                                                                                                                                                                     | degrees F<br>96.733                                                                                                                                                                                                                                                                                                                     | degrees F scfm<br>159.87 619.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                                                       |
| 18 JUN 01 08:45:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95.718                                                                                                                                                                                                                                                               | 96.383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.059                                                                                                                                                                                                                | 95.586                                                                                                                                                                                                                                | 47.993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48.212                                                                                                                                                                                                            | 43.429                                                                                                                                                                                                                                                      | 43.654                                                                                                                                                                                                                                                                                                  | 42.381                                                                                                                                                                                                                                                                           | 44.21                                                                                                                                                                                                          | 1.1764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 137.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.8518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.25                                                                                                                                                                                                                                                                    | 151.74                                                                                                                                                                                                                                                                   | 8.8073                                                                                                                                                                                                   | 48.913                                                                                                                                                                                               | 0.0085                                                                                                                                                                                                                                                                                                                                                                                                            | -0.059                                                                                                                                                                                                                                                                                                                                                                                                        | -0.004<br>-0.003                                                                                                                                                                                                                                                                                                                               | 2.053                                                                                                                                                                                                                                                                       | 8.4822                                                                                                                                                                                              | 181.04                                                                                                                                                                                                                           | 103.81                                                                                                                                                                                                                                                         | 102.96                                                                                                                                                                                  | 96.72                                                                                                                                                                                                                                                                                                                                   | 159.86 628.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78                                                                                                                                                       |
| 18 JUN 01 09:00:00<br>18 JUN 01 09:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.731<br>97.429                                                                                                                                                                                                                                                     | 97.755<br>98.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.024<br>97.711                                                                                                                                                                                                      | 97.115<br>97.913                                                                                                                                                                                                                      | 65.411<br>86.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66.66<br>85.999                                                                                                                                                                                                   | 43.487<br>46.517                                                                                                                                                                                                                                            | 43.713<br>43.772                                                                                                                                                                                                                                                                                        | 42.575<br>43.05                                                                                                                                                                                                                                                                  | 44.272<br>44.333                                                                                                                                                                                               | 1.1758<br>1.1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 137.66<br>137.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 465.04<br>925.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75.172<br>75.094                                                                                                                                                                                                                                                         | 151.73<br>151.72                                                                                                                                                                                                                                                         | 8.8088<br>8.8104                                                                                                                                                                                         | 48.914<br>48.914                                                                                                                                                                                     | 0.0085<br>0.0086                                                                                                                                                                                                                                                                                                                                                                                                  | -0.059<br>-0.059                                                                                                                                                                                                                                                                                                                                                                                              | -0.003<br>-0.003                                                                                                                                                                                                                                                                                                                               | 2.0531<br>2.0531                                                                                                                                                                                                                                                            | 8.4818<br>8.4815                                                                                                                                                                                    | 181.03<br>181.03                                                                                                                                                                                                                 | 103.79<br>103.78                                                                                                                                                                                                                                               | 102.95<br>102.94                                                                                                                                                                        | 96.707<br>96.694                                                                                                                                                                                                                                                                                                                        | 159.85 619.3<br>159.84 632.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |
| 18 JUN 01 09:30:00<br>18 JUN 01 09:45:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.127<br>98.678                                                                                                                                                                                                                                                     | 99.08<br>99.398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98.399<br>99.041                                                                                                                                                                                                      | 98.71<br>99.055                                                                                                                                                                                                                       | 94.438<br>95.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93.726<br>95.51                                                                                                                                                                                                   | 53.309<br>64.029                                                                                                                                                                                                                                            | 43.831<br>47.432                                                                                                                                                                                                                                                                                        | 47.983<br>58.866                                                                                                                                                                                                                                                                 | 49.769<br>60.832                                                                                                                                                                                               | 1.1666<br>1.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 137.76<br>137.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1283.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.016                                                                                                                                                                                                                                                                   | 151.7                                                                                                                                                                                                                                                                    | 8.8119                                                                                                                                                                                                   | 48.915                                                                                                                                                                                               | 0.0086                                                                                                                                                                                                                                                                                                                                                                                                            | -0.059                                                                                                                                                                                                                                                                                                                                                                                                        | -0.003                                                                                                                                                                                                                                                                                                                                         | 2.0532                                                                                                                                                                                                                                                                      | 8.4811                                                                                                                                                                                              | 181.02                                                                                                                                                                                                                           | 103.77                                                                                                                                                                                                                                                         | 102.93                                                                                                                                                                                  | 96.68                                                                                                                                                                                                                                                                                                                                   | 159.83 602.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91                                                                                                                                                       |
| 18 JUN 01 10:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.167                                                                                                                                                                                                                                                               | 99.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.369                                                                                                                                                                                                                | 99.377                                                                                                                                                                                                                                | 95.478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.098                                                                                                                                                                                                            | 80.904                                                                                                                                                                                                                                                      | 53.887                                                                                                                                                                                                                                                                                                  | 75.85                                                                                                                                                                                                                                                                            | 77.923                                                                                                                                                                                                         | 1.1585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 137.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1742.2<br>1723.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.937<br>74.859                                                                                                                                                                                                                                                         | 151.69<br>151.68                                                                                                                                                                                                                                                         | 8.8134<br>8.815                                                                                                                                                                                          | 48,915<br>48,916                                                                                                                                                                                     | 0.0086<br>0.0086                                                                                                                                                                                                                                                                                                                                                                                                  | -0.059<br>-0.059                                                                                                                                                                                                                                                                                                                                                                                              | -0.003<br>-0.003                                                                                                                                                                                                                                                                                                                               | 2.0532<br>2.0533                                                                                                                                                                                                                                                            | 8.4807<br>8.4804                                                                                                                                                                                    | 181.02<br>181.02                                                                                                                                                                                                                 | 103.75<br>103.74                                                                                                                                                                                                                                               | 102.93<br>102.92                                                                                                                                                                        | 96.667<br>96.654                                                                                                                                                                                                                                                                                                                        | 159.82 616.2<br>159.81 596.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19                                                                                                                                                       |
| 18 JUN 01 10:15:00<br>18 JUN 01 10:30:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.657<br>100.15                                                                                                                                                                                                                                                     | 100.02<br>100.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.697<br>100.14                                                                                                                                                                                                      | 99.738<br>100.47                                                                                                                                                                                                                      | 94.277<br>93.246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94.312<br>94.083                                                                                                                                                                                                  | 91.523<br>96.219                                                                                                                                                                                                                                            | 64.716<br>81.45                                                                                                                                                                                                                                                                                         | 91.039<br>96.627                                                                                                                                                                                                                                                                 | 91.368<br>98.162                                                                                                                                                                                               | 1.1549<br>1.1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 135.54<br>131.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1725.6<br>1727.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.781<br>74.702                                                                                                                                                                                                                                                         | 151.67<br>151.65                                                                                                                                                                                                                                                         | 8.8165<br>8.8181                                                                                                                                                                                         | 48.917<br>48.917                                                                                                                                                                                     | 0.0087<br>0.0087                                                                                                                                                                                                                                                                                                                                                                                                  | -0.059<br>-0.059                                                                                                                                                                                                                                                                                                                                                                                              | -0.003<br>-0.003                                                                                                                                                                                                                                                                                                                               | 2.0533<br>2.0534                                                                                                                                                                                                                                                            | 8.48<br>8.4797                                                                                                                                                                                      | 181.01<br>181.01                                                                                                                                                                                                                 | 103.73<br>103.71                                                                                                                                                                                                                                               | 102.91<br>102.91                                                                                                                                                                        | 96.641<br>96.628                                                                                                                                                                                                                                                                                                                        | 159.81 597.7<br>159.8 629.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |
| 18 JUN 01 10:45:00<br>18 JUN 01 11:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.64                                                                                                                                                                                                                                                               | 100.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.81<br>101.49                                                                                                                                                                                                      | 101.2                                                                                                                                                                                                                                 | 94.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.675                                                                                                                                                                                                            | 98.347                                                                                                                                                                                                                                                      | 92.713                                                                                                                                                                                                                                                                                                  | 98.872                                                                                                                                                                                                                                                                           | 100.08                                                                                                                                                                                                         | 1.1631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1731.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.624                                                                                                                                                                                                                                                                   | 151.64                                                                                                                                                                                                                                                                   | 8.8196                                                                                                                                                                                                   | 48.918                                                                                                                                                                                               | 0.0087                                                                                                                                                                                                                                                                                                                                                                                                            | -0.059                                                                                                                                                                                                                                                                                                                                                                                                        | -0.003                                                                                                                                                                                                                                                                                                                                         | 2.0534                                                                                                                                                                                                                                                                      | 8.4793                                                                                                                                                                                              | 181                                                                                                                                                                                                                              | 103.7                                                                                                                                                                                                                                                          | 102.9                                                                                                                                                                                   | 96.615                                                                                                                                                                                                                                                                                                                                  | 159.79 651.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )4                                                                                                                                                       |
| 18 JUN 01 11:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.89<br>101.14                                                                                                                                                                                                                                                     | 100.67<br>100.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101.49                                                                                                                                                                                                                | 101.64<br>102                                                                                                                                                                                                                         | 95.89<br>97.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.991<br>96.981                                                                                                                                                                                                  | 99.533<br>100.25                                                                                                                                                                                                                                            | 97.066<br>99.192                                                                                                                                                                                                                                                                                        | 100.09<br>100.73                                                                                                                                                                                                                                                                 | 101.28<br>101.56                                                                                                                                                                                               | 1.1674<br>1.1715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123.94<br>119.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1728.8<br>1728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.546<br>74.579                                                                                                                                                                                                                                                         | 151.63<br>151.62                                                                                                                                                                                                                                                         | 8.8212<br>8.8227                                                                                                                                                                                         | 48.918<br>48.919                                                                                                                                                                                     | 0.0087<br>0.0088                                                                                                                                                                                                                                                                                                                                                                                                  | -0.059<br>-0.059                                                                                                                                                                                                                                                                                                                                                                                              | -0.003<br>-0.003                                                                                                                                                                                                                                                                                                                               | 2.0535<br>2.0535                                                                                                                                                                                                                                                            | 8.479<br>8.4786                                                                                                                                                                                     | 181<br>180.99                                                                                                                                                                                                                    | 103.69<br>103.68                                                                                                                                                                                                                                               | 102.89<br>102.88                                                                                                                                                                        | 96.602<br>96.589                                                                                                                                                                                                                                                                                                                        | 159.78 630.8<br>159.77 624.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |
| 18 JUN 01 11:30:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101.38                                                                                                                                                                                                                                                               | 101.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.89                                                                                                                                                                                                                | 102.34                                                                                                                                                                                                                                | 98.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.92                                                                                                                                                                                                             | 99.971                                                                                                                                                                                                                                                      | 100.4                                                                                                                                                                                                                                                                                                   | 100.27                                                                                                                                                                                                                                                                           | 101.15                                                                                                                                                                                                         | 1.1757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1738.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.649                                                                                                                                                                                                                                                                   | 151.6                                                                                                                                                                                                                                                                    | 8.8242                                                                                                                                                                                                   | 48.92                                                                                                                                                                                                | 0.0088                                                                                                                                                                                                                                                                                                                                                                                                            | -0.059                                                                                                                                                                                                                                                                                                                                                                                                        | -0.003                                                                                                                                                                                                                                                                                                                                         | 2.0536                                                                                                                                                                                                                                                                      | 8.4782                                                                                                                                                                                              | 180.99                                                                                                                                                                                                                           | 103.66                                                                                                                                                                                                                                                         | 102.88                                                                                                                                                                                  | 96.576                                                                                                                                                                                                                                                                                                                                  | 159.76 646.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .2                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EVAPORAT                                                                                                                                                                                                                                                             | OR PARAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TERS, 0010                                                                                                                                                                                                            | END-1                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                | D-150-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-150-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F350-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                   |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                | evaporator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | evaporator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | evaporator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                       | T-150-5<br>egrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         | T-150-9<br>degrees C                                                                                                                                                                                                                                                             | T-150-10<br>degrees C                                                                                                                                                                                          | density<br>Grams/ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | level<br>Inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | steam flow<br>lb/hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T-336-1C<br>degrees F                                                                                                                                                                                                                                                    | F 136-1 P                                                                                                                                                                                                                                                                | <b>'-122-1</b> i<br>"wcvac                                                                                                                                                                               | P-130-2 P<br>"wcvac                                                                                                                                                                                  | 'D-130-1-1 F<br>IN WC                                                                                                                                                                                                                                                                                                                                                                                             | PD-130-2-1 I<br>IN WC                                                                                                                                                                                                                                                                                                                                                                                         | PD-130-3-1 I<br>IN WC                                                                                                                                                                                                                                                                                                                          | PD-130-4-1 P<br>IN WC                                                                                                                                                                                                                                                       | PD-130-1<br>IN WC                                                                                                                                                                                   | T-335-2 T<br>degrees F                                                                                                                                                                                                           | '-130-1-1 T<br>degrees F                                                                                                                                                                                                                                       | -130-2-1 1<br>degrees F                                                                                                                                                                 | F-130-3-1 T<br>degrees F                                                                                                                                                                                                                                                                                                                | -130-4-1 F-130-1<br>degrees F scfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |
| 18 JUN 01 15:00:00<br>18 JUN 01 15:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.84<br>103.01                                                                                                                                                                                                                                                     | 103.5<br>103.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 103.87<br>104.11                                                                                                                                                                                                      | 103.4<br>103.57                                                                                                                                                                                                                       | 97.913<br>98.352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96.962<br>97.241                                                                                                                                                                                                  | 100.53<br>100.73                                                                                                                                                                                                                                            | 102.15<br>102.31                                                                                                                                                                                                                                                                                        | 101.82<br>101.97                                                                                                                                                                                                                                                                 | 103.09<br>103.24                                                                                                                                                                                               | 1.2337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 132.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1739.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.626                                                                                                                                                                                                                                                                   | 151.43                                                                                                                                                                                                                                                                   | 8.8459                                                                                                                                                                                                   | 48.928                                                                                                                                                                                               | 0.0091                                                                                                                                                                                                                                                                                                                                                                                                            | -0.059                                                                                                                                                                                                                                                                                                                                                                                                        | -0.003                                                                                                                                                                                                                                                                                                                                         | 2.0542                                                                                                                                                                                                                                                                      | 8.4733                                                                                                                                                                                              | 180.93                                                                                                                                                                                                                           | 103.48                                                                                                                                                                                                                                                         | 102.77                                                                                                                                                                                  | 96.393                                                                                                                                                                                                                                                                                                                                  | 159.64 629.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |
| 18 JUN 01 15:30:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103.19                                                                                                                                                                                                                                                               | 103.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104.26                                                                                                                                                                                                                | 103.74                                                                                                                                                                                                                                | 98.638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97.519                                                                                                                                                                                                            | 100.92                                                                                                                                                                                                                                                      | 102.46                                                                                                                                                                                                                                                                                                  | 102.12                                                                                                                                                                                                                                                                           | 103.39                                                                                                                                                                                                         | 1.2379<br>1.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130.75<br>131.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1731.1<br>1729.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75.696<br>75.766                                                                                                                                                                                                                                                         | 151.41<br>151.4                                                                                                                                                                                                                                                          | 8.8474<br>8.849                                                                                                                                                                                          | 48.929<br>48.929                                                                                                                                                                                     | 0.0091<br>0.0092                                                                                                                                                                                                                                                                                                                                                                                                  | -0.059<br>-0.059                                                                                                                                                                                                                                                                                                                                                                                              | -0.003<br>-0.003                                                                                                                                                                                                                                                                                                                               | 2.0543<br>2.0543                                                                                                                                                                                                                                                            | 8.4729<br>8.4725                                                                                                                                                                                    | 180.92<br>180.92                                                                                                                                                                                                                 | 103.47<br>103.45                                                                                                                                                                                                                                               | 102.77<br>102.76                                                                                                                                                                        | 96.38<br>96.367                                                                                                                                                                                                                                                                                                                         | 159.63 625.4<br>159.62 630.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |
| 18 JUN 01 15:45:00<br>18 JUN 01 16:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103.36<br>103.53                                                                                                                                                                                                                                                     | 103.94<br>104.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104.38<br>104.5                                                                                                                                                                                                       | 103.91<br>104.07                                                                                                                                                                                                                      | 98.846<br>99.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.757<br>97.948                                                                                                                                                                                                  | 101.12<br>101.32                                                                                                                                                                                                                                            | 102.61<br>102.76                                                                                                                                                                                                                                                                                        | 102.26<br>102.41                                                                                                                                                                                                                                                                 | 103.54<br>103.69                                                                                                                                                                                               | 1.2462<br>1.2503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131.86<br>132.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1731.7<br>1726.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75.835<br>75.905                                                                                                                                                                                                                                                         | 151.39<br>151.37                                                                                                                                                                                                                                                         | 8.8505<br>8.852                                                                                                                                                                                          | 48.93<br>48.93                                                                                                                                                                                       | 0.0092<br>0.0092                                                                                                                                                                                                                                                                                                                                                                                                  | -0.059<br>-0.059                                                                                                                                                                                                                                                                                                                                                                                              | -0.003<br>-0.003                                                                                                                                                                                                                                                                                                                               | 2.0544<br>2.0544                                                                                                                                                                                                                                                            | 8.4722<br>8.4718                                                                                                                                                                                    | 180.92<br>180.91                                                                                                                                                                                                                 | 103.44<br>103.43                                                                                                                                                                                                                                               | 102.75<br>102.75                                                                                                                                                                        | 96.354<br>96.341                                                                                                                                                                                                                                                                                                                        | 159.61 614.2<br>159.6 629.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |
| 18 JUN 01 16:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103.71                                                                                                                                                                                                                                                               | 104.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104.62                                                                                                                                                                                                                | 104.24                                                                                                                                                                                                                                | 99.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.139                                                                                                                                                                                                            | 101.52                                                                                                                                                                                                                                                      | 102.91                                                                                                                                                                                                                                                                                                  | 102.56                                                                                                                                                                                                                                                                           | 103.84                                                                                                                                                                                                         | 1.2545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 132.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1733.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.975                                                                                                                                                                                                                                                                   | 151.36                                                                                                                                                                                                                                                                   | 8.8536                                                                                                                                                                                                   | 48.931                                                                                                                                                                                               | 0.0092                                                                                                                                                                                                                                                                                                                                                                                                            | -0.059                                                                                                                                                                                                                                                                                                                                                                                                        | -0.003                                                                                                                                                                                                                                                                                                                                         | 2.0545                                                                                                                                                                                                                                                                      | 8.4715                                                                                                                                                                                              | 180.91                                                                                                                                                                                                                           | 103.41                                                                                                                                                                                                                                                         | 102.74                                                                                                                                                                                  | 96.328                                                                                                                                                                                                                                                                                                                                  | 159.6 625.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                       |
| 18 JUN 01 16:30:00<br>18 JUN 01 16:45:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103.88<br>104.06                                                                                                                                                                                                                                                     | 104.17<br>104.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104.74<br>104.86                                                                                                                                                                                                      | 104.41<br>104.58                                                                                                                                                                                                                      | 99.445<br>99.558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.33<br>98.521                                                                                                                                                                                                   | 101.71<br>101.91                                                                                                                                                                                                                                            | 103.02<br>103.06                                                                                                                                                                                                                                                                                        | 102.64<br>102.56                                                                                                                                                                                                                                                                 | 103.94<br>103.98                                                                                                                                                                                               | 1.2586<br>1.2628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131.52<br>131.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1735.1<br>1730.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76.045<br>76.115                                                                                                                                                                                                                                                         | 151.35<br>151.34                                                                                                                                                                                                                                                         | 8.8551<br>8.8567                                                                                                                                                                                         | 48.932<br>48.932                                                                                                                                                                                     | 0.0093<br>0.0093                                                                                                                                                                                                                                                                                                                                                                                                  | -0.059<br>-0.059                                                                                                                                                                                                                                                                                                                                                                                              | -0.003<br>-0.003                                                                                                                                                                                                                                                                                                                               | 2.0545<br>2.0546                                                                                                                                                                                                                                                            | 8.4711<br>8.4708                                                                                                                                                                                    | 180.9<br>180.9                                                                                                                                                                                                                   | 103.4<br>103.39                                                                                                                                                                                                                                                | 102.73<br>102.72                                                                                                                                                                        | 96.315<br>96.302                                                                                                                                                                                                                                                                                                                        | 159.59 638.5<br>159.58 646.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |
| 18 JUN 01 17:00:00<br>18 JUN 01 17:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104.23<br>104.1                                                                                                                                                                                                                                                      | 104.26<br>104.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.98<br>105.06                                                                                                                                                                                                      | 104.75<br>104.74                                                                                                                                                                                                                      | 99.671<br>99.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.712<br>98.903                                                                                                                                                                                                  | 102.11<br>102.31                                                                                                                                                                                                                                            | 103.11<br>103.15                                                                                                                                                                                                                                                                                        | 102.48<br>102.39                                                                                                                                                                                                                                                                 | 104.03<br>104.07                                                                                                                                                                                               | 1.2669<br>1.2711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131.32<br>131.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1744<br>1728.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.184<br>76.254                                                                                                                                                                                                                                                         | 151.32<br>151.31                                                                                                                                                                                                                                                         | 8.8582<br>8.8598                                                                                                                                                                                         | 48.933<br>48.933                                                                                                                                                                                     | 0.0093<br>0.0093                                                                                                                                                                                                                                                                                                                                                                                                  | -0.059<br>-0.059                                                                                                                                                                                                                                                                                                                                                                                              | -0.003<br>-0.003                                                                                                                                                                                                                                                                                                                               | 2.0546<br>2.0547                                                                                                                                                                                                                                                            | 8.4704<br>8.47                                                                                                                                                                                      | 180.89<br>180.89                                                                                                                                                                                                                 | 103.37<br>103.36                                                                                                                                                                                                                                               | 102.72<br>102.71                                                                                                                                                                        | 96.288<br>96.275                                                                                                                                                                                                                                                                                                                        | 159.57 634.0<br>159.56 652.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |
| 18 JUN 01 17:30:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103.93                                                                                                                                                                                                                                                               | 104.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104.86                                                                                                                                                                                                                | 104.56                                                                                                                                                                                                                                | 99.896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.094                                                                                                                                                                                                            | 102.51                                                                                                                                                                                                                                                      | 103.2                                                                                                                                                                                                                                                                                                   | 102.31                                                                                                                                                                                                                                                                           | 104.12                                                                                                                                                                                                         | 1.2751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 131.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1729.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76.324                                                                                                                                                                                                                                                                   | 151.3                                                                                                                                                                                                                                                                    | 8.8613                                                                                                                                                                                                   | 48.934                                                                                                                                                                                               | 0.0094                                                                                                                                                                                                                                                                                                                                                                                                            | -0.059                                                                                                                                                                                                                                                                                                                                                                                                        | -0.003                                                                                                                                                                                                                                                                                                                                         | 2.0547                                                                                                                                                                                                                                                                      | 8.4697                                                                                                                                                                                              | 180.89                                                                                                                                                                                                                           | 103.35                                                                                                                                                                                                                                                         | 102.7                                                                                                                                                                                   | 96.262                                                                                                                                                                                                                                                                                                                                  | 159.55 642.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>57</b>                                                                                                                                                |
| 18 JUN 01 17:45:00<br>18 JUN 01 18:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103.76<br>103.58                                                                                                                                                                                                                                                     | 104.39<br>104.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104.66<br>104.46                                                                                                                                                                                                      | 104.38<br>104.19                                                                                                                                                                                                                      | 100.01<br>100.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.285<br>99.476                                                                                                                                                                                                  | 102.49<br>102.33                                                                                                                                                                                                                                            | 103.24<br>103.28                                                                                                                                                                                                                                                                                        | 102.22<br>102.14                                                                                                                                                                                                                                                                 | 104.16<br>104.21                                                                                                                                                                                               | 1.2777<br>1.2803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131.03<br>130.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1734.8<br>1736.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76.394<br>76.464                                                                                                                                                                                                                                                         | 151.29<br>151.27                                                                                                                                                                                                                                                         | 8.8629<br>8.8644                                                                                                                                                                                         | 48.934<br>48.935                                                                                                                                                                                     | 0.0094<br>0.0094                                                                                                                                                                                                                                                                                                                                                                                                  | -0.059<br>-0.059                                                                                                                                                                                                                                                                                                                                                                                              | -0.003<br>-0.003                                                                                                                                                                                                                                                                                                                               | 2.0548<br>2.0548                                                                                                                                                                                                                                                            | 8.4693<br>8.469                                                                                                                                                                                     | 180.88<br>180.88                                                                                                                                                                                                                 | 103.34<br>103.32                                                                                                                                                                                                                                               | 102.69<br>102.69                                                                                                                                                                        | 96.249<br>96.236                                                                                                                                                                                                                                                                                                                        | 159.54 640.0<br>159.54 634.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EVAPORAT                                                                                                                                                                                                                                                             | OR PARAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TERS, 0010                                                                                                                                                                                                            | STRT-2                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   | <del> </del>                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                | D-150-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-150-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F350-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                   |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             | T-150-8                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                  | T-150-10                                                                                                                                                                                                       | evaporator<br>density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | evaporator<br>level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | evaporator<br>steam flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T-336-1C                                                                                                                                                                                                                                                                 | F 136-1 P                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                             | PD-130-1                                                                                                                                                                                            | T-335-2 T                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         | -130-4-1 F-130-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |
| 19 JUN 01 08:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees C<br>57.26                                                                                                                                                                                                                                                   | degrees C<br>59.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C<br>66.803                                                                                                                                                                                                   | degrees C de<br>6.205                                                                                                                                                                                                                 | egrees C o<br>46.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                | T-150-10<br>degrees C<br>42.646                                                                                                                                                                                | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T-336-1C<br>degrees F<br>76.791                                                                                                                                                                                                                                          | F 136-1 P<br>scfm<br>150.57                                                                                                                                                                                                                                              | -122-1 F<br>"wcvac<br>8.9509                                                                                                                                                                             | P-130-2 P<br>"wcvac<br>48.968                                                                                                                                                                        | D-130-1-1 F<br>IN WC<br>0.0107                                                                                                                                                                                                                                                                                                                                                                                    | PD-130-2-1 F<br>IN WC<br>-0.057                                                                                                                                                                                                                                                                                                                                                                               | PD-130-3-1 I<br>IN WC<br>-0.001                                                                                                                                                                                                                                                                                                                | PD-130-4-1 P<br>IN WC<br>2.0575                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                | -130-2-1 1<br>degrees F<br>102.28                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                         | <b>7-130-4-1 F-130-1</b><br>degrees F scfm<br>159.05 648.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | degrees C                                                                                                                                                                                                                                                            | degrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees C                                                                                                                                                                                                             | degrees C d                                                                                                                                                                                                                           | egrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees C d<br>44.578<br>49.344                                                                                                                                                                                   | egrees C                                                                                                                                                                                                                                                    | degrees C                                                                                                                                                                                                                                                                                               | degrees C<br>41.222<br>41.265                                                                                                                                                                                                                                                    | degrees C<br>42.646<br>42.685                                                                                                                                                                                  | density Grams/ml 1.1796 1.1792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | level<br>nches<br>136.63<br>136.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | steam flow<br>b/hour<br>0.7685<br>5.2849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | degrees F<br>76.791<br>76.797                                                                                                                                                                                                                                            | scfm<br>150.57<br>150.55                                                                                                                                                                                                                                                 | "wcvac<br>8.9509<br>8.9524                                                                                                                                                                               | *wcvac<br>48.968<br>48,969                                                                                                                                                                           | IN WC<br>0.0107<br>0.0108                                                                                                                                                                                                                                                                                                                                                                                         | IN WC<br>-0.057<br>-0.057                                                                                                                                                                                                                                                                                                                                                                                     | IN WC<br>-0.001<br>-0.001                                                                                                                                                                                                                                                                                                                      | IN WC<br>2.0575<br>2.0575                                                                                                                                                                                                                                                   | IN WC<br>8.449<br>8.4487                                                                                                                                                                            | degrees F<br>180.63<br>180.63                                                                                                                                                                                                    | degrees F<br>102.59<br>102.58                                                                                                                                                                                                                                  | degrees F<br>102.28<br>102.27                                                                                                                                                           | degrees F<br>95.505<br>95.492                                                                                                                                                                                                                                                                                                           | degrees F scfm<br>159.05 648.1<br>159.04 646.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | '2                                                                                                                                                       |
| 19 JUN 01 08:00:00<br>19 JUN 01 08:15:00<br>19 JUN 01 08:30:00<br>19 JUN 01 08:45:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees C<br>57.26<br>96.539<br>97.501<br>98.288                                                                                                                                                                                                                     | degrees C<br>59.007<br>97.633<br>98.482<br>99.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees C<br>66.803<br>96.902<br>97.727<br>98.382                                                                                                                                                                     | 6.205<br>96.755<br>97.745<br>98.603                                                                                                                                                                                                   | egrees C d<br>46.013<br>49.033<br>72.128<br>91.532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees C d<br>44.578<br>49.344<br>72.202<br>90.707                                                                                                                                                               | egrees C 41.262<br>41.303<br>42.046<br>46.395                                                                                                                                                                                                               | degrees C<br>41.929<br>41.97<br>42.834<br>47.041                                                                                                                                                                                                                                                        | degrees C<br>41.222<br>41.265<br>41.307<br>42.405                                                                                                                                                                                                                                | degrees C<br>42.646<br>42.685<br>42.723<br>43.767                                                                                                                                                              | density  Grams/ml 1.1796 1.1792 1.1788 1.1761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | level<br>nches<br>136.63<br>136.59<br>136.54<br>136.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | steam flow<br>b/hour<br>0.7685<br>5.2849<br>646.57<br>1020.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | degrees F<br>76.791<br>76.797<br>76.804<br>76.81                                                                                                                                                                                                                         | scfm<br>150.57<br>150.55<br>150.54<br>150.53                                                                                                                                                                                                                             | "wcvac<br>8.9509<br>8.9524<br>8.954<br>8.9555                                                                                                                                                            | "wcvac<br>48.968<br>48.969<br>48.97<br>48.97                                                                                                                                                         | IN WC<br>0.0107<br>0.0108<br>0.0108<br>0.0108                                                                                                                                                                                                                                                                                                                                                                     | IN WC<br>-0.057<br>-0.057<br>-0.057<br>-0.057                                                                                                                                                                                                                                                                                                                                                                 | IN WC<br>-0.001<br>-0.001<br>-0.001                                                                                                                                                                                                                                                                                                            | IN WC<br>2.0575<br>2.0575<br>2.0576<br>2.0576                                                                                                                                                                                                                               | IN WC<br>8.449<br>8.4487<br>8.4483<br>8.4479                                                                                                                                                        | degrees F<br>180.63<br>180.63<br>180.62<br>180.62                                                                                                                                                                                | degrees F<br>102.59<br>102.58<br>102.56<br>102.55                                                                                                                                                                                                              | degrees F<br>102.28<br>102.27<br>102.27<br>102.26                                                                                                                                       | degrees F<br>95.505<br>95.492<br>95.478<br>95.465                                                                                                                                                                                                                                                                                       | degrees F scfm<br>159.05 648.1<br>159.04 646.7<br>159.03 627.2<br>159.02 652.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72<br>22<br>98                                                                                                                                           |
| 19 JUN 01 08:00:00<br>19 JUN 01 08:15:00<br>19 JUN 01 08:30:00<br>19 JUN 01 08:45:00<br>19 JUN 01 09:00:00<br>19 JUN 01 09:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382                                                                                                                                                                                                 | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>99.69<br>100.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | degrees C<br>66.803<br>96.902<br>97.727<br>98.382<br>99.037<br>99.54                                                                                                                                                  | degrees C d<br>6.205<br>96.755<br>97.745<br>98.603<br>99.321<br>99.611                                                                                                                                                                | egrees C of 46.013 49.033 72.128 91.532 95.293 96.311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | degrees C d<br>44.578<br>49.344<br>72.202<br>90.707<br>94.926<br>96.65                                                                                                                                            | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713                                                                                                                                                                                           | degrees C<br>41.929<br>41.97<br>42.834<br>47.041<br>55.001<br>67.58                                                                                                                                                                                                                                     | degrees C<br>41.222<br>41.265<br>41.307                                                                                                                                                                                                                                          | degrees C<br>42.646<br>42.685<br>42.723                                                                                                                                                                        | density Grams/ml 1.1796 1.1792 1.1788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | level<br>nches<br>136.63<br>136.59<br>136.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | steam flow<br>b/hour<br>0.7685<br>5.2849<br>646.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees F<br>76.791<br>76.797<br>76.804                                                                                                                                                                                                                                  | scfm<br>150.57<br>150.55<br>150.54                                                                                                                                                                                                                                       | "wcvac<br>8.9509<br>8.9524<br>8.954                                                                                                                                                                      | *wcvac<br>48.968<br>48.969<br>48.97                                                                                                                                                                  | IN WC<br>0.0107<br>0.0108<br>0.0108                                                                                                                                                                                                                                                                                                                                                                               | IN WC<br>-0.057<br>-0.057<br>-0.057                                                                                                                                                                                                                                                                                                                                                                           | IN WC<br>-0.001<br>-0.001<br>-0.001                                                                                                                                                                                                                                                                                                            | IN WC<br>2.0575<br>2.0575<br>2.0576                                                                                                                                                                                                                                         | IN WC<br>8.449<br>8.4487<br>8.4483                                                                                                                                                                  | degrees F<br>180.63<br>180.63<br>180.62                                                                                                                                                                                          | degrees F<br>102.59<br>102.58<br>102.56                                                                                                                                                                                                                        | degrees F<br>102.28<br>102.27<br>102.27                                                                                                                                                 | degrees F<br>95.505<br>95.492<br>95.478                                                                                                                                                                                                                                                                                                 | degrees F scfm<br>159.05 648.1<br>159.04 646.7<br>159.03 627.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72<br>22<br>98<br>31                                                                                                                                     |
| 19 JUN 01 08:00:00<br>19 JUN 01 08:15:00<br>19 JUN 01 08:30:00<br>19 JUN 01 08:45:00<br>19 JUN 01 09:00:00<br>19 JUN 01 09:15:00<br>19 JUN 01 09:30:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683                                                                                                                                                                                       | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>99.69<br>100.02<br>100.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees C<br>66.803<br>96.902<br>97.727<br>98.382<br>99.037<br>99.54<br>99.833                                                                                                                                        | 6.205<br>96.755<br>97.745<br>98.603<br>99.321<br>99.611<br>99.901                                                                                                                                                                     | egrees C 0<br>46.013<br>49.033<br>72.128<br>91.532<br>95.293<br>96.311<br>96.681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees C d<br>44.578<br>49.344<br>72.202<br>90.707<br>94.926<br>96.65<br>96.119                                                                                                                                  | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552                                                                                                                                                                                 | degrees C<br>41.929<br>41.97<br>42.834<br>47.041<br>55.001<br>67.58<br>84.578                                                                                                                                                                                                                           | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403                                                                                                                                                                                                  | degrees C<br>42.646<br>42.685<br>42.723<br>43.767<br>49.553<br>62.257<br>80.84                                                                                                                                 | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | level nches 136.63 136.59 136.54 136.5 136.55 136.82 136.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | steam flow  b/hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees F<br>76.791<br>76.797<br>76.804<br>76.816<br>76.822<br>76.829                                                                                                                                                                                                    | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.5<br>150.49                                                                                                                                                                                                | "wcvac<br>8.9509<br>8.9524<br>8.954<br>8.9555<br>8.9571<br>8.9586<br>8.9602                                                                                                                              | *wevac<br>48.968<br>48.969<br>48.97<br>48.97<br>48.971<br>48.971<br>48.972                                                                                                                           | IN WC<br>0.0107<br>0.0108<br>0.0108<br>0.0108<br>0.0108<br>0.0109<br>0.0109                                                                                                                                                                                                                                                                                                                                       | IN WC<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057                                                                                                                                                                                                                                                                                                                                             | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                                                                                                                         | IN WC<br>2.0575<br>2.0575<br>2.0576<br>2.0576<br>2.0577<br>2.0577<br>2.0577                                                                                                                                                                                                 | IN WC<br>8.449<br>8.4487<br>8.4483<br>8.4479<br>8.4476<br>8.4472<br>8.4469                                                                                                                          | degrees F<br>180.63<br>180.63<br>180.62<br>180.62<br>180.61<br>180.61                                                                                                                                                            | degrees F<br>102.59<br>102.58<br>102.56<br>102.55<br>102.54<br>102.53<br>102.51                                                                                                                                                                                | degrees F<br>102.28<br>102.27<br>102.27<br>102.26<br>102.25<br>102.24<br>102.24                                                                                                         | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.426                                                                                                                                                                                                                                                         | degrees F         scfm           159.05         648.1           159.04         646.7           159.03         627.2           159.02         652.9           159.01         628.3           158.99         634.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72<br>22<br>98<br>31<br>35                                                                                                                               |
| 19 JUN 01 08:00:00<br>19 JUN 01 08:15:00<br>19 JUN 01 08:30:00<br>19 JUN 01 08:45:00<br>19 JUN 01 09:00:00<br>19 JUN 01 09:30:00<br>19 JUN 01 09:30:00<br>19 JUN 01 09:45:00<br>19 JUN 01 10:00:00                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683<br>99.984<br>100.22                                                                                                                                                                   | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>99.69<br>100.02<br>100.32<br>100.63<br>100.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees C<br>66.803<br>96.902<br>97.727<br>98.382<br>99.037<br>99.54<br>99.833<br>100.13<br>100.4                                                                                                                     | degrees C d<br>6.205<br>96.755<br>97.745<br>98.603<br>99.321<br>99.611<br>99.901<br>100.19                                                                                                                                            | egrees C c<br>46.013<br>49.033<br>72.128<br>91.532<br>95.293<br>96.311<br>96.681<br>94.492<br>93.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | degrees C d<br>44.578<br>49.344<br>72.202<br>90.707<br>94.926<br>96.65<br>96.119<br>94.511<br>93.411                                                                                                              | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552<br>92.692<br>96.919                                                                                                                                                             | degrees C<br>41.929<br>41.97<br>42.834<br>47.041<br>55.001<br>67.58<br>84.578<br>94.104<br>97.69                                                                                                                                                                                                        | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171<br>97.199                                                                                                                                                                              | degrees C<br>42.646<br>42.685<br>42.723<br>43.767<br>49.553<br>62.257<br>80.84<br>94.175<br>98.671                                                                                                             | density Grams/ml 1.1796 1.1792 1.1788 1.1761 1.177 1.1667 1.1639 1.1611 1.1643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | level nches 136.63 136.59 136.54 136.55 136.55 136.82 136.82 136.84 134.53 131.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | steam flow<br>b/hour<br>0.7685<br>5.2849<br>646.57<br>1020.2<br>1429.7<br>1727.2<br>1739.5<br>1734.5<br>1737.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | degrees F<br>76.791<br>76.797<br>76.804<br>76.81<br>76.816<br>76.822<br>76.829<br>76.835<br>76.841                                                                                                                                                                       | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.5<br>150.49<br>150.48<br>150.46                                                                                                                                                                            | "wcvac<br>8.9509<br>8.9524<br>8.954<br>8.9555<br>8.9571<br>8.9586<br>8.9602<br>8.9617<br>8.9632                                                                                                          | *wevac<br>48.968<br>48.969<br>48.97<br>48.97<br>48.971<br>48.971<br>48.972<br>48.972<br>48.973                                                                                                       | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109                                                                                                                                                                                                                                                                                                                                              | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                                                                                                                          | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                                                                                                           | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0577 2.0578                                                                                                                                                                                                        | IN WC<br>8.449<br>8.4487<br>8.4483<br>8.4479<br>8.4476<br>8.4472<br>8.4469<br>8.4465<br>8.4462                                                                                                      | degrees F<br>180.63<br>180.63<br>180.62<br>180.62<br>180.61<br>180.61<br>180.61<br>180.6<br>180.6                                                                                                                                | degrees F<br>102.59<br>102.58<br>102.56<br>102.55<br>102.54<br>102.53<br>102.51<br>102.5<br>102.49                                                                                                                                                             | degrees F<br>102.28<br>102.27<br>102.27<br>102.26<br>102.25<br>102.24<br>102.24<br>102.23<br>102.22                                                                                     | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.426<br>95.413<br>95.4                                                                                                                                                                                                                                       | degrees F         scfm           159.05         648.1           159.04         646.7           159.03         627.2           159.01         682.9           159.01         628.3           158.99         634.9           158.99         657.2           158.98         665.2           688.99         665.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72<br>22<br>98<br>31<br>35<br>97<br>28                                                                                                                   |
| 19 JUN 01 08:00:00<br>19 JUN 01 08:15:00<br>19 JUN 01 08:30:00<br>19 JUN 01 08:45:00<br>19 JUN 01 09:00:00<br>19 JUN 01 09:15:00<br>19 JUN 01 09:30:00<br>19 JUN 01 09:45:00                                                                                                                                                                                                                                                                                                                                                                                                                                                    | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683<br>99.984                                                                                                                                                                             | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>99.69<br>100.02<br>100.32<br>100.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees C<br>66.803<br>96.902<br>97.727<br>98.382<br>99.037<br>99.54<br>99.833<br>100.13                                                                                                                              | degrees C d<br>6.205<br>96.755<br>97.745<br>98.603<br>99.321<br>99.611<br>99.901<br>100.19                                                                                                                                            | egrees C d<br>46.013<br>49.033<br>72.128<br>91.532<br>95.293<br>96.311<br>96.681<br>94.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44.578<br>49.344<br>72.202<br>90.707<br>94.926<br>96.65<br>96.119<br>94.511                                                                                                                                       | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552<br>92.692                                                                                                                                                                       | 41.929<br>41.97<br>42.834<br>47.041<br>55.001<br>67.58<br>84.578<br>94.104                                                                                                                                                                                                                              | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171                                                                                                                                                                                        | degrees C<br>42.646<br>42.685<br>42.723<br>43.767<br>49.553<br>62.257<br>80.84<br>94.175                                                                                                                       | density Grams/ml 1.1796 1.1792 1.1788 1.1761 1.17 1.1667 1.1639 1.1611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | level nches 136.63 136.59 136.54 136.55 136.55 136.82 136.82 136.84 134.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | steam flow<br>b/hour 0.7685<br>5.2849<br>646.57<br>1020.2<br>1429.7<br>1727.2<br>1739.5<br>1734.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees F<br>76.791<br>76.797<br>76.804<br>76.81<br>76.816<br>76.822<br>76.829<br>76.835                                                                                                                                                                                 | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.5<br>150.49<br>150.48                                                                                                                                                                                      | "wcvac<br>8.9509<br>8.9524<br>8.954<br>8.9555<br>8.9571<br>8.9586<br>8.9602<br>8.9617                                                                                                                    | *wevac<br>48.968<br>48.969<br>48.97<br>48.97<br>48.971<br>48.971<br>48.972<br>48.972                                                                                                                 | IN WC<br>0.0107<br>0.0108<br>0.0108<br>0.0108<br>0.0108<br>0.0109<br>0.0109                                                                                                                                                                                                                                                                                                                                       | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                                                                                                                                 | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                                                                                                    | IN WC<br>2.0575<br>2.0575<br>2.0576<br>2.0576<br>2.0577<br>2.0577<br>2.0577<br>2.0578                                                                                                                                                                                       | IN WC<br>8.449<br>8.4487<br>8.4483<br>8.4479<br>8.4476<br>8.4472<br>8.4469<br>8.4465                                                                                                                | degrees F<br>180.63<br>180.63<br>180.62<br>180.62<br>180.61<br>180.61<br>180.61                                                                                                                                                  | degrees F<br>102.59<br>102.58<br>102.56<br>102.55<br>102.54<br>102.53<br>102.51<br>102.5                                                                                                                                                                       | degrees F<br>102.28<br>102.27<br>102.27<br>102.26<br>102.25<br>102.24<br>102.24<br>102.23                                                                                               | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.426<br>95.413                                                                                                                                                                                                                                               | degrees F         scfm           159.05         648.1           159.04         646.7           159.03         627.2           159.01         628.3           159         635.8           158.99         634.9           158.99         657.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72<br>22<br>98<br>91<br>95<br>97<br>98<br>97                                                                                                             |
| 19 JUN 01 08:00:00 19 JUN 01 08:30:00 19 JUN 01 08:30:00 19 JUN 01 08:45:00 19 JUN 01 09:00:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 10:00:00 19 JUN 01 10:00:00 19 JUN 01 10:15:00 19 JUN 01 10:15:00 19 JUN 01 10:45:00 19 JUN 01 10:45:00                                                                                                                                                                                                                                                                                                                                                                          | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683<br>99.984<br>100.22<br>100.45<br>100.68<br>100.91                                                                                                                                     | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>99.69<br>100.02<br>100.32<br>100.63<br>100.88<br>101.1<br>101.32<br>101.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees C<br>66.803<br>96.902<br>97.727<br>98.382<br>99.037<br>99.54<br>99.833<br>100.13<br>100.63<br>100.63<br>100.86                                                                                                | degrees C d<br>6.205<br>96.755<br>97.745<br>98.603<br>99.321<br>99.611<br>99.901<br>100.19<br>100.41<br>100.64<br>100.87                                                                                                              | egrees C d<br>46.013<br>49.033<br>72.128<br>91.532<br>95.293<br>96.311<br>96.681<br>94.492<br>93.555<br>94.701<br>95.75<br>96.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees C d<br>44.578<br>49.344<br>72.202<br>90.707<br>94.926<br>96.65<br>96.119<br>94.511<br>93.411<br>94.615<br>95.721<br>96.827                                                                                | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552<br>92.692<br>96.919<br>98.574<br>99.633<br>100.29                                                                                                                               | degrees C<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06                                                                                                                                                                          | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171<br>97.199<br>99.048<br>100.17<br>100.52                                                                                                                                                | degrees C<br>42.646<br>42.685<br>42.763<br>43.767<br>49.553<br>62.257<br>80.84<br>94.175<br>98.671<br>100.38<br>101.55<br>102.08                                                                               | density Grams/ml 1.1796 1.1792 1.1788 1.1761 1.176 1.1667 1.1639 1.1611 1.1643 1.1684 1.1733 1.1789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ievel nches 136.63 136.59 136.54 136.55 136.55 136.82 136.84 134.53 131.01 127.04 123.13 119.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | steam flow<br>b/hour<br>0.7685<br>5.2849<br>646.57<br>1020.2<br>1429.7<br>1727.2<br>1739.5<br>1734.5<br>1737.2<br>1724.6<br>1733<br>1745.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees F<br>76.791<br>76.804<br>76.814<br>76.816<br>76.822<br>76.829<br>76.835<br>76.841<br>76.847<br>76.853                                                                                                                                                            | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.49<br>150.48<br>150.46<br>150.45<br>150.44<br>150.43                                                                                                                                                       | "wcvac<br>8.9509<br>8.9524<br>8.954<br>8.9555<br>8.9571<br>8.9586<br>8.9602<br>8.9617<br>8.9632<br>8.9648<br>8.9663<br>8.9679                                                                            | "wevac<br>48.968<br>48.969<br>48.97<br>48.97<br>48.971<br>48.972<br>48.972<br>48.973<br>48.974<br>48.974<br>48.975                                                                                   | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0109 0.01109 0.01109 0.0111                                                                                                                                                                                                                                                                                                                | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                                                                                                     | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                                                                                      | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0577 2.0578 2.0578 2.0579 2.0579                                                                                                                                                                                   | 8.449<br>8.4487<br>8.4483<br>8.4479<br>8.4476<br>8.4472<br>8.4469<br>8.4465<br>8.4462<br>8.4455<br>8.4455                                                                                           | degrees F<br>180.63<br>180.63<br>180.62<br>180.62<br>180.61<br>180.61<br>180.6<br>180.5<br>180.59<br>180.59                                                                                                                      | degrees F<br>102.59<br>102.58<br>102.56<br>102.55<br>102.54<br>102.53<br>102.51<br>102.5<br>102.49<br>102.47<br>102.46                                                                                                                                         | degrees F<br>102.28<br>102.27<br>102.27<br>102.26<br>102.25<br>102.24<br>102.23<br>102.22<br>102.22<br>102.21                                                                           | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.426<br>95.413<br>95.4<br>95.387<br>95.374                                                                                                                                                                                                                   | degrees F         scfm           159.05         648.1           159.04         648.7           159.03         627.2           159.01         682.9           159.01         628.3           158.99         634.9           158.99         657.2           158.97         658.1           158.96         626.9           158.97         658.1           158.95         655.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72<br>22<br>28<br>31<br>35<br>37<br>28<br>27<br>39<br>44                                                                                                 |
| 19 JUN 01 08:00:00 19 JUN 01 08:15:00 19 JUN 01 08:30:00 19 JUN 01 08:45:00 19 JUN 01 09:00:00 19 JUN 01 09:30:00 19 JUN 01 09:45:00 19 JUN 01 10:45:00 19 JUN 01 10:15:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 11:30:00 19 JUN 01 11:15:00 19 JUN 01 11:15:00                                                                                                                                                                                                                                                                                                                                                       | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683<br>99.984<br>100.22<br>100.45<br>100.68<br>100.91<br>101.14                                                                                                                           | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>99.69<br>100.02<br>100.63<br>100.88<br>101.1<br>101.32<br>101.54<br>101.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees C<br>66.803<br>96.902<br>97.727<br>98.382<br>99.037<br>99.54<br>99.833<br>100.13<br>100.63<br>100.63<br>101.08<br>101.08<br>101.31                                                                            | 6.205<br>96.755<br>97.745<br>98.603<br>99.321<br>99.901<br>100.19<br>100.41<br>100.64<br>100.87<br>101.09<br>101.32<br>101.55                                                                                                         | egrees C d<br>46.013<br>49.033<br>72.128<br>91.532<br>95.293<br>96.311<br>96.681<br>94.492<br>93.555<br>94.701<br>95.75<br>96.799<br>97.847<br>96.682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.578<br>44.578<br>49.344<br>72.202<br>90.707<br>94.926<br>96.65<br>96.119<br>94.511<br>93.411<br>94.615<br>95.721<br>96.827<br>97.933<br>96.688                                                                 | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552<br>92.692<br>96.919<br>98.574<br>99.633<br>100.29<br>100.04<br>97.87                                                                                                            | degrees C<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06<br>101,5<br>98,598                                                                                                                                                       | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171<br>97.199<br>99.048<br>100.17<br>100.52<br>100.13<br>98.398                                                                                                                            | degrees C<br>42.646<br>42.685<br>42.723<br>43.767<br>49.553<br>62.257<br>80.84<br>94.175<br>98.671<br>100.38<br>101.55<br>102.08<br>102.54<br>99.664                                                           | density  Grams/ml  1.1796  1.1792  1.1788  1.1761  1.17  1.1667  1.1633  1.1643  1.1733  1.1789  1.1845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | level nches 136.63 136.59 136.54 136.55 136.55 136.84 134.53 131.01 127.04 123.13 119.42 115.71 121.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | steam flow<br>b/hour<br>0.7685<br>5.2849<br>646.57<br>1020.2<br>1429.7<br>1727.2<br>1739.5<br>1734.5<br>1737.2<br>1724.6<br>1733<br>1745.2<br>1733.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees F<br>76.791<br>76.804<br>76.816<br>76.822<br>76.829<br>76.835<br>76.847<br>76.853<br>76.866<br>76.866                                                                                                                                                            | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.5<br>150.49<br>150.48<br>150.45<br>150.44<br>150.43                                                                                                                                                        | "wcvac<br>8.9509<br>8.9524<br>8.9554<br>8.9555<br>8.9571<br>8.9586<br>8.9602<br>8.9617<br>8.9632<br>8.9648<br>8.9663<br>8.9679<br>8.9694<br>8.971                                                        | "wevac<br>48.968<br>48.969<br>48.97<br>48.97<br>48.971<br>48.972<br>48.972<br>48.973<br>48.974<br>48.974<br>48.975<br>48.975                                                                         | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109                                                                                                                                                                                                                                                                                                                                | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                                                                                                            | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                                                                                             | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0578 2.0578 2.0579                                                                                                                                                                                                 | 8.449<br>8.4487<br>8.4483<br>8.4479<br>8.4476<br>8.4472<br>8.4469<br>8.4465<br>8.4465<br>8.4458                                                                                                     | degrees F<br>180.63<br>180.62<br>180.62<br>180.61<br>180.61<br>180.6<br>180.6<br>180.5<br>180.59<br>180.59<br>180.58                                                                                                             | degrees F<br>102.59<br>102.58<br>102.56<br>102.55<br>102.51<br>102.51<br>102.5<br>102.47<br>102.46<br>102.45<br>102.43                                                                                                                                         | degrees F<br>102.28<br>102.27<br>102.27<br>102.26<br>102.25<br>102.24<br>102.23<br>102.22<br>102.22<br>102.21<br>102.2<br>102.2<br>102.1<br>102.19                                      | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.426<br>95.413<br>95.347<br>95.374<br>95.361<br>95.348<br>95.335                                                                                                                                                                                             | degrees F         scfm           159.05         648.1           159.04         646.7           159.03         627.2           159.02         652.9           159.01         628.3           158.99         634.9           158.99         657.2           158.98         665.2           158.97         658.1           158.95         655.6           158.96         626.9           158.97         658.1           158.96         626.9           158.97         658.4           688.94         620.6           158.93         608.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72<br>22<br>28<br>31<br>35<br>37<br>28<br>8<br>27<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                     |
| 19 JUN 01 08:00:00 19 JUN 01 08:35:00 19 JUN 01 08:45:00 19 JUN 01 08:45:00 19 JUN 01 09:00:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 10:45:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 10:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:00:00                                                                                                                                                                                                                                                                                                                                                       | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683<br>99.984<br>100.22<br>100.45<br>100.68<br>100.91                                                                                                                                     | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>99.69<br>100.02<br>100.32<br>100.63<br>100.88<br>101.1<br>101.32<br>101.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees C<br>66.803<br>96.902<br>97.727<br>98.382<br>99.037<br>99.54<br>99.833<br>100.13<br>100.63<br>100.66<br>101.08<br>101.31                                                                                      | degrees C d<br>6.205<br>96.755<br>97.745<br>98.603<br>99.321<br>99.611<br>99.901<br>100.19<br>100.64<br>100.87<br>101.09<br>101.32                                                                                                    | egrees C d<br>46.013<br>49.033<br>72.128<br>91.532<br>95.293<br>96.311<br>96.681<br>94.492<br>93.555<br>94.701<br>95.75<br>96.799<br>97.847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | degrees C d<br>44.578<br>49.344<br>72.202<br>90.707<br>94.926<br>96.65<br>96.119<br>94.511<br>93.411<br>94.615<br>95.721<br>96.827<br>97.933                                                                      | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552<br>92.692<br>96.919<br>98.574<br>99.633<br>100.29<br>100.04                                                                                                                     | degrees C<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06                                                                                                                                                                          | degrees C<br>41,222<br>41,265<br>41,307<br>42,405<br>48,917<br>61,709<br>79,403<br>92,171<br>97,199<br>99,048<br>100,17<br>100,52<br>100,13                                                                                                                                      | degrees C<br>42.646<br>42.646<br>42.723<br>43.767<br>49.553<br>62.257<br>80.84<br>94.175<br>98.671<br>100.38<br>101.55<br>102.08                                                                               | density  Grams/ml  1.1792 1.1788 1.1761 1.167 1.1667 1.1639 1.1611 1.1643 1.1684 1.1733 1.1789 1.1845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ievel nches 136.63 136.59 136.54 136.5 136.55 136.55 136.82 134.53 131.01 127.04 123.13 119.42 115.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | steam flow b/hour 0.7685 5.2849 646.57 1020.2 1429.7 1727.2 1739.5 1734.5 1737.2 1724.6 1733 1745.2 1733.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees F<br>76.791<br>76.797<br>76.804<br>76.816<br>76.822<br>76.829<br>76.835<br>76.841<br>76.847<br>76.853<br>76.86                                                                                                                                                   | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.49<br>150.48<br>150.46<br>150.45<br>150.44<br>150.43<br>150.43                                                                                                                                             | "wcvac<br>8.9509<br>8.9524<br>8.9554<br>8.9555<br>8.9571<br>8.9586<br>8.9602<br>8.9617<br>8.9632<br>8.9648<br>8.9663<br>8.9679<br>8.9694                                                                 | "wcvac<br>48.968<br>48.969<br>48.97<br>48.971<br>48.971<br>48.971<br>48.972<br>48.973<br>48.973<br>48.974<br>48.975                                                                                  | IN WC 0.0107 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0109 0.01109 0.0111 0.0111                                                                                                                                                                                                                                                                                                                        | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                                                                                              | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                                                                               | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0578 2.0578 2.0579 2.0579 2.0579                                                                                                                                                                                   | 8.449<br>8.4487<br>8.4483<br>8.4479<br>8.4476<br>8.4472<br>8.4469<br>8.4465<br>8.4458<br>8.4455<br>8.4451<br>8.44451                                                                                | degrees F<br>180.63<br>180.63<br>180.62<br>180.62<br>180.61<br>180.61<br>180.6<br>180.5<br>180.59<br>180.58                                                                                                                      | degrees F<br>102.59<br>102.58<br>102.56<br>102.55<br>102.54<br>102.53<br>102.51<br>102.5<br>102.49<br>102.47<br>102.46<br>102.45                                                                                                                               | degrees F<br>102.28<br>102.27<br>102.27<br>102.26<br>102.25<br>102.24<br>102.24<br>102.23<br>102.22<br>102.21<br>102.22                                                                 | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.413<br>95.413<br>95.374<br>95.387<br>95.374<br>95.361                                                                                                                                                                                                       | degrees F         scfm           159.05         648.1           159.04         648.7           159.03         627.2           159.01         628.3           159.01         628.3           159.93         635.8           158.99         634.9           158.99         657.2           158.98         665.2           158.96         626.9           158.95         655.6           158.94         620.6           158.94         620.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72<br>22<br>98<br>31<br>35<br>37<br>88<br>87<br>19<br>94<br>64<br>64<br>62                                                                               |
| 19 JUN 01 08:00:00 19 JUN 01 08:30:00 19 JUN 01 08:30:00 19 JUN 01 08:45:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:45:00                                                                                                                                                                                                                                                        | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683<br>99.984<br>100.22<br>100.45<br>100.68<br>100.91<br>101.14<br>101.37<br>101.6                                                                                                        | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>99.69<br>100.02<br>100.32<br>100.63<br>101.1<br>101.32<br>101.54<br>101.76<br>101.76<br>101.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C<br>66.803<br>96.902<br>97.727<br>98.382<br>99.037<br>99.54<br>99.833<br>100.13<br>100.63<br>100.63<br>101.08<br>101.08<br>101.31<br>101.54<br>101.77<br>101.99                                              | 6.205<br>96.755<br>97.745<br>98.603<br>99.321<br>99.611<br>99.901<br>100.41<br>100.64<br>100.64<br>101.09<br>101.32<br>101.55<br>101.78<br>102                                                                                        | egrees C d<br>46.013<br>49.033<br>72.128<br>91.532<br>95.293<br>96.311<br>96.681<br>94.492<br>93.555<br>94.701<br>95.75<br>96.799<br>97.847<br>96.882<br>96.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees C d<br>44.578<br>49.344<br>72.202<br>90.707<br>94.926<br>96.65<br>96.119<br>94.511<br>93.411<br>94.615<br>95.721<br>96.827<br>97.933<br>96.688<br>96.042                                                  | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552<br>92.692<br>96.919<br>98.574<br>99.633<br>100.29<br>100.04<br>97.87<br>99.056                                                                                                  | 41,929<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06<br>101,5<br>98,598<br>99,824                                                                                                                                                | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171<br>97.199<br>99.048<br>100.17<br>100.52<br>100.13<br>98.398<br>99.682                                                                                                                  | degrees C<br>42.646<br>42.685<br>42.723<br>43.767<br>49.553<br>62.257<br>80.84<br>94.175<br>98.671<br>100.38<br>101.55<br>102.08<br>102.54<br>99.664<br>100.7                                                  | density Grams/ml 1.1796 1.1792 1.1788 1.1761 1.1761 1.1667 1.1663 1.1611 1.1643 1.1664 1.1733 1.1789 1.1845 1.1901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ievel nches 136.63 136.59 136.54 136.55 136.55 136.82 136.84 134.53 131.01 127.04 123.13 119.42 115.71 121.08 119.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | steam flow<br>b/hour<br>0.7685<br>5.2849<br>646.57<br>1020.2<br>1429.7<br>1727.2<br>1734.5<br>1734.5<br>1737.2<br>1724.6<br>1733<br>1745.2<br>1733.5<br>1745.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | degrees F<br>76.791<br>76.894<br>76.816<br>76.816<br>76.822<br>76.829<br>76.835<br>76.841<br>76.847<br>76.853<br>76.866<br>76.866<br>76.872                                                                                                                              | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.5<br>150.49<br>150.48<br>150.46<br>150.44<br>150.43<br>150.41<br>150.41                                                                                                                                    | "wcvac<br>8.9509<br>8.9524<br>8.9554<br>8.9555<br>8.9571<br>8.9686<br>8.9602<br>8.9617<br>8.9632<br>8.9663<br>8.9663<br>8.9679<br>8.9694<br>8.971                                                        | "wevac 48.968 48.969 48.97 48.97 48.971 48.971 48.972 48.973 48.974 48.974 48.975 48.975 48.976 48.977                                                                                               | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0109 0.0110 0.011 0.011 0.011                                                                                                                                                                                                                                                                                                              | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                                                                                       | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                                                          | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0578 2.0578 2.0579 2.0579 2.058 2.058 2.0581                                                                                                                                                                       | 8.449<br>8.4487<br>8.4483<br>8.4479<br>8.4476<br>8.4472<br>8.4465<br>8.4465<br>8.4465<br>8.4451<br>8.4447<br>8.4444                                                                                 | degrees F<br>180.63<br>180.63<br>180.62<br>180.62<br>180.61<br>180.61<br>180.61<br>180.6<br>180.59<br>180.59<br>180.58<br>180.58<br>180.58                                                                                       | degrees F<br>102.59<br>102.58<br>102.56<br>102.55<br>102.54<br>102.53<br>102.51<br>102.5<br>102.49<br>102.47<br>102.45<br>102.43<br>102.43                                                                                                                     | degrees F<br>102.28<br>102.27<br>102.27<br>102.26<br>102.24<br>102.24<br>102.23<br>102.22<br>102.22<br>102.21<br>102.29<br>102.19                                                       | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.426<br>95.413<br>95.387<br>95.374<br>95.374<br>95.361<br>95.348                                                                                                                                                                                             | degrees F         scfm           159.05         648.1           159.04         648.7           159.03         627.2           159.01         682.9           159.01         628.3           158.99         634.9           158.99         657.2           158.96         626.9           158.97         658.1           158.98         665.2           158.95         655.6           158.93         608.9           158.93         608.9           158.93         648.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72<br>22<br>28<br>31<br>35<br>37<br>88<br>87<br>7<br>19<br>94<br>64<br>64<br>62                                                                          |
| 19 JUN 01 08:00:00 19 JUN 01 08:30:00 19 JUN 01 08:30:00 19 JUN 01 08:45:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:45:00                                                                                                                                                                                                                                                        | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683<br>99.984<br>100.22<br>100.45<br>100.68<br>100.91<br>101.14<br>101.37<br>101.6                                                                                                        | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>99.69<br>100.02<br>100.32<br>100.63<br>101.1<br>101.32<br>101.54<br>101.76<br>101.76<br>101.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C<br>66.803<br>96.902<br>97.727<br>98.382<br>99.037<br>99.54<br>99.833<br>100.13<br>100.63<br>100.86<br>101.08<br>101.31<br>101.54<br>101.77                                                                  | 6.205<br>96.755<br>97.745<br>98.603<br>99.321<br>99.611<br>99.901<br>100.41<br>100.64<br>100.64<br>101.09<br>101.32<br>101.55<br>101.78<br>102                                                                                        | egrees C d<br>46.013<br>49.033<br>72.128<br>91.532<br>95.293<br>96.311<br>96.681<br>94.492<br>93.555<br>94.701<br>95.75<br>96.799<br>97.847<br>96.882<br>96.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees C d<br>44.578<br>49.344<br>72.202<br>90.707<br>94.926<br>96.65<br>96.119<br>94.511<br>93.411<br>94.615<br>95.721<br>96.827<br>97.933<br>96.688<br>96.042                                                  | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552<br>92.692<br>96.919<br>98.574<br>99.633<br>100.29<br>100.04<br>97.87<br>99.056                                                                                                  | 41,929<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06<br>101,5<br>98,598<br>99,824                                                                                                                                                | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171<br>97.199<br>99.048<br>100.17<br>100.52<br>100.13<br>98.398<br>99.682                                                                                                                  | degrees C<br>42.646<br>42.685<br>42.723<br>43.767<br>49.553<br>62.257<br>80.84<br>94.175<br>98.671<br>100.38<br>101.55<br>102.08<br>102.54<br>99.664<br>100.7                                                  | density  Grams/ml  1.1796  1.1792  1.1788  1.1761  1.17  1.1667  1.1633  1.1611  1.1643  1.1793  1.1799  1.1845  1.1901  1.1956  1.2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | level nches 136.63 136.59 136.54 136.55 136.55 136.84 134.53 131.01 127.04 123.13 119.42 115.71 121.08 119.22 118.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | steam flow  b/hour   0.7685   5.2849   646.57   1020.2   1429.7   1727.2   1739.5   1734.5   1737.2   1724.6   1733   1745.2   1733.5   1723.2   1730.2   1729.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees F<br>76.791<br>76.894<br>76.816<br>76.816<br>76.822<br>76.829<br>76.835<br>76.841<br>76.847<br>76.853<br>76.866<br>76.866<br>76.872                                                                                                                              | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.5<br>150.49<br>150.48<br>150.46<br>150.44<br>150.43<br>150.41<br>150.41                                                                                                                                    | "wcvac<br>8.9509<br>8.9524<br>8.9554<br>8.9555<br>8.9571<br>8.9686<br>8.9602<br>8.9617<br>8.9632<br>8.9663<br>8.9663<br>8.9679<br>8.9694<br>8.971                                                        | "wevac 48.968 48.969 48.97 48.97 48.971 48.971 48.972 48.973 48.974 48.974 48.975 48.975 48.976 48.977                                                                                               | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0109 0.0110 0.011 0.011 0.011                                                                                                                                                                                                                                                                                                              | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                                                                                       | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                                                          | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0578 2.0578 2.0579 2.0579 2.058 2.058 2.0581                                                                                                                                                                       | 8.449<br>8.4487<br>8.4483<br>8.4479<br>8.4476<br>8.4472<br>8.4465<br>8.4465<br>8.4465<br>8.4451<br>8.4447<br>8.4444                                                                                 | degrees F<br>180.63<br>180.63<br>180.62<br>180.62<br>180.61<br>180.61<br>180.61<br>180.6<br>180.59<br>180.59<br>180.58<br>180.58<br>180.58                                                                                       | degrees F<br>102.59<br>102.58<br>102.56<br>102.55<br>102.54<br>102.53<br>102.51<br>102.5<br>102.49<br>102.47<br>102.45<br>102.43<br>102.43                                                                                                                     | degrees F<br>102.28<br>102.27<br>102.27<br>102.26<br>102.24<br>102.24<br>102.23<br>102.22<br>102.22<br>102.21<br>102.29<br>102.19                                                       | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.426<br>95.413<br>95.387<br>95.374<br>95.374<br>95.361<br>95.348                                                                                                                                                                                             | degrees F         scfm           159.05         648.1           159.04         648.7           159.03         627.2           159.01         682.9           159.01         628.3           158.99         634.9           158.99         657.2           158.96         626.9           158.97         658.1           158.98         665.2           158.95         655.6           158.93         608.9           158.93         608.9           158.93         648.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72<br>22<br>28<br>31<br>35<br>37<br>88<br>87<br>7<br>19<br>94<br>64<br>64<br>62                                                                          |
| 19 JUN 01 08:00:00 19 JUN 01 08:30:00 19 JUN 01 08:30:00 19 JUN 01 08:45:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 10:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:45:00                                                                                                                                                                                                                                                        | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683<br>99.984<br>100.22<br>100.45<br>100.68<br>100.91<br>101.14<br>101.37<br>101.6<br>101.84                                                                                              | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>99.69<br>100.02<br>100.63<br>100.88<br>101.1<br>101.32<br>101.54<br>101.76<br>101.98<br>102.2<br>102.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | degrees C<br>66.803<br>96.902<br>97.727<br>98.382<br>99.037<br>99.54<br>99.833<br>100.13<br>100.63<br>100.86<br>101.08<br>101.31<br>101.54<br>101.59<br>TERS, 00101                                                   | degrees C d<br>6.205<br>96.755<br>97.745<br>98.603<br>99.321<br>99.611<br>99.901<br>100.41<br>100.64<br>100.87<br>101.32<br>101.35<br>101.78<br>102                                                                                   | egrees C c<br>46.013<br>49.033<br>72.128<br>91.532<br>95.293<br>96.311<br>96.681<br>94.492<br>93.555<br>94.701<br>95.75<br>96.799<br>97.847<br>96.682<br>97.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees C d<br>44.578<br>49.344<br>72.202<br>90.707<br>94.926<br>96.65<br>96.119<br>94.511<br>93.411<br>94.615<br>95.721<br>96.827<br>97.933<br>96.688<br>96.042<br>97.065                                        | egrees C 41.262<br>41.303<br>41.303<br>42.046<br>46.395<br>54.169<br>96.919<br>98.574<br>99.639<br>100.04<br>97.87<br>99.056<br>99.7                                                                                                                        | degrees C<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06<br>101,5<br>98,598<br>99,824<br>100,69                                                                                                                                   | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171<br>97.199<br>99.048<br>100.17<br>100.52<br>100.13<br>98.398<br>99.682<br>100.45                                                                                                        | degrees C 42.646 42.646 42.685 42.723 43.767 49.553 62.257 80.84 94.175 98.671 100.38 101.55 102.08 102.54 99.664 100.7 101.57                                                                                 | density  Grams/ml  1.1796 1.1792 1.1788 1.1761 1.1767 1.1667 1.1639 1.1611 1.1643 1.1684 1.1733 1.1789 1.1845 1.1901 1.1956 1.2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ievel   nches   136.63   136.59   136.54   136.55   136.55   136.82   134.53   131.01   127.04   123.13   119.42   115.71   121.08   119.22   118.28     L-150-1   evel     L-150-1   evel     L-150-1   evel     L-150-1   Evel     L-150-1   Evel     L-150-1   Evel     L-150-1   Evel     L-150-1   Evel     L-150-1   Evel     L-150-1   Evel     L-150-1   Evel     L-150-1   Evel     L-150-1   Evel     L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   L-150-1   Evel   Evel   L-150-1   Evel   Evel   L-150-1   Evel   Evel   Evel   L | steam flow b/hour 0.7685 5.2849 646.57 1020.2 1429.7 1727.2 1739.5 1734.5 1734.5 1735.2 1724.6 1733.5 1745.2 1733.5 1729.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees F 76.791 76.797 76.804 76.814 76.816 76.822 76.829 76.835 76.841 76.847 76.853 76.866 76.878 76.878 76.884                                                                                                                                                       | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.49<br>150.48<br>150.46<br>150.44<br>150.43<br>150.41<br>150.43<br>150.39<br>150.38                                                                                                                         | "wcvac 8,9509 8,9524 8,954 8,9555 8,9571 8,9586 8,9602 8,9617 8,9632 8,9648 8,9669 8,9679 8,971 8,9725 8,9741                                                                                            | **Wevac 48.968 48.969 48.97 48.97 48.971 48.971 48.972 48.973 48.974 48.975 48.975 48.976 48.977 48.977                                                                                              | IN WC 0.0107 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0111 0.0111 0.0111 0.0111                                                                                                                                                                                                                                                                                                                         | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                                                                  | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                                                                 | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0577 2.0578 2.0578 2.0578 2.0579 2.0579 2.0581 2.0581 2.0581 2.0582                                                                                                                                                | IN WC  8.449 8.4487 8.4483 8.4476 8.4472 8.4469 8.4462 8.4465 8.4451 8.4447 8.4444 8.4447                                                                                                           | degrees F<br>180.63<br>180.63<br>180.62<br>180.62<br>180.61<br>180.61<br>180.61<br>180.6<br>180.59<br>180.59<br>180.58<br>180.58<br>180.58<br>180.57                                                                             | degrees F<br>102.59<br>102.56<br>102.56<br>102.55<br>102.53<br>102.51<br>102.51<br>102.49<br>102.47<br>102.45<br>102.42<br>102.43<br>102.42<br>102.41                                                                                                          | degrees F<br>102.28<br>102.27<br>102.27<br>102.26<br>102.25<br>102.24<br>102.24<br>102.22<br>102.22<br>102.21<br>102.19<br>102.19                                                       | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.426<br>95.413<br>95.37<br>95.37<br>95.381<br>95.335<br>95.322<br>95.309                                                                                                                                                                                               | degrees F scfm 159.05 648.1 159.04 648.7 159.03 627.2 159.02 652.9 159.01 628.3 159 634.9 657.2 158.99 657.2 158.97 658.1 158.95 655.6 158.94 620.6 158.93 648.4 158.93 643.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72<br>22<br>28<br>31<br>35<br>37<br>88<br>87<br>7<br>19<br>94<br>64<br>64<br>62                                                                          |
| 19 JUN 01 08:00:00 19 JUN 01 08:30:00 19 JUN 01 08:35:00 19 JUN 01 08:45:00 19 JUN 01 09:45:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 10:45:00 19 JUN 01 10:45:00 19 JUN 01 10:45:00 19 JUN 01 11:30:00 19 JUN 01 11:30:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00                                                                                                                                                                                                                                                                                                                 | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683<br>99.984<br>100.22<br>100.45<br>100.68<br>100.91<br>101.14<br>101.37<br>101.6<br>101.84<br>EVAPORATI                                                                                 | degrees C 59.007 97.633 98.482 99.086 99.69 100.02 100.32 100.63 101.1 101.32 101.54 101.76 101.98 102.2 102.43  OR PARAME  T-150-2 degrees C 104.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | degrees C 66.803 96.902 97.727 98.382 99.037 99.54 99.833 100.13 100.63 100.63 101.54 101.77 101.99 TERS, 00101                                                                                                       | Gegrees C de 6.205 96.755 97.745 98.603 99.321 99.611 99.901 100.41 100.64 100.87 101.09 101.32 101.55 101.78 102                                                                                                                     | egrees C d 46.013 49.033 72.128 91.532 95.293 96.311 96.681 95.75 96.799 97.847 96.682 97.159 67.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | degrees C d<br>44.578<br>49.344<br>72.202<br>90.707<br>94.926<br>96.65<br>96.119<br>94.511<br>93.411<br>94.615<br>95.721<br>96.827<br>97.933<br>96.688<br>96.042<br>97.065                                        | 41.262<br>41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552<br>96.919<br>98.674<br>99.633<br>100.29<br>100.04<br>97.87<br>99.056<br>99.7                                                                                                   | degrees C<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06<br>101,5<br>98,598<br>99,824<br>100,69                                                                                                                                   | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171<br>97.199<br>99.048<br>100.17<br>100.52<br>100.13<br>98.398<br>99.682<br>100.45                                                                                                        | degrees C 42.646 42.646 42.685 42.723 43.767 49.553 62.257 80.84 94.175 98.671 100.38 101.55 102.08 102.54 99.664 100.7 101.57                                                                                 | 1.1796   1.1796   1.1792   1.1798   1.1791   1.1667   1.1639   1.1643   1.1644   1.1792   1.1845   1.1901   1.1956   1.2012     1.2012     1.2012     1.2012     1.2013   1.2014     1.2014     1.2015     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.2017     1.20 | Ievel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | steam flow b/hour 0.7685 5.2849 646.57 1020.2 1429.7 1727.2 1739.5 1734.5 1737.2 1724.6 1733.3 1745.2 1733.5 1723.2 1729.3 F350-1 evaporator steam flow b/hour 1731.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | degrees F 76.791 76.804 76.816 76.822 76.829 76.835 76.841 76.853 76.866 76.878 76.884                                                                                                                                                                                   | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.49<br>150.46<br>150.45<br>150.44<br>150.43<br>150.41<br>150.44<br>150.43<br>150.44<br>150.43<br>150.44                                                                                                     | "wcvac 8,95024 8,9524 8,9554 8,9555 8,9571 8,9586 8,9602 8,9617 8,9632 8,9648 8,9663 8,9679 8,9694 8,9741 8,9725 8,9741 F"wcvac 8,988                                                                    | *wevac 48.968 48.969 48.97 48.971 48.971 48.971 48.972 48.973 48.973 48.974 48.975 48.975 48.977 48.977                                                                                              | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0111 0.011 0.011 0.011 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111                                                                                                                                                                                                                                                                           | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                                                    | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                                                                 | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0578 2.0578 2.0578 2.0579 2.0579 2.058 2.058 2.0581 2.0581 2.0582                                                                                                                                                  | IN WC  8.449 8.4487 8.4483 8.4476 8.4472 8.4469 8.4465 8.4462 8.4458 8.4451 8.4447 8.4444 8.4437                                                                                                    | degrees F 180.63 180.63 180.62 180.62 180.61 180.61 180.61 180.59 180.59 180.58 180.58 180.58 180.57 180.57                                                                                                                      | degrees F<br>102.59<br>102.58<br>102.56<br>102.55<br>102.53<br>102.51<br>102.5<br>102.49<br>102.47<br>102.45<br>102.43<br>102.43<br>102.43<br>102.43<br>102.43<br>102.39                                                                                       | degrees F<br>102.28<br>102.27<br>102.27<br>102.26<br>102.24<br>102.24<br>102.22<br>102.22<br>102.22<br>102.21<br>102.19<br>102.19<br>102.17                                             | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.426<br>95.413<br>95.387<br>95.374<br>95.361<br>95.348<br>95.335<br>95.322<br>95.309                                                                                                                                                                         | degrees F   scfm   159.05   648.1   159.04   648.7   159.02   652.9   652.9   655.6   658.99   657.2   158.99   655.6   658.95   655.6   658.94   659.2   658.94   659.2   658.94   659.2   658.94   659.2   658.94   659.2   658.94   659.2   643.8   659.2   643.8   659.2   643.8   659.2   643.8   659.2   643.8   659.2   643.8   659.2   643.8   659.2   643.8   659.2   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7   649.7 | 72<br>22<br>88<br>15<br>15<br>15<br>17<br>18<br>18<br>18<br>17<br>19<br>19<br>19<br>19                                                                   |
| 19 JUN 01 08:00:00 19 JUN 01 08:35:00 19 JUN 01 08:45:00 19 JUN 01 08:45:00 19 JUN 01 09:00:00 19 JUN 01 09:30:00 19 JUN 01 10:45:00 19 JUN 01 10:00:00 19 JUN 01 10:00:00 19 JUN 01 10:05:00 19 JUN 01 10:30:00 19 JUN 01 11:50:00 19 JUN 01 11:50:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00                                                                                                                                                                                                                                                                           | degrees C<br>57.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683<br>99.984<br>100.22<br>100.45<br>100.68<br>100.91<br>101.14<br>101.37<br>101.6<br>101.84                                                                                              | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>90.69<br>100.02<br>100.32<br>100.63<br>101.54<br>101.76<br>101.76<br>101.98<br>102.2<br>102.43<br>OR PARAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees C<br>66.803<br>96.902<br>97.727<br>98.382<br>99.037<br>99.54<br>99.833<br>100.13<br>100.63<br>100.86<br>101.08<br>101.31<br>101.54<br>101.77<br>101.99                                                        | Gegrees C de 6.205 96.755 97.745 98.603 99.321 99.611 99.901 100.41 100.64 100.87 101.32 101.55 101.78 102                                                                                                                            | egrees C d 46.013 49.033 72.128 91.532 95.293 96.311 96.681 94.492 93.555 94.701 95.75 96.799 97.847 96.682 97.639 97.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees C d 44.578 49.344 72.202 90.707 94.926 96.65 96.119 94.511 93.411 94.615 95.721 97.933 96.688 96.042 97.065  T-150-6 egrees C d 97.229 97.692                                                             | egrees C 41.262<br>41.303<br>41.303<br>42.046<br>46.395<br>54.169<br>96.919<br>98.574<br>99.633<br>100.29<br>100.04<br>97.87<br>99.056<br>99.7                                                                                                              | degrees C<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,5<br>98,598<br>99,824<br>100,69                                                                                                                                             | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171<br>97.199<br>99.048<br>100.17<br>100.52<br>100.13<br>98.398<br>99.682<br>100.45                                                                                                        | degrees C 42.646 42.646 42.685 42.723 43.767 49.553 62.257 80.84 94.175 98.671 100.38 101.55 102.08 102.54 99.664 100.7 101.57                                                                                 | 1.1796   1.1796   1.1796   1.1792   1.1788   1.1761   1.1667   1.1639   1.1611   1.1643   1.1664   1.1733   1.1789   1.1845   1.1901   1.1905   1.2012     1.2012     1.2012     1.2012     1.2012     1.2013   1.2014   1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1.2015     1 | Ievel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | steam flow b/hour 0.7685 5.2849 646.57 1020.2 1429.7 1727.2 1739.5 1734.5 1737.2 1724.6 1733.5 1745.2 1733.5 1723.2 1729.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees F 76.791 76.797 76.804 76.814 76.815 76.822 76.829 76.835 76.841 76.847 76.853 76.866 76.878 76.878 76.884                                                                                                                                                       | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.49<br>150.48<br>150.45<br>150.44<br>150.43<br>150.41<br>150.43<br>150.39<br>150.38                                                                                                                         | "wcvac 8,9509 8,9524 8,954 8,9555 8,9571 8,9586 8,9602 8,9617 8,9632 8,9648 8,9669 8,9674 8,971 8,9725 8,9741                                                                                            | **Wevac 48.968 48.969 48.97 48.97 48.971 48.971 48.972 48.973 48.974 48.975 48.975 48.975 48.977 48.977  **Wevac 48.983 48.983                                                                       | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111                                                                                                                                                                                                                                                                 | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                                                    | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                       | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0578 2.0578 2.0578 2.0578 2.0579 2.0558 2.0581 2.0581 2.0581 2.0582                                                                                                                                                | IN WC 8.449 8.4487 8.4487 8.4476 8.4472 8.4469 8.4462 8.4451 8.4447 8.4444 8.4437                                                                                                                   | degrees F<br>180.63<br>180.63<br>180.62<br>180.62<br>180.61<br>180.61<br>180.61<br>180.6<br>180.59<br>180.59<br>180.58<br>180.58<br>180.58<br>180.57                                                                             | degrees F<br>102.59<br>102.56<br>102.56<br>102.55<br>102.51<br>102.51<br>102.51<br>102.51<br>102.49<br>102.47<br>102.45<br>102.42<br>102.43<br>102.42<br>102.41<br>102.39                                                                                      | degrees F<br>102.28<br>102.27<br>102.27<br>102.26<br>102.25<br>102.24<br>102.24<br>102.22<br>102.22<br>102.21<br>102.19<br>102.19<br>102.17                                             | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.443<br>95.387<br>95.374<br>95.361<br>95.348<br>95.322<br>95.309                                                                                                                                                                                             | degrees F   scfm   159.05   648.1   159.04   648.7   159.03   627.2   159.02   652.9   159.01   628.3   159.93   634.9   158.99   657.2   158.94   626.9   626.9   158.93   648.4   158.93   644.8   649.7   158.84   649.7   158.84   649.7   158.84   649.7   158.83   647.7   158.83   647.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72<br>22<br>88<br>15<br>15<br>15<br>17<br>18<br>18<br>17<br>19<br>19<br>19<br>19<br>19<br>19                                                             |
| 19 JUN 01 08:00:00 19 JUN 01 08:30:00 19 JUN 01 08:35:00 19 JUN 01 08:45:00 19 JUN 01 09:45:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 10:45:00 19 JUN 01 10:05:00 19 JUN 01 10:45:00 19 JUN 01 10:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 14:45:00 19 JUN 01 14:45:00 19 JUN 01 14:45:00 19 JUN 01 14:45:00 19 JUN 01 14:45:00 19 JUN 01 14:45:00                                                                                                                                                                                                                                     | degrees C 57.26 96.539 97.501 98.288 99.075 99.382 99.683 99.984 100.22 100.45 100.68 100.91 101.14 101.37 101.6 101.84  EVAPORATI  T-150-1 degrees C 103.71 103.89 104.07 104.24                                                                                    | degrees C 59.007 97.633 98.482 99.086 99.69 100.02 100.32 100.63 101.1 101.32 101.54 101.76 101.98 102.2 102.43  OR PARAME  T-150-2 degrees C 104.17 104.35 104.75 104.75 104.75 104.75 104.75 104.75 104.75 104.75 104.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | degrees C 66.803 96.902 97.727 98.382 99.037 99.54 99.833 100.13 100.63 101.08 101.54 101.77 101.99 TERS, 00101 T-150-3 degrees C 103.94 104.12 104.3 104.48                                                          | Gegrees C de 6.205 96.755 97.745 98.603 99.321 99.611 99.901 100.41 100.64 100.87 101.09 101.32 101.55 101.78 102 CEND-2 CEND-2 CEND-2 104.1 104.47 104.45                                                                            | egrees C d 46.013 49.033 72.128 91.532 95.293 96.311 96.681 95.75 96.799 97.847 96.682 96.682 97.159  7-150-5 egrees C d ggrees C d ggrees C d ggrees C d g97.639 98.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees C d 44.578 49.344 72.202 90.707 94.926 96.65 96.119 94.511 93.411 94.615 95.721 96.827 97.933 96.688 96.042 97.065  T-150-6 egrees C d 97.229 97.692 98.155 98.618                                        | egrees C 41.262<br>41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552<br>96.919<br>98.674<br>99.633<br>100.29<br>100.04<br>97.87<br>99.056<br>99.7                                                                                          | degrees C<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06<br>101,5<br>98,598<br>99,824<br>100,69                                                                                                                                   | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171<br>97.199<br>99.048<br>100.17<br>100.52<br>100.13<br>98.398<br>99.682<br>100.45                                                                                                        | degrees C 42.646 42.685 42.723 43.767 49.553 62.257 80.84 94.175 98.671 100.38 101.55 102.08 102.54 100.7 101.57  T-150-10 degrees C 103.08 103.56 103.7 103.85                                                | density   Grams/m    1.1796   1.1792   1.1788   1.1761   1.17   1.1667   1.1631   1.1643   1.1643   1.1684   1.1733   1.1789   1.1845   1.1901   1.1956   1.2012     D-150-1   evaporator density   Grams/m    1.2347   1.2387   1.2426   1.2426   1.2425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ievel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Steam flow     b/hour   0.7685     5.2849     646.57     1020.2     1429.7     1737.2     1734.5     1737.2     1745.2     1733.5     1733.2     1730.2     1729.3     F350-1     evaporator     steam flow     b/hour     1731.5     1729.2     1729.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.91<br>76.797<br>76.804<br>76.816<br>76.822<br>76.829<br>76.835<br>76.841<br>76.853<br>76.866<br>76.878<br>76.878<br>76.884                                                                                                                                            | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.49<br>150.46<br>150.45<br>150.44<br>150.43<br>150.41<br>150.44<br>150.39<br>150.38                                                                                                                         | "wcvac 8,95024 8,9524 8,9554 8,9555 8,9571 8,9586 8,9602 8,9617 8,9632 8,9648 8,9663 8,9679 8,9694 8,9741 8,9725 8,9741 F"wcvac 8,988 8,9895 8,9915 8,9926                                               | *wevac 48.968 48.969 48.97 48.97 48.971 48.971 48.972 48.973 48.973 48.974 48.975 48.975 48.977 48.977  **wevac 48.983 48.983 48.983 48.984 48.984                                                   | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0111 0.011 0.011 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0113 0.0113 0.0113 0.0113                                                                                                                                                                                                                                                     | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                                      | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0577 2.0578 2.0578 2.0579 2.0579 2.058 2.0581 2.0581 2.0582                                                                                                                                                        | IN WC  8.449 8.4487 8.4483 8.4476 8.4472 8.4465 8.4465 8.4462 8.4451 8.4451 8.4444 8.4437  PD-130-1 IN WC 8.4405 8.4405 8.4405 8.4401 8.4398 8.4398                                                 | degrees F 180.63 180.63 180.62 180.62 180.61 180.61 180.61 180.59 180.59 180.58 180.58 180.57 180.57  T-335-2 degrees F 180.53 180.52 180.52 180.52 180.52                                                                       | degrees F<br>102.59<br>102.56<br>102.56<br>102.55<br>102.51<br>102.53<br>102.51<br>102.5<br>102.49<br>102.47<br>102.45<br>102.43<br>102.42<br>102.41<br>102.39                                                                                                 | degrees F 102.28 102.27 102.27 102.26 102.24 102.24 102.23 102.22 102.22 102.22 102.27 102.19 102.19 102.17  -130-2-1 degrees F 102.11 102.1 102.09 102.09                              | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.426<br>95.413<br>95.374<br>95.374<br>95.361<br>95.348<br>95.322<br>95.309<br>F-130-3-1 T<br>degrees F<br>95.178<br>95.178<br>95.178                                                                                                                         | degrees F   scfm   159.05   648.1   159.04   648.7   159.02   652.9   652.9   655.6   658.99   657.2   158.99   655.6   658.94   655.6   658.94   655.6   658.94   655.6   658.94   655.6   658.94   655.6   658.94   655.6   658.94   655.6   658.94   655.6   658.94   655.6   658.94   655.6   658.94   655.6   658.94   655.6   658.94   655.6   658.94   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6   655.6  | 72<br>12<br>13<br>13<br>15<br>15<br>15<br>16<br>16<br>17<br>18<br>18<br>17<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19 |
| 19 JUN 01 08:00:00 19 JUN 01 08:45:00 19 JUN 01 08:45:00 19 JUN 01 08:45:00 19 JUN 01 09:45:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 10:05:00 19 JUN 01 10:05:00 19 JUN 01 10:30:00 19 JUN 01 11:05:00 19 JUN 01 11:30:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 14:45:00 19 JUN 01 14:45:00 19 JUN 01 14:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00                                                                                                                                                         | 77.26<br>96.539<br>97.501<br>98.288<br>99.075<br>99.382<br>99.683<br>99.984<br>100.22<br>100.45<br>100.68<br>100.91<br>101.14<br>101.37<br>101.6<br>101.84<br>EVAPORATI<br>T-150-1<br>degrees C<br>103.71<br>103.71<br>103.71<br>103.71<br>104.07<br>104.24<br>104.6 | degrees C<br>59.007<br>97.633<br>98.482<br>99.086<br>99.69<br>100.02<br>100.32<br>100.63<br>100.88<br>101.1<br>101.32<br>101.54<br>101.76<br>101.98<br>102.2<br>102.43<br>OR PARAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C 66.803 96.902 97.727 98.382 99.037 99.54 99.833 100.13 100.4 100.63 101.54 101.57 101.99 TERS, 0010I                                                                                                        | Gegrees C de 6.205 96.755 97.745 98.603 99.321 99.901 100.19 100.41 100.64 100.87 101.09 101.32 101.55 101.78 102 END-2  T-150-4 degrees C de 103.92 104.45 104.45 104.45 104.86 104.8                                                | egrees C d 46.013 49.033 49.033 49.033 95.293 96.311 96.681 94.492 93.555 94.701 95.75 96.799 97.847 96.682 96.349 97.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees C d 44.578 49.344 72.202 90.707 94.926 96.65 96.119 94.511 94.615 95.721 96.882 97.933 96.688 96.042 97.065                                                                                               | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552<br>92.691<br>98.574<br>99.633<br>100.29<br>100.04<br>97.87<br>99.056<br>99.7                                                                                                    | 41,929<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,56<br>98,598<br>99,824<br>100,69                                                                                                                                               | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171<br>97.199<br>99.048<br>100.17<br>100.52<br>100.13<br>98.398<br>99.682<br>100.45                                                                                                        | degrees C 42.646 42.646 42.685 42.723 43.767 49.553 62.257 80.84 94.175 98.671 100.38 101.55 102.08 102.54 99.664 100.7 101.57  T-150-10 degrees C 103.08 103.08 103.7                                         | density   Grams/m    1.1796   1.1792   1.1788   1.1761   1.17   1.1667   1.1639   1.1611   1.1643   1.1644   1.1733   1.1789   1.1845   1.1901   1.1956   1.2012     D-150-1   evaporator density   Grams/m    1.2347   1.2347   1.2347   1.2426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ievel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | steam flow  b/hour   0.7685   5.2849   646.57   1020.2   1429.7   1737.2   1734.5   1737.2   1724.6   1733   1745.2   1733.5   1729.3   1750.2   1729.3   1729.3   1745.2   1730.2   1729.3   1745.2   1730.2   1729.3   1745.5   1729.8   1716.5   1729.8   1716.5   1729.8   1716.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76.94<br>76.99<br>76.81<br>76.816<br>76.816<br>76.822<br>76.829<br>76.835<br>76.841<br>76.853<br>76.866<br>76.872<br>76.872<br>76.884<br>76.884                                                                                                                          | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.49<br>150.48<br>150.44<br>150.44<br>150.43<br>150.39<br>150.39<br>150.38                                                                                                                                   | "wcvac 8,9509 8,9524 8,954 8,954 8,9556 8,9571 8,9632 8,9648 8,9663 8,9674 8,971 8,9724 1                                                                                                                | **wevac 48.968 48.969 48.97 48.97 48.971 48.972 48.973 48.974 48.975 48.975 48.975 48.977 48.977 48.977                                                                                              | IN WC 0.0107 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111                                                                                                                                                                                                                                                                                      | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                                                                               | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                                                              | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0577 2.0578 2.0578 2.0578 2.0579 2.0579 2.0581 2.0581 2.0581 2.0582  PD-130-4-1 IN WC 2.0586 2.0587 2.0587                                                                                                         | IN WC 8.449 8.4487 8.4487 8.4479 8.4476 8.4472 8.4469 8.4462 8.4458 8.4455 8.4451 8.4447 8.4444 8.4447                                                                                              | degrees F 180.63 180.63 180.62 180.62 180.62 180.61 180.61 180.61 180.6 180.59 180.59 180.58 180.58 180.57  T-335-2 degrees F 180.53 180.52                                                                                      | degrees F<br>102.59<br>102.58<br>102.56<br>102.55<br>102.53<br>102.51<br>102.53<br>102.41<br>102.47<br>102.46<br>102.43<br>102.42<br>102.41<br>102.39                                                                                                          | degrees F 102.28 102.27 102.27 102.26 102.25 102.24 102.24 102.23 102.22 102.21 102.21 102.17 102.19 102.18 102.17                                                                      | degrees F<br>95.505<br>95.492<br>95.478<br>95.452<br>95.453<br>95.426<br>95.439<br>95.426<br>95.314<br>95.361<br>95.361<br>95.364<br>95.335<br>95.325<br>95.309                                                                                                                                                                         | degrees F   5648.1   159.05   648.1   159.04   648.7   159.02   652.9   159.01   628.3   159.01   635.8   656.2   158.94   626.9   158.94   620.6   158.93   648.4   158.92   643.8   158.92   643.8   158.93   643.8   158.94   620.6   643.8   643.8   649.7   158.84   649.7   158.84   649.7   158.84   647.2   158.83   647.2   158.83   647.2   643.8   647.2   643.8   647.2   643.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72<br>12<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                                                                   |
| 19 JUN 01 08:00:00 19 JUN 01 08:30:00 19 JUN 01 08:30:00 19 JUN 01 08:45:00 19 JUN 01 09:45:00 19 JUN 01 09:30:00 19 JUN 01 09:30:00 19 JUN 01 10:30:00 19 JUN 01 10:45:00 19 JUN 01 10:45:00 19 JUN 01 11:30:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 14:15:00 19 JUN 01 14:45:00 19 JUN 01 11:50:00 19 JUN 01 11:50:00 19 JUN 01 11:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:15:00                                                                                                                                      | degrees C 57.26 96.539 97.501 98.288 99.075 99.382 99.683 99.984 100.22 100.45 100.68 100.91 101.14 101.37 101.6 101.84  EVAPORATI  T-150-1 degrees C 103.71 103.89 104.07 104.24 104.42 104.42 104.6 104.78                                                         | degrees C 59.007 97.633 98.482 99.086 99.69 100.02 100.32 100.63 101.1 101.32 101.54 101.76 101.98 102.2 102.43  OR PARAME  T-150-2 degrees C 104.17 104.35 104.7 104.35 104.7 104.88 105.05 105.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C 66.803 96.902 97.727 98.382 99.037 99.54 99.833 100.13 100.63 101.08 101.54 101.77 101.99 TERS, 00101 T-150-3 degrees C 103.94 104.12 104.3 104.48 104.66 104.84 105.02                                     | Gegrees C de 6.205 96.755 97.745 98.603 99.321 99.611 99.901 100.41 100.64 100.87 101.09 101.32 101.55 101.78 102 CEND-2 CEND-2 CEND-2 104.45 104.45 104.8 104.97                                                                     | egrees C d 46.013 49.033 72.128 91.532 95.293 96.311 96.681 95.75 96.799 97.847 96.682 96.349 97.159  T-150-5 egrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d ggrees C d | 44.578 49.344 72.202 90.707 94.926 96.65 96.119 94.511 93.411 94.615 95.721 96.827 97.933 96.688 96.042 97.065  7-150-6 egrees C d 97.229 97.692 98.155 98.618 98.966 99.3                                        | egrees C 41.262<br>41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>66.713<br>84.552<br>96.919<br>98.674<br>99.633<br>100.29<br>100.04<br>97.87<br>99.056<br>99.7                                                                                          | degrees C<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06<br>101,06<br>101,5<br>98,598<br>99,824<br>100,69                                                                                                                         | degrees C<br>41.222<br>41.265<br>41.307<br>42.405<br>48.917<br>61.709<br>79.403<br>92.171<br>97.199<br>99.048<br>100.17<br>100.52<br>100.13<br>98.398<br>99.682<br>100.45                                                                                                        | degrees C 42.646 42.685 42.723 43.767 49.553 62.257 80.84 94.175 98.671 100.38 101.55 102.08 102.54 99.664 100.7 101.57  T-150-10 degrees C 103.08 103.56 103.08 103.56 103.7 103.85 104 104.15 104.29         | density   Grams/m    1.1796   1.1792   1.1788   1.1761   1.17   1.1667   1.1639   1.1611   1.1643   1.1643   1.1684   1.1733   1.1789   1.1845   1.1901   1.1956   1.2012     D-150-1   evaporator density   Grams/m      1.2347   1.2387   1.2426   1.2426   1.2425   1.2504   1.2504   1.2504   1.2504   1.2504   1.2505   1.2504   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   1.2505   | Ievel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | steam flow b/hour 0.7685 5.2849 646.57 1020.2 1429.7 1727.2 1739.5 1734.5 1737.2 1745.2 1733.2 1745.2 1730.2 1729.3  F350-1 evaporator steam flow b/hour 1731.5 1729.2 1734.4 1737.1 1729.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.94<br>76.97<br>76.804<br>76.816<br>76.816<br>76.822<br>76.829<br>76.835<br>76.841<br>76.853<br>76.866<br>76.878<br>76.878<br>76.884                                                                                                                                   | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.49<br>150.46<br>150.45<br>150.44<br>150.43<br>150.41<br>150.43<br>150.41<br>150.39<br>150.38                                                                                                               | "wcvac 8,9502 8,9524 8,9554 8,9555 8,9571 8,9586 8,9602 8,9617 8,9632 8,9648 8,9694 8,9741 8,9725 8,9741 8,995 8,991 8,9926 8,9941 8,9952 8,9912                                                         | **wevac 48.968 48.969 48.97 48.971 48.971 48.971 48.972 48.973 48.973 48.974 48.975 48.975 48.977 48.977 48.977  **wevac 48.983 48.983 48.983 48.984 48.985 48.986 48.986                            | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0111 0.011 0.0111 0.0111 0.0111 0.0111 0.0113 0.0113 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114                                                                                                                                                                                                          | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                                                                                | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                 | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0577 2.0578 2.0578 2.0579 2.058 2.0581 2.0581 2.0582  PD-130-4-1 IN WC 2.0586 2.0587 2.0587 2.0587 2.0588 2.0588 2.0588                                                                                            | IN WC  8.449 8.4487 8.4483 8.4476 8.4472 8.4465 8.4462 8.4455 8.4451 8.4451 8.4447 8.4444 8.4437  IN WC 8.4405 8.4405 8.4401 8.4398 8.4398 8.4398 8.4394 8.4397                                     | degrees F 180.63 180.63 180.62 180.62 180.61 180.61 180.61 180.59 180.59 180.58 180.58 180.57 180.57  T-335-2 Tdegrees F 180.53 180.52 180.52 180.51 180.51 180.51 180.51                                                        | degrees F<br>102.59<br>102.56<br>102.56<br>102.55<br>102.51<br>102.53<br>102.51<br>102.5<br>102.49<br>102.47<br>102.45<br>102.43<br>102.43<br>102.43<br>102.39                                                                                                 | degrees F 102.28 102.27 102.27 102.26 102.24 102.24 102.23 102.22 102.22 102.21 102.27 102.19 102.19 102.17  -130-2-1 degrees F 102.11 102.1 102.09 102.08 102.08 102.08 102.07 102.06  | degrees F<br>95.505<br>95.492<br>95.478<br>95.478<br>95.452<br>95.439<br>95.426<br>95.413<br>95.374<br>95.374<br>95.361<br>95.348<br>95.335<br>95.322<br>95.309<br>F-130-3-1 T<br>degrees F<br>95.178<br>95.178<br>95.178<br>95.152<br>95.139<br>95.152<br>95.139<br>95.126<br>95.139                                                   | degrees F 159.05 648.1 159.04 648.7 159.03 627.2 159.02 652.9 159.01 628.3 159 655.6 158.99 657.2 158.95 655.6 158.94 620.6 158.93 648.4 158.92 643.8 158.83 648.4 158.83 647.2 158.83 158.84 647.2 158.83 158.85 655.6 158.84 643.8 158.85 647.2 158.85 647.2 158.85 665.2 630.8 158.85 665.2 630.8 158.85 665.2 630.8 158.85 665.2 630.8 158.87 665.2 662.7 158.79 6662.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72<br>122<br>181<br>155<br>178<br>187<br>199<br>144<br>143<br>129<br>144<br>143<br>149<br>149<br>149<br>149<br>149<br>149<br>149<br>149<br>149<br>149    |
| 19 JUN 01 08:00:00 19 JUN 01 08:45:00 19 JUN 01 08:45:00 19 JUN 01 08:45:00 19 JUN 01 09:45:00 19 JUN 01 09:30:00 19 JUN 01 09:45:00 19 JUN 01 10:30:00 19 JUN 01 10:45:00 19 JUN 01 11:00:00 19 JUN 01 11:00:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:50:00 19 JUN 01 11:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00                    | T-150-1  degrees C 57.26 96.539 97.501 98.288 99.075 99.382 99.683 99.984 100.22 100.45 100.68 100.91 101.14 101.37 101.6 101.84  EVAPORATI  T-150-1  degrees C 103.71 103.89 104.07 104.24 104.42 104.66 104.78 104.96 105.14                                       | degrees C 59.007 97.633 98.482 99.086 99.69 100.02 100.32 100.63 100.88 101.1 101.32 101.54 101.76 101.98 102.2 102.43 OR PARAME  T-150-2 degrees C 104.17 104.35 104.5 104.7 104.7 104.7 104.7 104.5 104.5 104.5 104.5 104.5 104.5 104.5 105.5 105.2 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 | degrees C 66.803 96.902 97.727 98.382 99.037 99.54 99.833 100.13 100.63 100.86 101.08 101.31 101.54 101.77 101.99 CTERS, 00101 T-150-3 degrees C 103.94 104.12 104.3 104.48 105.02 105.37                             | Gegrees C de 6.205 96.755 97.745 98.603 99.321 99.611 99.901 100.19 100.41 100.64 100.87 101.09 101.32 101.55 101.78 102 END-2  T-150-4 Jegrees C de 103.92 104.45 104.45 104.45 104.87 105.15 105.32                                 | egrees C d 46.013 49.033 72.128 91.532 95.293 96.311 96.681 94.492 93.555 94.701 95.75 96.799 97.847 96.682 97.159  7-150-5 egrees C d 97.639 98.114 98.588 99.025 99.305 99.707 100.035 100.39 100.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.578 49.344 72.202 90.707 94.926 96.65 96.119 94.511 94.615 95.721 96.8827 97.933 96.688 96.042 97.065  7-150-6 egrees C d 97.229 97.692 98.155 98.618 98.966 99.3 99.634 99.968 100.3                          | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>96.919<br>98.574<br>99.639<br>100.04<br>97.87<br>99.056<br>99.7                                                                                                                                  | degrees C<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06<br>101,5<br>98,598<br>99,824<br>100,69<br>T-150-8<br>degrees C<br>101,58<br>102,63<br>102,77<br>102,91<br>103,06<br>103,2<br>103,34<br>103,49<br>103,76                  | degrees C<br>41,222<br>41,265<br>41,307<br>42,405<br>48,917<br>61,709<br>79,403<br>92,171<br>97,199<br>99,048<br>100,17<br>100,52<br>100,13<br>98,398<br>99,682<br>100,45<br>T-150-9<br>degrees C<br>101,237<br>102,5<br>102,64<br>102,77<br>102,9<br>103,04<br>103,17<br>103,36 | degrees C 42.646 42.646 42.685 42.723 43.767 49.553 62.257 80.84 94.175 98.671 100.38 101.55 102.08 102.54 99.664 100.7 101.57  T-150-10 degrees C 103.08 103.56 103.7 103.85 104 104.15 104.29 104.46 104.74  | density   Grams/m    1.1796   1.1792   1.1788   1.1761   1.17   1.1667   1.1639   1.1611   1.1643   1.1643   1.1733   1.1789   1.1845   1.1901   1.1956   1.2012     D-150-1   evaporator density   Grams/m    1.2347   1.2347   1.2347   1.2426   1.2465   1.2504   1.25543   1.2575   1.2607   1.2639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ievel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | steam flow  b/hour   0.7685   5.2849   646.57   1020.2   1429.7   1727.2   1739.5   1734.5   1735.2   1736.2   1739.2   1739.5   1730.2   1729.3     F350-1 evaporator steam flow  b/hour   1731.5   1729.8   1729.2   1739.4   1729.8   1729.5   1729.5   1730.8   1729.5   1730.8   1729.5   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730.8   1730 | 76.96<br>76.97<br>76.804<br>76.814<br>76.815<br>76.822<br>76.829<br>76.829<br>76.835<br>76.841<br>76.847<br>76.853<br>76.866<br>76.872<br>76.878<br>76.884<br>76.894<br>76.947<br>76.953<br>76.965<br>76.965<br>76.971<br>76.971                                         | scfm 150.57 150.55 150.54 150.53 150.52 150.48 150.44 150.43 150.41 150.43 150.39 150.38 150.26 150.26 150.22 150.22 150.22 150.21 150.2 150.19 150.16                                                                                                                   | "wcvac 8,9509 8,9524 8,954 8,9555 8,9571 8,9586 8,9602 8,9613 8,9648 8,9663 8,971 8,9724 8,988 8,989 8,991 8,9924 8,9957 8,9972 8,9984 8,9957 8,9972 8,9982 8,9982 8,99003                               | **Wevac                                                                                                                                                                                              | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111                                                                                                                                                                                    | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                                                                                 | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                                                    | IN WC 2.0575 2.0575 2.0576 2.0576 2.0576 2.0577 2.0577 2.0577 2.0577 2.0578 2.0578 2.0578 2.0579 2.0581 2.0581 2.0581 2.0582  PD-130-4-1 IN WC 2.0586 2.0587 2.0587 2.0587 2.0588 2.0588 2.0589 2.0588                                                                      | IN WC 8.449 8.4487 8.4487 8.4472 8.4469 8.4472 8.4469 8.4465 8.4465 8.4451 8.4447 8.4444 8.4437  IN WC 8.4401 8.4398 8.4398 8.4398 8.4387 8.4388 8.4376                                             | degrees F 180.63 180.63 180.62 180.62 180.61 180.61 180.61 180.61 180.59 180.59 180.58 180.58 180.58 180.58 180.57  T-335-2 degrees F 180.53 180.57  T-385-2 180.51 180.51 180.51 180.51 180.51 180.55                           | degrees F 102.59 102.56 102.55 102.55 102.53 102.51 102.57 102.49 102.47 102.46 102.45 102.43 102.42 102.41 102.39  -130-1-1                                                                                                                                   | degrees F 102.28 102.27 102.27 102.26 102.25 102.24 102.24 102.22 102.22 102.21 102.19 102.19 102.17  -130-2-1 degrees F 102.11 102.1 102.0 102.08 102.08 102.06 102.06                 | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.426<br>95.426<br>95.439<br>95.426<br>95.337<br>95.361<br>95.361<br>95.322<br>95.309<br>F-130-3-1 T<br>degrees F<br>95.191<br>95.178<br>95.152<br>95.139<br>95.126<br>95.139<br>95.126<br>95.113<br>95.113<br>95.113<br>95.126<br>95.139                                         | degrees F         scfm           159.04         648.1           159.03         648.1           159.03         627.2           159.01         628.3           159.05         655.8           158.99         634.9           158.99         657.2           158.97         658.1           158.98         665.2           158.95         655.6           158.93         608.9           158.93         648.4           158.93         643.8           458.93         643.8           158.80         665.2           158.81         665.2           158.82         630.8           158.83         647.2           158.84         665.8           158.85         665.2           158.79         666.2           158.79         666.2           158.79         665.2           158.78         652.6           158.77         650.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72 228 311 35 77 88 77 9 34 34 32 93 11 36 6 6 11 22 26 6                                                                                                |
| 19 JUN 01 08:00:00 19 JUN 01 08:35:00 19 JUN 01 08:45:00 19 JUN 01 08:45:00 19 JUN 01 09:45:00 19 JUN 01 09:30:00 19 JUN 01 09:45:00 19 JUN 01 10:00:00 19 JUN 01 10:00:00 19 JUN 01 10:45:00 19 JUN 01 10:45:00 19 JUN 01 11:00:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 14:30:00 19 JUN 01 14:45:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00                                                                                                                                                         | degrees C 57.26 96.539 97.501 98.288 99.075 99.382 99.683 99.984 100.22 100.45 100.68 100.91 101.14 101.37 101.6 101.84 EVAPORATI  T-150-1 degrees C 103.71 103.89 104.07 104.24 104.42 104.65 104.78 104.96                                                         | degrees C 59.007 97.633 98.482 99.086 99.69 100.02 100.32 100.63 100.88 101.1 101.76 101.98 102.2 102.43 OR PARAME  T-150-2 degrees C 104.17 104.35 104.53 104.53 104.7 104.88 105.05 105.23 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees C 66.803 96.902 97.727 98.382 99.037 99.54 99.833 100.13 100.4 100.63 101.54 101.77 101.99 TERS, 00101 T-150-3 104.12 104.3 104.48 104.66 104.84 105.02 105.19                                                | degrees C d<br>6.205<br>96.755<br>97.745<br>98.603<br>99.321<br>99.611<br>99.901<br>100.41<br>100.64<br>100.87<br>101.09<br>101.32<br>101.55<br>101.78<br>102<br>END-2                                                                | egrees C d 46.013 49.033 72.128 91.532 95.293 96.311 96.681 95.795 94.701 95.75 96.799 97.847 96.682 97.159  T-150-5  07.639 98.114 98.588 99.702 99.365 99.707 100.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | degrees C d 44.578 49.344 72.202 90.707 94.926 96.65 96.119 94.511 93.411 94.615 95.721 96.688 96.042 97.065  T-150-6 egrees C d 97.222 98.155 98.618 98.966 99.3 99.684 99.968                                   | egrees C 41.262<br>41.303<br>41.303<br>42.046<br>46.395<br>54.169<br>96.713<br>84.552<br>96.919<br>98.574<br>99.652<br>90.91<br>100.04<br>97.87<br>99.056<br>99.7<br>7<br>101.89<br>102.41<br>102.67<br>102.79<br>102.92                                    | degrees C<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06<br>101,5<br>98,598<br>100,69<br>T-150-8<br>legrees C<br>101,58<br>102,63<br>102,77<br>102,91<br>103,06<br>103,29<br>103,34                                               | degrees C 41.222 41.265 41.307 42.405 48.917 61.709 79.403 92.171 97.199 99.048 100.17 100.52 100.13 98.398 99.682 100.45                                                                                                                                                        | degrees C 42.646 42.685 42.723 43.767 49.553 62.257 80.84 94.175 98.671 100.38 101.55 102.08 102.54 99.664 100.7 101.57  T-150-10  degrees C 103.08 103.56 103.7 103.85 104.15 104.29 104.46                   | 1.796   1.1796   1.1796   1.1792   1.1788   1.1761   1.1763   1.1611   1.1643   1.1664   1.1733   1.1789   1.1845   1.1901   1.1956   1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012  | Ievel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | steam flow b/hour 0.7685 5.2849 646.57 1020.2 1429.7 1727.2 1739.5 1734.5 1737.2 1724.6 1733.5 1723.2 1729.3  F350-1 evaporator steam flow b/hour 1731.5 1729.8 1716.5 1729.2 1734.4 1737.1 1729.6 1729.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 76.91<br>76.797<br>76.804<br>76.814<br>76.815<br>76.822<br>76.829<br>76.829<br>76.835<br>76.841<br>76.847<br>76.866<br>76.872<br>76.878<br>76.884<br>76.984<br>76.947<br>76.959<br>76.959<br>76.957<br>76.978                                                            | scfm<br>150.57<br>150.55<br>150.54<br>150.53<br>150.52<br>150.49<br>150.46<br>150.45<br>150.44<br>150.43<br>150.41<br>150.43<br>150.41<br>150.24<br>150.25<br>150.25<br>150.25<br>150.25<br>150.25<br>150.26<br>150.25<br>150.26<br>150.27<br>150.27<br>150.21<br>150.21 | "wcvac 8,9509 8,9524 8,954 8,9555 8,9571 8,9602 8,9612 8,9648 8,9662 8,9641 8,9741 \$,9972 8,988 8,9895 8,991 8,9926 8,9941 8,9957 8,9997 8,9988                                                         | **Wevac                                                                                                                                                                                              | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111                                                                                                                                                                                                                              | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057                                                         | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                                                                 | IN WC 2.0575 2.0575 2.0576 2.0576 2.0577 2.0577 2.0577 2.0577 2.0578 2.0578 2.0579 2.058 2.0581 2.0581 2.0582  PD-130-4-1 IN WC 2.0586 2.0587 2.0587 2.0588 2.0588 2.0588 2.0588 2.0588 2.0588 2.0588 2.0588 2.0588 2.0588                                                  | IN WC  8.449 8.4487 8.4483 8.4476 8.4472 8.4469 8.4465 8.4465 8.4451 8.4447 8.4444 8.4447 8.4447 8.4441 8.4447 8.44437                                                                              | degrees F 180.63 180.63 180.62 180.62 180.61 180.61 180.61 180.6 180.59 180.59 180.58 180.58 180.57 180.57  T-335-2 Tdegrees F 180.53 180.52 180.51 180.51 180.51 180.51 180.51 180.55 180.49                                    | degrees F 102.59 102.58 102.56 102.55 102.54 102.53 102.51 102.57 102.49 102.47 102.48 102.42 102.41 102.39  -130-1-1 T degrees F 102.28 102.26 102.25 102.25 102.21 102.21 102.21                                                                             | degrees F 102.28 102.27 102.27 102.26 102.24 102.24 102.23 102.22 102.22 102.21 102.19 102.19 102.17  -130-2-1                                                                          | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.426<br>95.341<br>95.361<br>95.361<br>95.322<br>95.309<br>F-130-3-1<br>T degrees F<br>95.191<br>95.178<br>95.185<br>95.126<br>95.192<br>95.193<br>95.165                                                                                                     | degrees F   56/m   159.05   648.1   159.04   648.7   159.02   652.9   159.02   652.9   655.2   158.99   657.2   158.95   655.6   158.95   655.6   158.95   655.6   158.93   648.4   158.93   648.4   158.93   643.8   645.2   158.82   643.8   645.2   158.83   647.2   655.8   158.82   655.8   158.82   665.2   158.83   665.2   158.79   666.2   158.79   666.2   158.79   666.2   158.79   666.2   158.79   666.2   158.79   666.2   158.79   666.2   158.79   666.2   158.79   666.2   158.79   666.2   158.79   666.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72 22 8 1 1 5 5 7 7 8 8 7 7 9 4 4 4 4 2 9 1 1 9 3 3 3 1 1 6 6 6 1 1 2 1 2 6 5 5                                                                          |
| 19 JUN 01 08:00:00 19 JUN 01 08:45:00 19 JUN 01 08:45:00 19 JUN 01 08:45:00 19 JUN 01 09:45:00 19 JUN 01 09:30:00 19 JUN 01 09:45:00 19 JUN 01 10:45:00 19 JUN 01 10:45:00 19 JUN 01 10:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 15:50:00 19 JUN 01 15:30:00 19 JUN 01 15:30:00 19 JUN 01 16:30:00 19 JUN 01 16:00:00 19 JUN 01 16:60:00 19 JUN 01 16:60:00 19 JUN 01 16:63:00 19 JUN 01 16:63:00 19 JUN 01 16:63:00 19 JUN 01 16:63:00                                                                             | T-150-1 degrees C 57.26 96.539 97.501 98.288 99.75 99.382 99.683 99.984 100.22 100.45 100.68 100.91 101.14 101.37 101.6 101.84  EVAPORATI  T-150-1 degrees C 103.71 103.71 104.24 104.42 104.6 104.78 104.96 105.14 105.32 105.49 105.67                             | degrees C 59.007 97.633 98.482 99.086 99.69 100.02 100.32 100.63 100.88 101.1 101.32 101.54 101.76 101.98 102.2 102.43  OR PARAME  T-150-2 degrees C 104.17 104.35 104.77 104.35 104.53 104.77 104.88 105.05 105.23 105.58 105.76 105.93 106.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees C 66.803 96.902 97.727 98.382 99.037 99.54 99.833 100.13 100.63 100.86 101.08 101.31 101.54 101.77 101.99 TERS, 00101 T-150-3 degrees C 103.94 104.12 104.3 104.48 105.02 105.37 105.55 105.73 105.91         | Gegrees C de 6.205 96.755 97.745 98.603 99.321 99.611 99.901 100.41 100.64 100.87 101.09 101.32 101.55 101.78 102 END-2  END-2  T-150-4 104.27 104.45 104.45 104.45 104.87 105.5 105.65 105.65 105.65 105.65                          | egrees C d 46.013 49.033 72.128 91.532 95.293 96.311 96.681 94.492 93.555 94.701 95.75 96.799 97.847 96.682 97.639 98.114 98.588 99.025 99.365 99.707 100.035 100.73 101.08 101.42 101.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees C d 44.578 49.344 72.202 90.707 94.926 96.65 96.119 94.511 94.615 95.721 96.827 97.933 96.688 96.042 97.065  T-150-6 egrees C d 97.229 98.155 98.618 98.966 99.3 99.634 99.968 100.3 100.64 100.97 101.22 | egrees C 41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>96.919<br>98.574<br>99.639<br>100.04<br>97.87<br>99.056<br>99.7<br>T-150-7<br>egrees C 6<br>100.98<br>102.41<br>102.54<br>102.79<br>102.79<br>102.79<br>103.31<br>103.34<br>103.35               | 41,929<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06<br>101,5<br>98,598<br>99,824<br>100,69<br>T-150-8<br>iegrees C<br>101,58<br>102,77<br>102,91<br>103,06<br>103,2<br>103,34<br>103,76<br>104,04<br>104,04<br>104,03<br>104,62 | degrees C 41.222 41.265 41.307 42.405 48.917 61.709 79.403 92.171 97.199 99.048 100.17 100.52 100.13 98.398 99.682 100.45                                                                                                                                                        | degrees C 42.646 42.646 42.685 42.723 43.767 49.553 62.257 80.84 94.175 98.671 100.38 101.55 102.08 102.54 99.664 100.7 101.57  T-150-10 degrees C 103.08 103.56 103.7 103.85 104 104.15 104.29 105.31 105.59  | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ievel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | steam flow b/hour 0.7685 5.2849 646.57 1020.2 1429.7 1727.2 1739.5 1734.5 1733.2 1724.6 1733.5 1723.2 1730.2 1729.3  F350-1 evaporator steam flow b/hour 1731.5 1729.8 1729.8 1729.8 1729.5 1730.8 1729.5 1730.8 1729.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.94<br>76.95<br>76.804<br>76.814<br>76.816<br>76.822<br>76.829<br>76.835<br>76.841<br>76.853<br>76.866<br>76.878<br>76.868<br>76.878<br>76.884<br>76.894<br>76.953<br>76.953<br>76.953<br>76.953<br>76.965<br>76.971<br>76.971<br>76.984<br>76.994<br>76.996<br>77.003 | scfm 150.57 150.55 150.54 150.53 150.52 150.48 150.44 150.43 150.41 150.43 150.39 150.38 F 136-1 P scfm 150.26 150.22 150.21 150.22 150.21 150.2 150.19 150.15 150.16 150.15 150.14 150.12                                                                               | "wcvac 8,9509 8,9524 8,954 8,9555 8,9571 8,9586 8,9602 8,9617 8,9632 8,9648 8,9674 8,9725 8,9741 F"wcvac 8,988 8,9895 8,991 8,9924 8,9957 8,9972 8,9972 8,9972 8,9972 8,9972 8,9903 9,0019 9,0034 9,0049 | **Wevac 48.968 48.969 48.97 48.97 48.971 48.971 48.972 48.973 48.973 48.974 48.975 48.975 48.975 48.977 48.977  **Wevac 48.983 48.983 48.983 48.984 48.985 48.986 48.987 48.987 48.987 48.987 48.988 | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.01115 0.0115 0.01115 0.01115 0.01115 | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.056                                                                              | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 | IN WC 2.0575 2.0576 2.0576 2.0576 2.0577 2.0577 2.0577 2.0577 2.0578 2.0578 2.0578 2.0579 2.0581 2.0581 2.0581 2.0582  PD-130-4-1 IN WC 2.0586 2.0587 2.0587 2.0588 2.0588 2.0588 2.0588 2.0589 2.0589 2.0589 2.0589 2.0589 2.0589                                          | IN WC 8.449 8.449 8.4487 8.4483 8.4472 8.4462 8.4462 8.4465 8.4465 8.4451 8.4447 8.4444 8.4437  IN WC 8.4401 8.4398 8.4394 8.4394 8.4398 8.4398 8.4398 8.4376 8.4373 8.4369 8.4369                  | degrees F 180.63 180.62 180.62 180.62 180.61 180.61 180.61 180.61 180.59 180.59 180.58 180.58 180.58 180.57  T-335-2 degrees F 180.53 180.52 180.51 180.51 180.51 180.51 180.51 180.51 180.51 180.51 180.54 180.49 180.49 180.48 | degrees F 102.59 102.58 102.56 102.55 102.54 102.53 102.51 102.49 102.47 102.46 102.45 102.43 102.42 102.41 102.39  -130-1-1 T degrees F 102.28 102.26 102.25 102.21 102.21 102.21 102.15 102.15 102.15                                                        | degrees F 102.28 102.27 102.27 102.26 102.25 102.24 102.24 102.22 102.21 102.22 102.17 102.19 102.19 102.17  -130-2-1 102.17  -130-2-1 102.09 102.08 102.07 102.06 102.05 102.03 102.03 | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.429<br>95.426<br>95.439<br>95.413<br>95.37<br>95.361<br>95.335<br>95.322<br>95.309<br>F-130-3-1 T<br>degrees F<br>95.191<br>95.178<br>95.152<br>95.139<br>95.126<br>95.139<br>95.126<br>95.139<br>95.139<br>95.139<br>95.139<br>95.139                                          | degrees F   548.1   159.05   648.1   159.04   648.7   159.03   627.2   159.01   628.3   159.01   628.3   159.01   628.3   158.99   634.9   655.2   158.97   658.1   158.95   655.6   158.94   620.6   158.93   648.8   158.93   648.8   158.93   643.8   158.82   630.8   158.83   647.2   158.84   662.8   158.81   662.8   158.87   662.8   158.79   666.2   158.79   666.2   158.79   666.2   158.79   666.2   158.79   666.2   158.79   665.3   158.76   650.3   158.76   650.3   158.76   655.3   655.3   655.3   655.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72 22 28 11 15 77 28 77 9 14 14 12 19 11 19 3 3 3 11 16 6 6 11 22 26 6 5 5 5 11                                                                          |
| 19 JUN 01 08:00:00 19 JUN 01 08:35:00 19 JUN 01 08:45:00 19 JUN 01 08:45:00 19 JUN 01 09:45:00 19 JUN 01 09:30:00 19 JUN 01 09:45:00 19 JUN 01 10:00:00 19 JUN 01 10:00:00 19 JUN 01 10:45:00 19 JUN 01 10:45:00 19 JUN 01 11:00:00 19 JUN 01 11:30:00 19 JUN 01 11:45:00 19 JUN 01 11:45:00 19 JUN 01 14:45:00 19 JUN 01 14:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 15:50:00 19 JUN 01 16:50:00 19 JUN 01 16:50:00 19 JUN 01 16:50:00 19 JUN 01 16:50:00 19 JUN 01 16:50:00 19 JUN 01 16:50:00 19 JUN 01 16:50:00 19 JUN 01 16:50:00 | degrees C 57.26 96.539 97.501 98.288 99.075 99.382 99.683 99.984 100.22 100.45 100.68 100.91 101.14 101.37 101.6 101.84 EVAPORATI  T-150-1 degrees C 103.71 103.89 104.07 104.64 104.78 104.96 105.14 105.32 105.49                                                  | degrees C 59.007 97.633 98.482 99.086 99.69 100.02 100.32 100.63 100.88 101.1 101.76 101.98 102.2 102.43 OR PARAME  T-150-2 degrees C 104.135 104.53 104.53 104.53 104.53 105.05 105.58 105.58 105.58 105.76 105.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C 66.803 96.902 97.727 98.382 99.037 99.54 99.833 100.13 100.63 101.08 101.31 101.54 101.77 101.99 CTERS, 00101 T-150-3 degrees C 103.94 104.12 104.3 104.48 104.66 104.84 105.02 105.19 105.37 105.55 105.73 | Gegrees C de 6.205 96.755 97.745 98.603 99.321 99.611 99.901 100.41 100.64 100.87 101.09 101.32 101.55 101.78 102 END-2  END-2  T-150-4  Gegrees C de 103.92 104.1 104.27 104.45 104.62 104.8 104.97 105.15 105.52 105.5 105.57 105.5 | egrees C d 46.013 49.033 72.128 91.532 95.293 96.311 96.681 94.701 95.75 94.701 95.75 95.79 97.847 96.549 97.159  F-150-5 egrees C d 97.639 98.114 98.588 99.707 100.05 100.39 100.73 101.08 101.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C d 44.578 49.344 72.202 90.707 94.926 96.65 96.119 94.511 93.411 94.615 95.721 96.827 97.933 96.688 96.042 97.065  T-150-6 egrees C d 97.229 98.155 98.618 98.966 99.3 99.634 99.968 100.3 100.64 100.97 | 41.262<br>41.262<br>41.303<br>42.046<br>46.395<br>54.169<br>96.713<br>84.552<br>96.919<br>98.574<br>99.652<br>99.056<br>99.7<br>7<br>100.04<br>97.87<br>99.056<br>99.7<br>7<br>102.94<br>102.41<br>102.67<br>102.92<br>103.05<br>103.17<br>103.33<br>103.34 | degrees C<br>41,929<br>41,97<br>42,834<br>47,041<br>55,001<br>67,58<br>84,578<br>94,104<br>97,69<br>99,408<br>100,56<br>101,06<br>101,5<br>98,598<br>4100,69<br>T-150-8<br>Jegrees C<br>101,58<br>102,63<br>102,77<br>102,91<br>103,06<br>103,24<br>103,34<br>103,49<br>103,76<br>104,04<br>104,33      | degrees C 41.222 41.265 41.307 42.405 48.917 61.709 79.403 92.171 97.199 99.048 100.17 100.52 100.13 98.398 99.682 100.45  T-150-9 degrees C 101.32 102.37 102.5 102.64 102.77 102.9 103.04 103.17 103.36 103.64 103.92                                                          | degrees C 42.646 42.685 42.623 43.767 49.553 62.257 80.84 94.175 98.671 100.38 101.55 102.08 102.54 99.664 100.7 101.57  T-150-10  degrees C 103.08 103.56 103.7 103.85 104 104.15 104.46 104.74 105.02 105.31 | 1.796   1.1796   1.1796   1.1792   1.1788   1.1761   1.177   1.1667   1.1639   1.1611   1.1643   1.1643   1.1684   1.1733   1.1789   1.1845   1.1901   1.1956   1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2012     1.2 | Ievel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | steam flow b/hour 0.7685 5.2849 646.57 1020.2 1429.7 1727.2 1739.5 1734.5 1737.2 1724.6 1733.3 1745.2 1730.2 1729.3  F350-1 evaporator steam flow b/hour 1731.5 1729.8 1716.5 1729.2 1730.8 1729.6 1729.5 1730.8 1729.8 1747.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.91<br>76.797<br>76.804<br>76.814<br>76.816<br>76.822<br>76.829<br>76.835<br>76.841<br>76.847<br>76.866<br>76.872<br>76.878<br>76.884<br>76.984<br>76.959<br>76.959<br>76.978<br>76.978<br>76.984<br>76.984<br>76.998                                                  | scfm 150.57 150.55 150.54 150.53 150.52 150.48 150.44 150.43 150.44 150.39 150.38 F 136-1 P scfm 150.25 150.24 150.25 150.24 150.25 150.24 150.25 150.24 150.25 150.27 150.26 150.27 150.26 150.27 150.16 150.17 150.16 150.15 150.14                                    | "wcvac 8,9509 8,9524 8,9554 8,9555 8,9571 8,9602 8,9617 8,9632 8,9648 8,9669 8,9725 8,9741 F"wcvac 8,988 8,9895 8,991 8,9926 8,991 8,9927 8,9928 9,0003 9,0019 9,0034                                    | **Wevac                                                                                                                                                                                              | IN WC 0.0107 0.0108 0.0108 0.0108 0.0108 0.0109 0.0109 0.0109 0.0109 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111                                                                                  | IN WC -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 | IN WC -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001                                                                | IN WC 2.0575 2.0575 2.0576 2.0576 2.0576 2.0577 2.0577 2.0577 2.0577 2.0578 2.0578 2.0579 2.0579 2.058 2.0581 2.0581 2.0582  PD-130-4-1 IN WC 2.0586 2.0587 2.0587 2.0587 2.0588 2.0588 2.0588 2.0588 2.0588 2.0588 2.0588 2.0588 2.0588 2.0589 2.0589 2.0599 2.0599 2.0599 | IN WC 8.449 8.4487 8.4487 8.4483 8.4476 8.4472 8.4469 8.4465 8.4465 8.4451 8.4447 8.4444 8.4437  PD-130-1 IN WC 8.4405 8.4405 8.4498 8.4394 8.4398 8.4398 8.4398 8.4398 8.4393 8.4383 8.4373 8.4369 | degrees F 180.63 180.63 180.62 180.62 180.61 180.61 180.61 180.61 180.59 180.59 180.58 180.58 180.58 180.57  T-335-2 T degrees F 180.57  T-380.57  T-380.51 180.51 180.51 180.51 180.51 180.51 180.5 180.49 180.49 180.49        | degrees F<br>102.59<br>102.58<br>102.56<br>102.55<br>102.53<br>102.51<br>102.51<br>102.51<br>102.49<br>102.47<br>102.42<br>102.43<br>102.42<br>102.41<br>102.39<br>Talegrees F<br>102.28<br>102.26<br>102.25<br>102.24<br>102.25<br>102.21<br>102.21<br>102.21 | degrees F 102.28 102.27 102.27 102.26 102.24 102.24 102.23 102.22 102.22 102.21 102.19 102.19 102.17  -130-2-1                                                                          | degrees F<br>95.505<br>95.492<br>95.478<br>95.465<br>95.452<br>95.439<br>95.443<br>95.341<br>95.361<br>95.361<br>95.322<br>95.309<br>F-130-3-1 T<br>degrees F<br>95.178<br>95.182<br>95.182<br>95.191<br>95.178<br>95.152<br>95.139<br>95.152<br>95.139<br>95.152<br>95.139<br>95.152<br>95.139<br>95.152<br>95.139<br>95.152<br>95.139 | degrees F   56m   159.05   648.1   159.04   648.7   159.02   652.9   159.02   652.9   655.2   158.99   657.2   158.95   655.6   158.94   620.6   158.93   648.4   158.93   648.4   158.93   648.8   158.83   647.2   649.7   158.83   647.2   158.84   655.6   158.84   665.8   158.85   665.8   158.87   666.5   158.79   666.5   158.79   666.5   158.79   666.5   158.79   666.5   158.79   666.5   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.79   665.6   158.77   650.3   158.76   652.6   158.77   650.3   158.76   665.6   158.77   650.3   158.76   665.6   158.77   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158.76   650.3   158. | 72 22 8 1 1 5 7 7 8 7 7 9 4 4 4 2 9 1 1 9 7 3 3 1 1 6 6 6 1 2 2 6 6 5 5 5 1 1 8 8                                                                        |

| Table D-1. Evaporato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | er parameters.<br>EVAPORAT                                                                                                                                                                                                                                   | OR PARAME                                                                                                                                                                                                                                                      | TERS, 0031                                                                                                                                                                                                                     | ISTRT-1                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | D-150-1<br>evaporator                                                                                                                                                                                                                                           | L-150-1<br>evaporator                                                                                                                                                                                                                                                                                                            | F350-1<br>evaporator                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T-150-1<br>degrees C                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T-150-6<br>degrees C                                                                                                                                                                                                      | T-150-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T-150-8<br>degrees C                                                                                                                                                                                                                                                                                            | T-150-9<br>degrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T-150-10<br>degrees C                                                                                                                                                                                                                                                                                                | density                                                                                                                                                                                                                                                         | level<br>Inches                                                                                                                                                                                                                                                                                                                  | steam flow                                                                                                                                                                                                                                                      | T-336-1C                                                                                                                                                                                                                       | F 136-1                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PD-130-1-1<br>IN WC                                                                                                                                                                                                            | PD-130-2-1<br>IN WC                                                                                                                                                                                                                                                                                                                                                                                                                       | PD-130-3-1              | PD-130-4-1<br>IN WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PD-130-1<br>IN WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T-335-2<br>degrees F                                                                                                                                                                                                                                                                                                                                        | T-130-1-1<br>degrees F                                                                                                                                                                                                                                              | T-130-2-1<br>degrees F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>T-130-3-1</b><br>degrees F                                                                                                                                                                                                                                                                                      | T-130-4-1 F-130-1<br>degrees F scfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20 JUN 01 08:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 54.996                                                                                                                                                                                                                                                       | 56,163                                                                                                                                                                                                                                                         | 64.408                                                                                                                                                                                                                         | 64.363                                                                                                                                                                                                                          | 40.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.642                                                                                                                                                                                                                    | 32.805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33.555                                                                                                                                                                                                                                                                                                          | 34.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.002                                                                                                                                                                                                                                                                                                               | 1.1964                                                                                                                                                                                                                                                          | 136.89                                                                                                                                                                                                                                                                                                                           | -7.56                                                                                                                                                                                                                                                           | degrees F<br>74.085                                                                                                                                                                                                            | 152.45                                                                                                                                                                                       | "wcvac<br>8.9506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "wcvac<br>48.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008                                                                                                                                                                                                                          | -0.056                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 0 2.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 8.6697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180.67                                                                                                                                                                                                                                                                                                                                                      | 102.14                                                                                                                                                                                                                                                              | 101.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 95.541                                                                                                                                                                                                                                                                                                           | 158.83 623.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20 JUN 01 08:15:00<br>20 JUN 01 08:30:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94.28<br>98.273                                                                                                                                                                                                                                              | 94.079<br>99.275                                                                                                                                                                                                                                               | 95.593<br>98.793                                                                                                                                                                                                               | 94.447<br>98.658                                                                                                                                                                                                                | 41.155<br>54.666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.27<br>53.947                                                                                                                                                                                                           | 33.189<br>33.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.939<br>34.324                                                                                                                                                                                                                                                                                                | 34.902<br>35.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.238<br>36.474                                                                                                                                                                                                                                                                                                     | 1.1932<br>1.19                                                                                                                                                                                                                                                  | 136.77<br>136.65                                                                                                                                                                                                                                                                                                                 | -0.378<br>126.83                                                                                                                                                                                                                                                | 74.133<br>74.18                                                                                                                                                                                                                | 152.81<br>153.17                                                                                                                                                                             | 9.0915<br>9.2324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.799<br>48.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800.0<br>800.0                                                                                                                                                                                                                 | -0.056<br><b>-</b> 0.056                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 0 2.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             | 102.15<br>102.16                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 JUN 01 08:45:00<br>20 JUN 01 09:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98.844<br>99.248                                                                                                                                                                                                                                             | 99.847<br>100.12                                                                                                                                                                                                                                               | 99.32<br>99.646                                                                                                                                                                                                                | 99.195<br>99.537                                                                                                                                                                                                                | 83.446<br>94.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84.276<br>94.458                                                                                                                                                                                                          | 36.241<br>42.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.926<br>42.857                                                                                                                                                                                                                                                                                                | 35.371<br>37.759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.711<br>39.66                                                                                                                                                                                                                                                                                                      | 1.1858<br>1.1781                                                                                                                                                                                                                                                | 136.53<br>136.41                                                                                                                                                                                                                                                                                                                 | 834.14<br>1284.2                                                                                                                                                                                                                                                | 74.227<br>74.275                                                                                                                                                                                                               | 153.53                                                                                                                                                                                       | 9.3733<br>9.5141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.798<br>48.797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008                                                                                                                                                                                                                          | -0.056                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>;</b>                | 0 2.115<br>0 2.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             | 102.17<br>102.17                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 JUN 01 09:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.651                                                                                                                                                                                                                                                       | 100.39                                                                                                                                                                                                                                                         | 99.971                                                                                                                                                                                                                         | 99.878                                                                                                                                                                                                                          | 97.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96.681                                                                                                                                                                                                                    | 51.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52.692                                                                                                                                                                                                                                                                                                          | 46.365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.09                                                                                                                                                                                                                                                                                                                | 1.1706                                                                                                                                                                                                                                                          | 136.89                                                                                                                                                                                                                                                                                                                           | 1711.7                                                                                                                                                                                                                                                          | 74.322                                                                                                                                                                                                                         | 153.89<br>154.25                                                                                                                                                                             | 9.655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.008<br>0.008                                                                                                                                                                                                                 | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0 2.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 8.665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180.67                                                                                                                                                                                                                                                                                                                                                      | 102.18                                                                                                                                                                                                                                                              | 3 101.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 95.549                                                                                                                                                                                                                                                                                                           | 158.84 645.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20 JUN 01 09:30:00<br>20 JUN 01 09:45:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                              | 100.66<br>100.9                                                                                                                                                                                                                                                | 100.3<br>100.58                                                                                                                                                                                                                | 100.22<br>100.49                                                                                                                                                                                                                | 97.347<br>96.936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.698<br>97.164                                                                                                                                                                                                          | 67.03<br>86.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67.738<br>86.044                                                                                                                                                                                                                                                                                                | 60.963<br>81.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62.193<br>83.347                                                                                                                                                                                                                                                                                                     | 1.1664<br>1.1622                                                                                                                                                                                                                                                | 137.32<br>137.28                                                                                                                                                                                                                                                                                                                 | 1726.9<br>1743                                                                                                                                                                                                                                                  | 74.369<br>74.417                                                                                                                                                                                                               | 154.61<br>154.97                                                                                                                                                                             | 9.5319<br>9.3324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.796<br>48.795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008<br>0.008                                                                                                                                                                                                                 | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0 2.11<br>0 2.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             | 102.19<br>102.2                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 JUN 01 10:00:00<br>20 JUN 01 10:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.59<br>100.87                                                                                                                                                                                                                                             | 101.13<br>101.35                                                                                                                                                                                                                                               | 100.84<br>101.09                                                                                                                                                                                                               | 100.76<br>101.03                                                                                                                                                                                                                | 95.375<br>94.662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.251<br>94.53                                                                                                                                                                                                           | 93.721<br>97.496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95.14<br>98.624                                                                                                                                                                                                                                                                                                 | 93.64<br>98.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.036<br>99.578                                                                                                                                                                                                                                                                                                     | 1.1597<br>1.1639                                                                                                                                                                                                                                                | 134.83<br>130.93                                                                                                                                                                                                                                                                                                                 | 1727.8<br>1737.4                                                                                                                                                                                                                                                | 74.464<br>74.512                                                                                                                                                                                                               | 155.33<br>155.69                                                                                                                                                                             | 11.08<br>9.7137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48.794<br>48.794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008<br>0.008                                                                                                                                                                                                                 | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0 2.114<br>0 2.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             | 102.21<br>102.21                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 JUN 01 10:30:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101.16                                                                                                                                                                                                                                                       | 101.58                                                                                                                                                                                                                                                         | 101.35                                                                                                                                                                                                                         | 101.3                                                                                                                                                                                                                           | 95.732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.551                                                                                                                                                                                                                    | 99.495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.24                                                                                                                                                                                                                                                                                                          | 99.811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.2                                                                                                                                                                                                                                                                                                                | 1.1681                                                                                                                                                                                                                                                          | 127.03                                                                                                                                                                                                                                                                                                                           | 1737.5                                                                                                                                                                                                                                                          | 74.559                                                                                                                                                                                                                         | 156.05                                                                                                                                                                                       | 9.8022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 800.0                                                                                                                                                                                                                          | -0.056                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 0 2.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 8.6604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180.68                                                                                                                                                                                                                                                                                                                                                      | 102.22                                                                                                                                                                                                                                                              | 2 101.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 95.557                                                                                                                                                                                                                                                                                                           | 158.86 645.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20 JUN 01 10:45:00<br>20 JUN 01 11:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101.44<br>101.73                                                                                                                                                                                                                                             | 101.8<br>102.03                                                                                                                                                                                                                                                | 101.61<br>101.86                                                                                                                                                                                                               | 101.57<br>101.84                                                                                                                                                                                                                | 96.713<br>97.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.485<br>97.42                                                                                                                                                                                                           | 100.54<br>101.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101.2<br>101.81                                                                                                                                                                                                                                                                                                 | 100.91<br>101.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.22<br>102.78                                                                                                                                                                                                                                                                                                     | 1.1744<br>1.1811                                                                                                                                                                                                                                                | 123.13<br>119.23                                                                                                                                                                                                                                                                                                                 | 1722.2<br>1730.2                                                                                                                                                                                                                                                | 74.606<br>74.654                                                                                                                                                                                                               | 156.41<br>156.77                                                                                                                                                                             | 11.495<br>11.407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.793<br>48.792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008<br>0.008                                                                                                                                                                                                                 | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0 2.114<br>0 2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             | 102.23<br>102.24                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    | 158.87 636.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20 JUN 01 11:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102.01                                                                                                                                                                                                                                                       | 102.25                                                                                                                                                                                                                                                         | 102.12                                                                                                                                                                                                                         | 102.11                                                                                                                                                                                                                          | 98.675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.355                                                                                                                                                                                                                    | 101.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101.38                                                                                                                                                                                                                                                                                                          | 100.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.57                                                                                                                                                                                                                                                                                                               | 1.1879                                                                                                                                                                                                                                                          | 115.33                                                                                                                                                                                                                                                                                                                           | 1730.3                                                                                                                                                                                                                                                          | 74.701                                                                                                                                                                                                                         | 157.13                                                                                                                                                                                       | 11.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.008                                                                                                                                                                                                                          | -0.056                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 0 2.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 8.6577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180.68                                                                                                                                                                                                                                                                                                                                                      | 102.25                                                                                                                                                                                                                                                              | 102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 95.562                                                                                                                                                                                                                                                                                                           | 158.87 674.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EVAPORAT                                                                                                                                                                                                                                                     | OR PARAME                                                                                                                                                                                                                                                      | TERS, 0031                                                                                                                                                                                                                     | END-1                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T 450 4                                                                                                                                                                                                                                                      | T 450 0                                                                                                                                                                                                                                                        | T 450 0                                                                                                                                                                                                                        | T 450 4                                                                                                                                                                                                                         | T 450 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T 450.0                                                                                                                                                                                                                   | T 450 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T 450 0                                                                                                                                                                                                                                                                                                         | T 450 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T 450 40                                                                                                                                                                                                                                                                                                             | D-150-1<br>evaporator                                                                                                                                                                                                                                           | L-150-1<br>evaporator                                                                                                                                                                                                                                                                                                            | F350-1<br>evaporator                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     | T 400 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T 400 0 4                                                                                                                                                                                                                                                                                                          | T40044 54004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | degrees C                                                                                                                                                                                                                                                    | legrees C                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 | degrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees C                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T-150-8<br>degrees C                                                                                                                                                                                                                                                                                            | T-150-9<br>degrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T-150-10<br>degrees C                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                  | steam flow<br>lb/hour                                                                                                                                                                                                                                           | T-336-1C<br>degrees F                                                                                                                                                                                                          | scfm                                                                                                                                                                                         | "wcvac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | "wcvac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IN WC                                                                                                                                                                                                                          | IN WC                                                                                                                                                                                                                                                                                                                                                                                                                                     | PD-130-3-1<br>IN WC     | PD-130-4-1<br>IN WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PD-130-1<br>IN WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees F                                                                                                                                                                                                                                                                                                                                                   | T-130-1-1<br>degrees F                                                                                                                                                                                                                                              | T-130-2-1<br>degrees F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T-130-3-1<br>degrees F                                                                                                                                                                                                                                                                                             | T-130-4-1 F-130-1<br>degrees F scfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20 JUN 01 14:00:00<br>20 JUN 01 14:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.46<br>104.68                                                                                                                                                                                                                                             | 104.73<br>104.96                                                                                                                                                                                                                                               | 104.67<br>104.84                                                                                                                                                                                                               | 104.69<br>104.87                                                                                                                                                                                                                | 97.59<br>97.722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.256<br>97.524                                                                                                                                                                                                          | 101.41<br>101.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102.21<br>102.44                                                                                                                                                                                                                                                                                                | 101.93<br>102.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102.93<br>103.17                                                                                                                                                                                                                                                                                                     | 1.232<br>1.2356                                                                                                                                                                                                                                                 | 125.57<br>124.93                                                                                                                                                                                                                                                                                                                 | 1727.6<br>1731.6                                                                                                                                                                                                                                                | 75.222<br>75.269                                                                                                                                                                                                               | 161.09<br>161.45                                                                                                                                                                             | 10.753<br>10.731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.784<br>48.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008<br>0.008                                                                                                                                                                                                                 | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0 2.112<br>0 2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             | 102.33<br>102.34                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    | 158.91 656.82<br>158.91 637.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20 JUN 01 14:30:00<br>20 JUN 01 14:45:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.9<br>105.11                                                                                                                                                                                                                                              | 105.18<br>105.41                                                                                                                                                                                                                                               | 105.01<br>105.17                                                                                                                                                                                                               | 105.04<br>105.22                                                                                                                                                                                                                | 97.854<br>97.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.659<br>97.793                                                                                                                                                                                                          | 101.89<br>102.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102.68<br>102.91                                                                                                                                                                                                                                                                                                | 102.39<br>102.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 103.41<br>103.65                                                                                                                                                                                                                                                                                                     | 1.2391<br>1.2427                                                                                                                                                                                                                                                | 125.03<br>125.31                                                                                                                                                                                                                                                                                                                 | 1730.3<br>1725.1                                                                                                                                                                                                                                                | 75.316<br>75.364                                                                                                                                                                                                               | 161.8<br>162.16                                                                                                                                                                              | 10.709<br>10.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.783<br>48.782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008<br>0.008                                                                                                                                                                                                                 | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0 2.111<br>0 2.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 8.6456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180.69                                                                                                                                                                                                                                                                                                                                                      | 102.35<br>102.36                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 JUN 01 15:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 105.27                                                                                                                                                                                                                                                       | 105.58                                                                                                                                                                                                                                                         | 105.34                                                                                                                                                                                                                         | 105.39                                                                                                                                                                                                                          | 98.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.928                                                                                                                                                                                                                    | 102.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103.15                                                                                                                                                                                                                                                                                                          | 102.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.89                                                                                                                                                                                                                                                                                                               | 1.2463                                                                                                                                                                                                                                                          | 126.04                                                                                                                                                                                                                                                                                                                           | 1729.6                                                                                                                                                                                                                                                          | 75.411                                                                                                                                                                                                                         | 162.52                                                                                                                                                                                       | 10.665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.008                                                                                                                                                                                                                          | -0.056                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 0 2.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 8.6438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180.69                                                                                                                                                                                                                                                                                                                                                      | 102.37                                                                                                                                                                                                                                                              | 102.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 95.586                                                                                                                                                                                                                                                                                                           | 158.92 651.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20 JUN 01 15:15:00<br>20 JUN 01 15:30:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105.42<br>105.57                                                                                                                                                                                                                                             | 105.72<br>105.86                                                                                                                                                                                                                                               | 105.51<br>105.67                                                                                                                                                                                                               | 105.57<br>105.74                                                                                                                                                                                                                | 98.249<br>98.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98.063<br>98.198                                                                                                                                                                                                          | 102.61<br>102.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103.38<br>103.62                                                                                                                                                                                                                                                                                                | 103.09<br>103.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.13<br>104.36                                                                                                                                                                                                                                                                                                     | 1.2498<br>1.2534                                                                                                                                                                                                                                                | 127.81<br>129.52                                                                                                                                                                                                                                                                                                                 | 1734<br>1725.4                                                                                                                                                                                                                                                  | 75.458<br>75.506                                                                                                                                                                                                               | 162.88<br>163.24                                                                                                                                                                             | 10.643<br>10.621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.781<br>48.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008<br>0.008                                                                                                                                                                                                                 | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0 2.111<br>0 2.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             | 102.37<br>102.38                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    | 158.92 677.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20 JUN 01 15:45:00<br>20 JUN 01 16:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105.71<br>105.86                                                                                                                                                                                                                                             | 106<br>106.15                                                                                                                                                                                                                                                  | 105.84<br>105.95                                                                                                                                                                                                               | 105.86<br>105.93                                                                                                                                                                                                                | 98.579<br>99.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98.333<br>99.003                                                                                                                                                                                                          | 103.08<br>103.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103.85<br>104.09                                                                                                                                                                                                                                                                                                | 103.55<br>103.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.6<br>104.84                                                                                                                                                                                                                                                                                                      | 1.257<br>1.2605                                                                                                                                                                                                                                                 | 130.94<br>132.31                                                                                                                                                                                                                                                                                                                 | 1735.8<br>1712.9                                                                                                                                                                                                                                                | 75.553<br>75.601                                                                                                                                                                                                               | 163.6<br>163.96                                                                                                                                                                              | 10.608<br>10.611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.779<br>48.779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008<br>800.0                                                                                                                                                                                                                 | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0 2.11<br>0 2.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180.69<br>180.7                                                                                                                                                                                                                                                                                                                                             | 102.39<br>102.4                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 JUN 01 16:15:00<br>20 JUN 01 16:30:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106.01<br>106.15                                                                                                                                                                                                                                             | 106.29<br>106.43                                                                                                                                                                                                                                               | 106<br>106.05                                                                                                                                                                                                                  | 106<br>106.06                                                                                                                                                                                                                   | 100.04<br>100.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99.628<br>100.12                                                                                                                                                                                                          | 103.56<br>103.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.32<br>104.56                                                                                                                                                                                                                                                                                                | 104.02<br>104.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105.08<br>105.32                                                                                                                                                                                                                                                                                                     | 1.2641<br>1.2677                                                                                                                                                                                                                                                | 133.47<br>134.43                                                                                                                                                                                                                                                                                                                 | 1729.6                                                                                                                                                                                                                                                          | 75.648                                                                                                                                                                                                                         | 164.32<br>164.68                                                                                                                                                                             | 10.614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.778<br>48.777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008                                                                                                                                                                                                                          | -0.056                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 0 2.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 8.6392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             | 102.41<br>102.42                                                                                                                                                                                                                                                    | 102.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 95.594                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 JUN 01 16:45:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 106.3                                                                                                                                                                                                                                                        | 106.57                                                                                                                                                                                                                                                         | 106.1                                                                                                                                                                                                                          | 106.13                                                                                                                                                                                                                          | 101.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.61                                                                                                                                                                                                                    | 104.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104.79                                                                                                                                                                                                                                                                                                          | 104.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105.56                                                                                                                                                                                                                                                                                                               | 1.2712                                                                                                                                                                                                                                                          | 134.47                                                                                                                                                                                                                                                                                                                           | 1730.1<br>1721.6                                                                                                                                                                                                                                                | 75.695<br>75.743                                                                                                                                                                                                               | 165.04                                                                                                                                                                                       | 10.617<br>10.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48.777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 800.0<br>800.0                                                                                                                                                                                                                 | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0 2.110<br>0 2.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 8.6373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180.7                                                                                                                                                                                                                                                                                                                                                       | 102.42                                                                                                                                                                                                                                                              | 102.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 95.598                                                                                                                                                                                                                                                                                                           | 158.94 646.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20 JUN 01 17:00:00<br>20 JUN 01 17:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106.44<br>106.59                                                                                                                                                                                                                                             | 106.71<br>106.85                                                                                                                                                                                                                                               | 106.16<br>106.21                                                                                                                                                                                                               | 106.19<br>106.26                                                                                                                                                                                                                | 101.77<br>102.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101.11<br>101.6                                                                                                                                                                                                           | 104.28<br>104.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105.03<br>105.12                                                                                                                                                                                                                                                                                                | 104.72<br>104.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105.76<br>105.82                                                                                                                                                                                                                                                                                                     | 1.2748<br>1.2784                                                                                                                                                                                                                                                | 134.1<br>133.08                                                                                                                                                                                                                                                                                                                  | 1738.5<br>1734.4                                                                                                                                                                                                                                                | 75.79<br>75.837                                                                                                                                                                                                                | 165.4<br>165.76                                                                                                                                                                              | 10.624<br>10.627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.776<br>48.775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008<br>0.008                                                                                                                                                                                                                 | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0 2.110<br>0 2.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             | 102.43<br>102.44                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    | 158.94 645.82<br>158.95 644.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20 JUN 01 17:30:00<br>20 JUN 01 17:45:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106.74<br>106.88                                                                                                                                                                                                                                             | 106.99<br>107.13                                                                                                                                                                                                                                               | 106.26<br>106.31                                                                                                                                                                                                               | 106.33<br>106.39                                                                                                                                                                                                                | 101.93<br>101.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102.07<br>101.6                                                                                                                                                                                                           | 104.42<br>104.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105.17                                                                                                                                                                                                                                                                                                          | 104.83<br>104.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105.88<br>105.94                                                                                                                                                                                                                                                                                                     | 1.2819<br>1.2855                                                                                                                                                                                                                                                | 131.77<br>130.49                                                                                                                                                                                                                                                                                                                 | 1732.4<br>1715.7                                                                                                                                                                                                                                                | 75.885<br>75.932                                                                                                                                                                                                               | 166.12<br>166.48                                                                                                                                                                             | 10.63<br>10.633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48.775<br>48.774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008<br>0.008                                                                                                                                                                                                                 | -0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0 2.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             | 102.45<br>102.46                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                              | 112000                                                                                                                                                                                                                                                          | 100.10                                                                                                                                                                                                                                                                                                                           | 17 10                                                                                                                                                                                                                                                           | 70.002                                                                                                                                                                                                                         | 100.10                                                                                                                                                                                       | 10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 2.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                         | .020                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EVAPORATO                                                                                                                                                                                                                                                    | OR PARAME                                                                                                                                                                                                                                                      | TERS, 0031                                                                                                                                                                                                                     | STRT-2                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 | 1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                      | D-150-1                                                                                                                                                                                                                                                         | L-150-1                                                                                                                                                                                                                                                                                                                          | F350-1                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T-150-1                                                                                                                                                                                                                                                      | T-150-2                                                                                                                                                                                                                                                        | T-150-3                                                                                                                                                                                                                        | T-150-4                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T-150-8                                                                                                                                                                                                                                                                                                         | T-150-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T-150-10                                                                                                                                                                                                                                                                                                             | evaporator<br>density                                                                                                                                                                                                                                           | evaporator<br>level                                                                                                                                                                                                                                                                                                              | evaporator<br>steam flow                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           | PD-130-3-1              | PD-130-4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PD-130-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             | T-130-1-1                                                                                                                                                                                                                                                           | T-130-2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T-130-3-1                                                                                                                                                                                                                                                                                                          | T-130-4-1 F-130-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Time<br>21 JUN 01 08:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T-150-1<br>degrees C 6<br>61.744                                                                                                                                                                                                                             | T-150-2<br>legrees C<br>62.986                                                                                                                                                                                                                                 | T-150-3<br>legrees C<br>68.576                                                                                                                                                                                                 | T-150-4<br>degrees C<br>69.401                                                                                                                                                                                                  | degrees C<br>43.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees C<br>43.095                                                                                                                                                                                                       | degrees C<br>37.156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C<br>37.268                                                                                                                                                                                                                                                                                             | degrees C<br>37.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees C<br>38.441                                                                                                                                                                                                                                                                                                  | evaporator<br>density<br>Grams/ml<br>1.1823                                                                                                                                                                                                                     | evaporator<br>level<br>Inches<br>136.66                                                                                                                                                                                                                                                                                          | evaporator<br>steam flow<br>lb/hour<br>1.6159                                                                                                                                                                                                                   | degrees F<br>75.869                                                                                                                                                                                                            | scfm<br>166.25                                                                                                                                                                               | "wcvac<br>11.564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "wcvac<br>48.736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IN WC<br>0.008                                                                                                                                                                                                                 | IN WC<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                                           | IN WC                   | IN WC<br>0 2.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IN WC<br>6 8.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees F<br>180.75                                                                                                                                                                                                                                                                                                                                         | degrees F<br>102.92                                                                                                                                                                                                                                                 | degrees F<br>102.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees F<br>4 95.698                                                                                                                                                                                                                                                                                              | degrees F scfm<br>159.14 647.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T-150-1<br>degrees C                                                                                                                                                                                                                                         | T-150-2<br>legrees C                                                                                                                                                                                                                                           | T-150-3<br>legrees C                                                                                                                                                                                                           | <b>T-150-4</b> degrees C                                                                                                                                                                                                        | degrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees C                                                                                                                                                                                                                 | degrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees C                                                                                                                                                                                                                                                                                                       | degrees C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees C                                                                                                                                                                                                                                                                                                            | evaporator<br>density<br>Grams/ml                                                                                                                                                                                                                               | evaporator<br>level<br>Inches                                                                                                                                                                                                                                                                                                    | evaporator<br>steam flow<br>lb/hour                                                                                                                                                                                                                             | degrees F                                                                                                                                                                                                                      | scfm                                                                                                                                                                                         | "wcvac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | "wcvac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IN WC                                                                                                                                                                                                                          | IN WC                                                                                                                                                                                                                                                                                                                                                                                                                                     | IN WC                   | IN WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN WC<br>6 8.58<br>4 8.5791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | degrees F<br>180.75<br>180.75                                                                                                                                                                                                                                                                                                                               | degrees F                                                                                                                                                                                                                                                           | degrees F<br>102.84<br>102.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | degrees F<br>4 95.698<br>5 95.699                                                                                                                                                                                                                                                                                  | degrees F scfm<br>159.14 647.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time 21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T-150-1<br>degrees C<br>61.744<br>97.597<br>99.175<br>99.923                                                                                                                                                                                                 | T-150-2<br>degrees C<br>62.986<br>98.4<br>100.02<br>100.38                                                                                                                                                                                                     | T-150-3<br>legrees C<br>68.576<br>97.627<br>98.757<br>99.826                                                                                                                                                                   | T-150-4<br>degrees C<br>69.401<br>97.503<br>99.515<br>100.27                                                                                                                                                                    | 43.992<br>48.193<br>76.222<br>93.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C<br>43.095<br>48.396<br>76.637<br>93.117                                                                                                                                                                         | degrees C<br>37.156<br>37.211<br>38.235<br>42.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees C<br>37.268<br>37.359<br>38.954<br>43,269                                                                                                                                                                                                                                                               | degrees C<br>37.428<br>37.49<br>37.552<br>38.604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees C<br>38.441<br>38.814<br>39.187<br>40.175                                                                                                                                                                                                                                                                    | evaporator<br>density<br>Grams/ml<br>1.1823<br>1.1819<br>1.1814<br>1.1809                                                                                                                                                                                       | evaporator<br>level<br>Inches<br>136.66<br>136.59<br>136.52<br>136.45                                                                                                                                                                                                                                                            | evaporator<br>steam flow<br>lb/hour<br>1.6159<br>9.6779<br>701.28<br>1132.2                                                                                                                                                                                     | degrees F<br>75.869<br>75.89<br>75.91<br>75.93                                                                                                                                                                                 | scfm<br>166.25<br>166.16<br>166.06<br>165.97                                                                                                                                                 | "wcvac<br>11.564<br>11.56<br>11.555<br>11.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "wcvac<br>48.736<br>48.735<br>48.734<br>48.734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IN WC<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                                                      | IN WC<br>-0.056<br>-0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                                       | IN WC                   | IN WC<br>0 2.100<br>0 2.100<br>0 2.100<br>0 2.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IN WC<br>6 8.58<br>4 8.5791<br>3 8.5782<br>1 8.5773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees F<br>180.75<br>180.75<br>180.75<br>180.76                                                                                                                                                                                                                                                                                                           | degrees F<br>102.92<br>102.93<br>102.94<br>102.95                                                                                                                                                                                                                   | degrees F<br>2 102.84<br>3 102.85<br>4 102.86<br>5 102.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees F<br>4 95.698<br>5 95.699<br>6 95.701<br>7 95.702                                                                                                                                                                                                                                                          | degrees F scfm<br>159.14 647.72<br>159.14 654.22<br>159.15 665.13<br>159.15 652.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Time 21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:15:00 21 JUN 01 09:30:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T-150-1<br>degrees C<br>61.744<br>97.597<br>99.175<br>99.923<br>100.15<br>100.38                                                                                                                                                                             | T-150-2<br>degrees C<br>62.986<br>98.4<br>100.02<br>100.38<br>100.74<br>101.01                                                                                                                                                                                 | T-150-3<br>legrees C<br>68.576<br>97.627<br>98.757<br>99.826<br>100.31<br>100.52                                                                                                                                               | T-150-4<br>degrees C<br>69.401<br>97.503<br>99.515<br>100.27<br>100.48<br>100.69                                                                                                                                                | degrees C<br>43.992<br>48.193<br>76.222<br>93.493<br>96.585<br>97.776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | degrees C<br>43.095<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779                                                                                                                                                     | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852                                                                                                                                                                                                                                           | degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C<br>38.441<br>38.814<br>39.187<br>40.175<br>46.309<br>58.478                                                                                                                                                                                                                                                | evaporator<br>density<br>Grams/ml<br>1.1823<br>1.1819<br>1.1814<br>1.1809<br>1.17795                                                                                                                                                                            | evaporator<br>level<br>Inches<br>136.66<br>136.59<br>136.52<br>136.45<br>136.37<br>136.57                                                                                                                                                                                                                                        | evaporator<br>steam flow<br> Ib/hour                                                                                                                                                                                                                            | degrees F<br>75.869<br>75.89<br>75.91<br>75.93<br>75.951<br>75.971                                                                                                                                                             | scfm<br>166.25<br>166.16<br>166.06<br>165.97<br>165.88<br>165.79                                                                                                                             | "wcvac<br>11.564<br>11.56<br>11.555<br>11.551<br>11.547<br>11.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "wcvac<br>48.736<br>48.735<br>48.734<br>48.734<br>48.733<br>48.732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IN WC<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                                    | IN WC<br>-0.056<br>-0.056<br>-0.056<br>-0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                                   | IN WC                   | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC<br>6 8.58<br>4 8.5791<br>3 8.5782<br>1 8.5773<br>9 8.5763<br>8 8.5754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | degrees F<br>180.75<br>180.75<br>180.75<br>180.76<br>180.76<br>180.76                                                                                                                                                                                                                                                                                       | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96                                                                                                                                                                                                         | degrees F<br>102.84<br>102.85<br>102.85<br>102.87<br>102.87<br>102.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | degrees F 4 95.698 5 95.699 6 95.701 7 95.702 7 95.704 8 95.706                                                                                                                                                                                                                                                    | degrees F scfm<br>159.14 647.7,<br>159.14 654.2,<br>159.15 665.1,<br>159.15 652.8,<br>159.15 647.9,<br>159.16 660.8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 10:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T-150-1<br>degrees C 61.744<br>97.597<br>99.175<br>99.923<br>100.15<br>100.38<br>100.6<br>100.82                                                                                                                                                             | T-150-2<br>legrees C<br>62.986<br>98.4<br>100.02<br>100.38<br>100.74<br>101.01<br>101.24<br>101.47                                                                                                                                                             | T-150-3<br>degrees C<br>68.576<br>97.627<br>98.757<br>99.826<br>100.31<br>100.52<br>100.73<br>100.93                                                                                                                           | T-150-4<br>degrees C<br>69.401<br>97.503<br>99.515<br>100.27<br>100.48<br>100.69<br>100.9                                                                                                                                       | degrees C<br>43.992<br>48.193<br>76.222<br>93.493<br>96.585<br>97.776<br>97.595<br>96.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.095<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779<br>97.469<br>96.063                                                                                                                                              | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278<br>92.289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465                                                                                                                                                                                                                       | degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | degrees C<br>38.441<br>38.814<br>39.187<br>40.175<br>46.309<br>58.478<br>76.601<br>91.963                                                                                                                                                                                                                            | evaporator<br>density  Grams/ml 1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664                                                                                                                                                                                | evaporator<br>level<br>Inches<br>136.66<br>136.59<br>136.52<br>136.45<br>136.37<br>136.57<br>136.84<br>135.9                                                                                                                                                                                                                     | evaporator<br>steam flow<br>lb/hour<br>1.6159<br>9.6779<br>701.28<br>1132.2<br>1406.8<br>1734.8<br>1730.4<br>1727.8                                                                                                                                             | degrees F<br>75.869<br>75.89<br>75.91<br>75.93<br>75.951<br>75.971<br>75.992<br>76.011                                                                                                                                         | scfm<br>166.25<br>166.16<br>166.06<br>165.97<br>165.88<br>165.79<br>165.7                                                                                                                    | "wevac<br>11.564<br>11.56<br>11.555<br>11.551<br>11.547<br>11.543<br>11.538<br>11.534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *wcvac<br>48.736<br>48.735<br>48.734<br>48.734<br>48.733<br>48.732<br>48.732<br>48.731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                           | IN WC<br>-0.056<br>-0.056<br>-0.056<br>-0.056<br>-0.056<br>-0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                               | IN WC                   | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN WC<br>6 8.58<br>4 8.5791<br>3 8.5782<br>1 8.5773<br>9 8.5763<br>8 8.5754<br>6 8.5745<br>5 8.5736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees F<br>180.75<br>180.75<br>180.75<br>180.76<br>180.76<br>180.76<br>180.76                                                                                                                                                                                                                                                                             | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>102.98                                                                                                                                                                                     | degrees F<br>102.84<br>102.85<br>102.86<br>102.87<br>102.87<br>102.88<br>102.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees F 4 95.698 5 95.699 6 95.701 7 95.702 7 95.704 8 95.706 9 95.707 9 95.709                                                                                                                                                                                                                                  | degrees F scfm<br>159.14 647.7:<br>159.14 654.2:<br>159.15 665.1:<br>159.15 62.8:<br>159.16 660.8:<br>159.16 644.4:<br>159.16 644.3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Time 21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:15:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T-150-1<br>degrees C 6<br>61.744<br>97.597<br>99.175<br>99.923<br>100.15<br>100.38<br>100.6                                                                                                                                                                  | T-150-2<br>degrees C<br>62.986<br>98.4<br>100.02<br>100.38<br>100.74<br>101.01<br>101.24                                                                                                                                                                       | T-150-3<br>legrees C<br>68.576<br>97.627<br>98.757<br>99.826<br>100.31<br>100.52<br>100.73                                                                                                                                     | T-150-4<br>degrees C<br>69.401<br>97.503<br>99.515<br>100.27<br>100.48<br>100.69<br>100.9                                                                                                                                       | degrees C<br>43.992<br>48.193<br>76.222<br>93.493<br>96.585<br>97.776<br>97.595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees C<br>43.095<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779<br>97.469                                                                                                                                           | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349                                                                                                                                                                                                                                 | degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | degrees C<br>38.441<br>38.814<br>39.187<br>40.175<br>46.309<br>58.478<br>76.601                                                                                                                                                                                                                                      | evaporator<br>density<br>Grams/mi<br>1.1823<br>1.1819<br>1.1814<br>1.1809<br>1.1795<br>1.1711<br>1.1664                                                                                                                                                         | evaporator<br>level<br>Inches<br>136.66<br>136.59<br>136.52<br>136.45<br>136.37<br>136.57<br>136.84                                                                                                                                                                                                                              | evaporator<br>steam flow<br>lb/hour<br>1.6159<br>9.6779<br>701.28<br>1132.2<br>1406.8<br>1734.8<br>1730.4                                                                                                                                                       | degrees F<br>75.869<br>75.89<br>75.91<br>75.93<br>75.951<br>75.971<br>75.992                                                                                                                                                   | scfm<br>166.25<br>166.16<br>166.06<br>165.97<br>165.88<br>165.79                                                                                                                             | "wcvac<br>11.564<br>11.56<br>11.555<br>11.551<br>11.547<br>11.543<br>11.538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "wcvac<br>48.736<br>48.735<br>48.734<br>48.734<br>48.733<br>48.732<br>48.732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IN WC<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                                    | IN WC<br>-0.056<br>-0.056<br>-0.056<br>-0.056<br>-0.056<br>-0.056                                                                                                                                                                                                                                                                                                                                                                         | IN WC                   | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC<br>6 8.58<br>4 8.5791<br>3 8.5782<br>1 8.5773<br>8 8.5763<br>8 8.5745<br>5 8.5736<br>3 8.5727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees F<br>180.75<br>180.75<br>180.75<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76                                                                                                                                                                                                                                                                   | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.96                                                                                                                                                                                               | degrees F<br>102.84<br>102.85<br>102.86<br>102.87<br>102.87<br>102.88<br>102.88<br>102.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | degrees F 4 95.698 5 95.699 6 95.701 7 95.702 7 95.704 8 95.706 9 95.707 9 95.707                                                                                                                                                                                                                                  | degrees F scfm<br>159.14 647.7;<br>159.14 654.2;<br>159.15 665.1;<br>159.15 652.8;<br>159.16 647.9;<br>159.16 644.4;<br>159.16 642.3;<br>159.17 662.7;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:35:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:30:00 21 JUN 01 09:30:00 21 JUN 01 10:00:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 10:30:00 21 JUN 01 10:45:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T-150-1<br>degrees C<br>61.744<br>97.597<br>99.175<br>99.923<br>100.15<br>100.38<br>100.6<br>100.82<br>101.02<br>101.21                                                                                                                                      | T-150-2 degrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.47 101.71 101.95 102.19                                                                                                                                                                   | T-150-3<br>legrees C<br>68.576<br>97.627<br>98.757<br>99.826<br>100.31<br>100.52<br>100.73<br>100.93<br>101.22<br>101.71<br>102.19                                                                                             | T-150-4<br>degrees C<br>69.401<br>97.503<br>99.515<br>100.27<br>100.48<br>100.69<br>101.11<br>101.51                                                                                                                            | degrees C<br>43.992<br>48.193<br>76.222<br>93.493<br>96.585<br>97.776<br>97.595<br>96.2<br>94.211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees C<br>43.095<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779<br>97.469<br>96.063<br>94.088<br>95.2<br>96.137                                                                                                     | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278<br>92.289<br>96.806<br>98.98<br>100.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01                                                                                                                                                                                         | degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | degrees C<br>38.441<br>38.814<br>39.187<br>40.175<br>46.309<br>58.478<br>76.601<br>91.963<br>98.899<br>100.89                                                                                                                                                                                                        | evaporator<br>density  Grams/ml  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739                                                                                                                                                   | evaporator<br>level  <br>  136.66<br>  136.59<br>  136.52<br>  136.45<br>  136.37<br>  136.57<br>  136.84<br>  135.9<br>  132.32<br>  128.36<br>  124.34                                                                                                                                                                         | evaporator<br>steam flow<br>Ib/hour<br>1.6159<br>9.6779<br>701.28<br>1132.2<br>1406.8<br>1734.8<br>1730.4<br>1727.8<br>1729.9<br>1729.8                                                                                                                         | degrees F<br>75.869<br>75.89<br>75.91<br>75.93<br>75.951<br>75.971<br>75.992<br>76.011<br>76.032<br>76.052<br>76.072                                                                                                           | scfm<br>166.25<br>166.16<br>166.06<br>165.97<br>165.88<br>165.79<br>165.7<br>165.61<br>165.52<br>165.43                                                                                      | "wevac<br>11.564<br>11.565<br>11.555<br>11.551<br>11.547<br>11.543<br>11.538<br>11.534<br>11.53<br>11.526<br>11.521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **Wevac 48.736 48.735 48.734 48.733 48.732 48.731 48.73 48.73 48.73 48.73 48.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                  | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                                                                                        | IN WC                   | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.190 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN WC 8.58 8.5791 3 8.5782 1 8.5773 9 8.5754 6 8.5745 3 8.5727 2 8.5717 9 8.5708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees F<br>180.75<br>180.75<br>180.75<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76                                                                                                                                                                                                                                                         | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>102.98<br>103.99<br>103.90                                                                                                                                                                 | degrees F<br>102.88<br>102.86<br>102.87<br>102.87<br>102.87<br>102.88<br>102.89<br>102.99<br>102.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees F 4 95.698 5 95.699 6 95.701 7 95.702 8 95.706 9 95.707 9 95.709 1 95.711 2 95.712 3 95.714                                                                                                                                                                                                                | degrees F scfm<br>159.14 647.7;<br>159.14 654.2;<br>159.15 665.1;<br>159.15 647.9;<br>159.16 660.8;<br>159.16 644.4;<br>159.16 642.3;<br>159.17 662.7;<br>159.17 641.5;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21 JUN 01 08:15:00<br>21 JUN 01 08:30:00<br>21 JUN 01 08:45:00<br>21 JUN 01 09:00:00<br>21 JUN 01 09:50:00<br>21 JUN 01 09:45:00<br>21 JUN 01 00:45:00<br>21 JUN 01 10:00:00<br>21 JUN 01 10:30:00<br>21 JUN 01 10:45:00<br>21 JUN 01 10:45:00<br>21 JUN 01 11:45:00<br>21 JUN 01 11:15:00                                                                                                                                                                                                                                                                                                                                                                                                                                           | T-150-1  degrees C 61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.21 101.4 101.6 101.79                                                                                                                                                   | T-150-2 degrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.47 101.77 101.95 102.19 102.42 102.66                                                                                                                                                            | T-150-3 degrees C 68.576 97.627 98.757 99.826 100.31 100.52 100.73 100.93 101.22 101.71 102.19 102.68 102.84                                                                                                                   | T-150-4<br>degrees C<br>69.401<br>97.503<br>99.515<br>100.27<br>100.48<br>100.69<br>100.9<br>101.11<br>101.51<br>101.97<br>102.44<br>102.9<br>103                                                                               | degrees C<br>43.992<br>48.193<br>76.222<br>93.493<br>96.585<br>97.776<br>97.595<br>96.2<br>94.211<br>95.327<br>96.272<br>97.217<br>98.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43.095<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779<br>97.469<br>96.063<br>94.088<br>95.2<br>96.137<br>97.075<br>98.013                                                                                              | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278<br>92.289<br>96.806<br>98.98<br>100.07<br>100.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59                                                                                                                                                                     | degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62<br>101.25<br>100.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees C<br>38.441<br>38.814<br>39.187<br>40.175<br>46.309<br>58.478<br>76.601<br>91.963<br>98.899<br>100.89<br>102.04<br>102.56<br>102.89                                                                                                                                                                          | evaporator<br>density<br>Grams/mi<br>1.1823<br>1.1819<br>1.1814<br>1.1809<br>1.1795<br>1.1711<br>1.1664<br>1.1624<br>1.1624<br>1.1695<br>1.1739<br>1.1731                                                                                                       | evaporator<br>level   136.66<br>136.59<br>136.52<br>136.45<br>136.37<br>136.57<br>136.84<br>135.9<br>132.32<br>128.36<br>124.34<br>120.3                                                                                                                                                                                         | evaporator<br>steam flow<br>Ib/hour<br>1.6159<br>9.6779<br>701.28<br>1132.2<br>1406.8<br>1730.4<br>1727.8<br>1729.9<br>1729.8<br>1724.2<br>1735.2                                                                                                               | degrees F<br>75.869<br>75.89<br>75.91<br>75.93<br>75.951<br>75.971<br>75.992<br>76.011<br>76.032<br>76.052<br>76.072<br>76.072<br>76.073                                                                                       | scfm<br>166.25<br>166.16<br>166.06<br>165.97<br>165.88<br>165.79<br>165.61<br>165.52<br>165.43<br>165.34<br>165.25                                                                           | "wevac<br>11.564<br>11.555<br>11.555<br>11.551<br>11.547<br>11.543<br>11.538<br>11.534<br>11.53<br>11.526<br>11.521<br>11.521<br>11.517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **wcvac 48.736 48.735 48.734 48.733 48.732 48.731 48.73 48.73 48.73 48.73 48.73 48.73 48.729 48.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IN WC 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                                                                                                                                  | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                                                                          | IN WC                   | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC 8.58 4 8.5791 3 8.5762 1 8.5773 9 8.5763 8 8.5754 6 8.5745 3 8.5722 8.5717 9 8.5708 8 8.5699 7 8.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees F<br>180.75<br>180.75<br>180.75<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76                                                                                                                                                                                                                                     | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>102.98<br>103.103<br>103.01                                                                                                                                                                | degrees F 102.84 102.84 102.85 102.86 102.87 102.87 102.87 102.87 102.87 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 | degrees F 4 95.698 5 95.698 6 95.701 7 95.702 7 95.704 8 95.706 9 95.707 9 95.709 1 95.711 2 95.712 3 95.714 4 95.715 5 95.717                                                                                                                                                                                     | degrees F scfm 159.14 647.77 159.14 654.22 159.15 652.83 159.15 660.81 159.16 660.81 159.16 642.33 159.17 641.41 159.17 641.59.17 633.22 159.18 662.74 159.18 662.74 159.18 664.03 159.18 664.03 159.18 664.03 159.18 664.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 09:45:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 10:30:00 21 JUN 01 11:30:00 21 JUN 01 11:15:00 21 JUN 01 11:30:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00                                                                                                                                                                                                                                                                                                                                                                                             | T-150-1  degrees C 61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.21 101.4 101.6 101.79 101.98 102.18                                                                                                                                     | T-150-2 legrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.71 101.95 102.19 102.42 102.66 102.79                                                                                                                                                     | T-150-3<br>legrees C<br>68.576<br>97.627<br>98.757<br>99.826<br>100.31<br>100.52<br>100.73<br>100.93<br>101.22<br>101.71<br>102.19<br>102.68<br>102.84<br>102.94<br>103.04                                                     | T-150-4<br>degrees C<br>69.401<br>97.503<br>99.515<br>100.27<br>100.48<br>100.69<br>101.11<br>101.51<br>101.97<br>102.94<br>103.103.09<br>103.103.09                                                                            | degrees C<br>43.992<br>48.193<br>76.222<br>93.493<br>96.585<br>97.776<br>97.595<br>96.2<br>94.211<br>95.327<br>96.272<br>97.217<br>98.162<br>98.928<br>95.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43.095<br>48.396<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779<br>97.469<br>96.063<br>94.088<br>95.2<br>96.137<br>97.075<br>98.013<br>98.691<br>95.048                                                                | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278<br>92.289<br>96.806<br>98.98<br>100.07<br>100.82<br>100.82<br>99.067<br>97.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815<br>98.835                                                                                                                                                 | degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62<br>101.25<br>100.85<br>99.27<br>98.483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | degrees C<br>38.441<br>38.814<br>39.187<br>40.175<br>46.309<br>58.478<br>76.601<br>91.963<br>98.899<br>100.89<br>102.04<br>102.56<br>102.89<br>99.51<br>99.579                                                                                                                                                       | evaporator<br>density  Grams/ml  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739 1.1781 1.1824 1.1827 1.1909                                                                                                                       | evaporator<br>level   136.66<br>136.59<br>136.52<br>136.45<br>136.37<br>136.57<br>136.84<br>135.9<br>132.32<br>128.36<br>124.34<br>120.3<br>116.27<br>121.79                                                                                                                                                                     | evaporator<br>steam flow<br>Ib/hour<br>1.6159<br>9.6779<br>701.28<br>1132.2<br>1406.8<br>1734.8<br>1730.4<br>1727.8<br>1729.9<br>1729.9<br>1724.2<br>1735.2<br>1729.9<br>1724.1                                                                                 | degrees F<br>75.869<br>75.89<br>75.91<br>75.95<br>75.951<br>75.971<br>75.992<br>76.011<br>76.032<br>76.052<br>76.072<br>76.093<br>76.113<br>76.133<br>76.154                                                                   | scfm<br>166.25<br>166.16<br>166.06<br>165.97<br>165.88<br>165.79<br>165.7<br>165.61<br>165.52<br>165.43<br>165.34<br>165.25<br>165.15                                                        | "wevac<br>11.564<br>11.565<br>11.555<br>11.551<br>11.543<br>11.538<br>11.534<br>11.534<br>11.526<br>11.521<br>11.517<br>11.513<br>11.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *Wcvac 48.736 48.736 48.735 48.734 48.733 48.732 48.732 48.731 48.73 48.73 48.729 48.729 48.729 48.727 48.727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC  0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                                                                                                               | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                                                                   | IN WC                   | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.098 0 2.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN WC 8.58 4 8.5791 3 8.5782 1 8.5763 8 8.5763 8 8.5764 5 8.5736 3 8.5727 2 8.5717 9 8.5699 7 8.5699 7 8.5694 4 8.5671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | degrees F<br>180.75<br>180.75<br>180.75<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76                                                                                                                                                                                                                           | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>102.98<br>103.03<br>103.01<br>103.02                                                                                                                                                       | degrees F. 102.84 102.85 102.85 102.85 102.85 102.85 102.85 102.85 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.9 | degrees F<br>4 95.698<br>5 95.698<br>6 95.701<br>7 95.702<br>8 95.706<br>9 95.707<br>9 95.709<br>1 95.711<br>2 95.712<br>2 95.714<br>4 95.715<br>5 95.717<br>6 95.719<br>7 95.72                                                                                                                                   | degrees F scfm 159.14 647.77 159.14 654.27 159.15 652.87 159.16 660.87 159.16 644.23 159.17 641.59.17 641.59.17 633.22 159.18 662.74 159.18 664.09 159.18 664.09 159.18 664.09 159.18 664.09 159.18 664.09 159.18 674.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:30:00 21 JUN 01 09:00:00 21 JUN 01 09:15:00 21 JUN 01 09:45:00 21 JUN 01 09:45:00 21 JUN 01 10:00:00 21 JUN 01 10:30:00 21 JUN 01 10:30:00 21 JUN 01 10:45:00 21 JUN 01 10:45:00 21 JUN 01 11:00:00 21 JUN 01 11:50:00 21 JUN 01 11:50:00 21 JUN 01 11:30:00                                                                                                                                                                                                                                                                                                                                                                                                                | T-150-1  degrees C 61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.21 101.4 101.6 101.79 101.98 102.18                                                                                                                                     | T-150-2<br>degrees C 62.986<br>98.4<br>100.02<br>100.38<br>100.74<br>101.01<br>101.24<br>101.47<br>101.71<br>101.95<br>102.19<br>102.66<br>102.79                                                                                                              | T-150-3<br>legrees C<br>68.576<br>97.627<br>98.757<br>99.826<br>100.31<br>100.52<br>100.73<br>100.93<br>101.22<br>101.71<br>102.19<br>102.68<br>102.84                                                                         | T-150-4<br>degrees C<br>69.401<br>97.503<br>99.515<br>100.27<br>100.48<br>100.69<br>101.11<br>101.51<br>101.97<br>102.44<br>102.9<br>103<br>103.09                                                                              | 43,992<br>48,193<br>76,222<br>93,493<br>96,585<br>97,776<br>97,595<br>96,2<br>94,211<br>95,327<br>96,272<br>97,217<br>98,162<br>98,928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.095<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779<br>97.469<br>96.063<br>94.088<br>95.2<br>96.137<br>97.075<br>98.013<br>98.691                                                                                    | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278<br>92.289<br>96.806<br>98.98<br>100.07<br>100.82<br>99.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | degrees C<br>37.268<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815                                                                                                                                                 | degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62<br>101.25<br>100.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees C<br>38.441<br>38.187<br>40.175<br>46.309<br>58.478<br>76.601<br>91.963<br>98.899<br>102.04<br>102.56<br>102.89<br>99.51                                                                                                                                                                                     | evaporator<br>density  Grams/ml  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739 1.1781 1.1824 1.1824                                                                                                                              | evaporator<br>level   136.66<br>136.59<br>136.52<br>136.45<br>136.37<br>136.37<br>136.37<br>132.32<br>128.36<br>124.34<br>120.3<br>116.27<br>121.79                                                                                                                                                                              | evaporator<br>steam flow<br>Ib/hour<br>1.6159<br>9.6779<br>701.28<br>1132.2<br>1406.8<br>1730.4<br>1727.8<br>1729.9<br>1729.9<br>1729.8<br>1724.2<br>1735.2<br>1729.9                                                                                           | degrees F<br>75.869<br>75.89<br>75.91<br>75.93<br>75.971<br>75.971<br>75.992<br>76.011<br>76.032<br>76.052<br>76.052<br>76.072<br>76.093<br>76.113                                                                             | scfm<br>166.25<br>166.16<br>166.06<br>165.97<br>165.88<br>165.79<br>165.7<br>165.52<br>165.43<br>165.34<br>165.25<br>165.15                                                                  | "wevac<br>11.564<br>11.555<br>11.555<br>11.551<br>11.547<br>11.543<br>11.538<br>11.534<br>11.53<br>11.526<br>11.521<br>11.517<br>11.513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *Wevac 48.736 48.735 48.734 48.734 48.732 48.732 48.731 48.73 48.73 48.729 48.729 48.729 48.728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN WC 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                                                                                                                            | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                                                                          | IN WC                   | IN WC 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN WC 8.58 4 8.5791 3 8.5782 1 8.5773 8 8.5763 8 8.5745 6 8.5745 6 8.5736 3 8.5727 2 8.5707 9 8.5699 7 8.5699 7 8.5694 4 8.5671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees F<br>180.75<br>180.75<br>180.75<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76                                                                                                                                                                                                                           | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.99<br>103.91<br>103.01<br>103.01<br>103.02                                                                                                                                                       | degrees F. 102.84 102.85 102.85 102.85 102.85 102.85 102.85 102.85 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.9 | degrees F<br>4 95.698<br>5 95.698<br>6 95.701<br>7 95.702<br>8 95.706<br>9 95.707<br>9 95.709<br>1 95.711<br>2 95.712<br>2 95.714<br>4 95.715<br>5 95.717<br>6 95.719<br>7 95.72                                                                                                                                   | degrees F scfm 159.14 647.77 159.14 654.27 159.15 652.87 159.16 660.87 159.16 644.23 159.17 641.59.17 641.59.17 633.22 159.18 662.74 159.18 664.09 159.18 664.09 159.18 664.09 159.18 664.09 159.18 664.09 159.18 674.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 09:45:00 21 JUN 01 10:15:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 11:00:00 21 JUN 01 11:15:00 21 JUN 01 11:15:00 21 JUN 01 11:15:00 21 JUN 01 11:15:00 21 JUN 01 11:15:00 21 JUN 01 11:15:00 21 JUN 01 11:30:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00                                                                                                                                                                                                                                                                                                                 | T-150-1  degrees C 61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.21 101.4 101.6 101.79 101.98 102.18                                                                                                                                     | T-150-2 legrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.71 101.95 102.19 102.42 102.66 102.79 102.92 103.05                                                                                                                                       | T-150-3<br>legrees C<br>68.576<br>97.627<br>98.757<br>99.826<br>100.31<br>100.52<br>100.73<br>101.22<br>101.71<br>102.19<br>102.68<br>102.84<br>102.94<br>103.04<br>103.14                                                     | T-150-4<br>degrees C<br>69.401<br>97.503<br>99.515<br>100.27<br>100.48<br>100.69<br>101.11<br>101.51<br>101.97<br>102.9<br>103.18<br>103.09<br>103.18                                                                           | degrees C<br>43.992<br>48.193<br>76.222<br>93.493<br>96.585<br>97.776<br>97.595<br>96.2<br>94.211<br>95.327<br>96.272<br>97.217<br>98.162<br>98.928<br>95.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43.095<br>48.396<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779<br>97.469<br>96.063<br>94.088<br>95.2<br>96.137<br>97.075<br>98.013<br>98.691<br>95.048                                                                | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278<br>92.289<br>96.806<br>98.98<br>100.07<br>100.82<br>100.82<br>99.067<br>97.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815<br>98.835                                                                                                                                                 | degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62<br>101.25<br>100.85<br>99.27<br>98.483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | degrees C<br>38.441<br>38.814<br>39.187<br>40.175<br>46.309<br>58.478<br>76.601<br>91.963<br>98.899<br>100.89<br>102.04<br>102.56<br>102.89<br>99.51<br>99.579                                                                                                                                                       | evaporator<br>density<br>Grams/mi<br>1.1823<br>1.1819<br>1.1814<br>1.1809<br>1.1795<br>1.1711<br>1.1664<br>1.1624<br>1.1648<br>1.1695<br>1.1739<br>1.1781<br>1.1824<br>1.1867<br>1.1909                                                                         | evaporator<br>level   136.66<br>136.59<br>136.52<br>136.45<br>136.37<br>136.57<br>136.84<br>135.9<br>132.32<br>128.36<br>124.34<br>120.3<br>116.27<br>121.79<br>124.49<br>126.51                                                                                                                                                 | evaporator<br>steam flow<br>IIb/hour<br>1.6159<br>9.6779<br>701.28<br>1132.2<br>1406.8<br>1730.4<br>1727.8<br>1729.9<br>1729.8<br>1729.2<br>1735.2<br>1735.2<br>1746.7<br>1746.7                                                                                | degrees F<br>75.869<br>75.89<br>75.91<br>75.95<br>75.951<br>75.971<br>75.992<br>76.011<br>76.032<br>76.052<br>76.072<br>76.093<br>76.113<br>76.133<br>76.154                                                                   | scfm<br>166.25<br>166.16<br>166.06<br>165.97<br>165.88<br>165.79<br>165.7<br>165.61<br>165.52<br>165.43<br>165.34<br>165.25<br>165.15                                                        | "wevac<br>11.564<br>11.565<br>11.555<br>11.551<br>11.543<br>11.538<br>11.534<br>11.534<br>11.526<br>11.521<br>11.517<br>11.513<br>11.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *Wcvac 48.736 48.736 48.735 48.734 48.733 48.732 48.732 48.731 48.73 48.73 48.729 48.729 48.729 48.727 48.727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC  0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                                                                                                               | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                                                                   | IN WC                   | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.098 0 2.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN WC 8.58 4 8.5791 3 8.5782 1 8.5763 8 8.5763 8 8.5764 5 8.5736 3 8.5727 2 8.5717 9 8.5699 7 8.5699 7 8.5694 4 8.5671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | degrees F<br>180.75<br>180.75<br>180.75<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76                                                                                                                                                                                                                           | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>102.98<br>103.03<br>103.01<br>103.02                                                                                                                                                       | degrees F. 102.84 102.85 102.85 102.85 102.85 102.85 102.85 102.85 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.9 | degrees F<br>4 95.698<br>5 95.698<br>6 95.701<br>7 95.702<br>8 95.706<br>9 95.707<br>9 95.709<br>1 95.711<br>2 95.712<br>2 95.714<br>4 95.715<br>5 95.717<br>6 95.719<br>7 95.72                                                                                                                                   | degrees F scfm 159.14 647.77 159.14 654.27 159.15 652.87 159.16 660.87 159.16 644.23 159.17 641.59.17 641.59.17 633.22 159.18 662.74 159.18 664.09 159.18 664.09 159.18 664.09 159.18 664.09 159.18 664.09 159.18 674.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 10:00:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 10:45:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00                                                                                                                                                                                                                                                                                                                                                                          | T-150-1  degrees C 61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.21 101.4 101.6 101.79 101.98 102.37  EVAPORATO                                                                                                                          | T-150-2 legrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.71 101.95 102.19 102.42 102.66 102.79 102.92 103.05                                                                                                                                       | T-150-3 legrees C 68.576 97.627 98.757 99.826 100.31 100.52 100.73 101.92 101.71 102.19 102.68 102.84 103.04 103.14  TERS, 00311                                                                                               | T-150-4 degrees C 69.401 97.503 99.515 100.27 100.48 100.69 100.9 101.11 101.51 101.97 102.44 102.9 103.18 103.09 103.18 103.26                                                                                                 | degrees C<br>43,992<br>48,193<br>76,222<br>93,493<br>96,585<br>97,776<br>97,595<br>96,22<br>94,211<br>95,327<br>96,272<br>97,217<br>98,162<br>98,928<br>95,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.095<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779<br>97.469<br>96.063<br>94.088<br>95.2<br>96.137<br>97.075<br>98.013<br>98.691<br>95.248<br>95.229                                                                | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278<br>92.289<br>96.806<br>98.98<br>100.02<br>100.82<br>99.067<br>97.764<br>98.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815<br>98.835<br>99.176                                                                                                                                       | degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62<br>101.25<br>100.85<br>99.27<br>98.483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | degrees C<br>38.441<br>38.814<br>39.187<br>40.175<br>46.309<br>58.478<br>76.601<br>91.963<br>98.899<br>100.89<br>102.04<br>102.56<br>102.89<br>99.51<br>99.579                                                                                                                                                       | evaporator<br>density  Grams/ml  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739 1.1781 1.1824 1.1827 1.1909                                                                                                                       | evaporator<br>level   136.66<br>136.59<br>136.52<br>136.45<br>136.37<br>136.57<br>136.84<br>135.9<br>132.32<br>128.36<br>124.34<br>120.3<br>116.27<br>121.79                                                                                                                                                                     | evaporator<br>steam flow<br>Ib/hour<br>1.6159<br>9.6779<br>701.28<br>1132.2<br>1406.8<br>1734.8<br>1730.4<br>1727.8<br>1729.9<br>1729.9<br>1724.2<br>1735.2<br>1729.9<br>1724.1                                                                                 | degrees F<br>75.869<br>75.89<br>75.91<br>75.951<br>75.951<br>75.971<br>75.992<br>76.011<br>76.032<br>76.052<br>76.072<br>76.093<br>76.113<br>76.133<br>76.154<br>76.174                                                        | scfm<br>166.25<br>166.16<br>166.06<br>165.97<br>165.88<br>165.79<br>165.7<br>165.61<br>165.52<br>165.43<br>165.34<br>165.25<br>165.15                                                        | "wcvac<br>11.565<br>11.555<br>11.555<br>11.557<br>11.543<br>11.533<br>11.533<br>11.526<br>11.521<br>11.517<br>11.513<br>11.504<br>11.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *Wcvac 48.736 48.736 48.735 48.731 48.732 48.732 48.731 48.73 48.73 48.729 48.729 48.729 48.727 48.727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IN WC 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                                                                                                                      | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                                                     | IN WC                   | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.098 0 2.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN WC 8.58 4 8.5791 3 8.5782 1 8.5763 8 8.5763 8 8.5764 5 8.5736 3 8.5727 2 8.5717 9 8.5699 7 8.5699 7 8.5694 4 8.5671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | degrees F<br>180.75<br>180.75<br>180.75<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76                                                                                                                                                                                                                           | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>102.99<br>103.03<br>103.01<br>103.02<br>103.03<br>103.04                                                                                                                                   | degrees F. 102.84 102.85 102.85 102.85 102.85 102.85 102.85 102.85 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.9 | degrees F<br>95.698<br>5 95.698<br>95.701<br>7 95.702<br>7 95.704<br>8 95.706<br>9 95.707<br>9 95.707<br>9 95.711<br>2 95.712<br>3 95.714<br>4 95.715<br>5 95.717<br>9 95.72<br>8 95.722                                                                                                                           | degrees F         scfm           159.14         647.77           159.15         654.22           159.15         652.83           159.15         652.83           159.16         660.81           159.16         644.41           159.17         642.33           159.17         641.5           159.18         662.74           159.18         664.03           159.18         664.03           159.19         674.12           159.19         674.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 10:00:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 10:45:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00                                                                                                                                                                                                                                                                                                                                                                          | T-150-1  degrees C (61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.01 101.4 101.6 101.79 101.98 102.18 102.37                                                                                                                             | T-150-2 legrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.71 101.95 102.19 102.42 102.66 102.79 102.92 103.05                                                                                                                                       | T-150-3 legrees C 68.576 97.627 98.757 99.826 100.31 100.52 100.73 101.92 101.71 102.19 102.68 102.84 103.04 103.14  TERS, 00311                                                                                               | T-150-4 degrees C 69.401 97.503 99.515 100.27 100.48 100.69 100.9 101.11 101.51 101.97 102.44 102.9 103.18 103.09 103.18 103.26                                                                                                 | degrees C<br>43,992<br>48,193<br>76,222<br>93,493<br>96,585<br>97,776<br>97,595<br>96,22<br>94,211<br>95,327<br>96,272<br>97,217<br>98,162<br>98,928<br>95,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.095<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779<br>97.469<br>96.063<br>94.088<br>95.2<br>96.137<br>97.075<br>98.013<br>98.691<br>95.248<br>95.229                                                                | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278<br>92.289<br>96.806<br>98.98<br>100.02<br>100.82<br>99.067<br>97.764<br>98.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815<br>98.835<br>99.176                                                                                                                                       | degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62<br>101.25<br>100.85<br>99.27<br>98.483<br>98.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | degrees C<br>38.441<br>38.814<br>39.187<br>40.175<br>46.309<br>58.478<br>76.601<br>91.963<br>98.899<br>100.89<br>102.56<br>102.56<br>102.99<br>99.51<br>99.779<br>100.05                                                                                                                                             | evaporator density  Grams/ml  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739 1.1781 1.1824 1.1827 1.1909 1.1952  D-150-1 evaporator density                                                                                       | evaporator<br>level   136.66<br>136.59<br>136.52<br>136.45<br>136.37<br>136.57<br>136.84<br>135.9<br>132.32<br>128.36<br>124.34<br>120.3<br>116.27<br>121.79<br>124.49<br>126.51                                                                                                                                                 | evaporator<br>steam flow<br>Ib/hour<br>1.6159<br>9.6779<br>701.28<br>1132.2<br>1406.8<br>1734.8<br>1730.4<br>1727.8<br>1729.9<br>1729.8<br>1724.2<br>1735.2<br>1729.9<br>1724.1<br>1746.7<br>1715.2                                                             | degrees F<br>75.869<br>75.89<br>75.91<br>75.951<br>75.951<br>75.971<br>75.992<br>76.011<br>76.032<br>76.052<br>76.072<br>76.093<br>76.113<br>76.133<br>76.154<br>76.174                                                        | scfm<br>166.25<br>166.16<br>166.06<br>165.97<br>165.88<br>165.79<br>165.61<br>165.52<br>165.43<br>165.34<br>165.25<br>165.15<br>165.97                                                       | "wcvac<br>11.565<br>11.555<br>11.555<br>11.557<br>11.543<br>11.533<br>11.533<br>11.526<br>11.521<br>11.517<br>11.513<br>11.504<br>11.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *Wcvac 48.736 48.736 48.735 48.731 48.732 48.732 48.731 48.73 48.73 48.729 48.729 48.729 48.727 48.727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IN WC 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                                                                                                                      | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                                                                     | IN WC  PD-130-3-1 IN WC | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC 8.58 4 8.5791 3 8.5763 8 8.5754 6 8.5745 8.5736 8 8.5722 8.5717 9 8.5708 8 8.5699 7 8.566 2 8.5662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | degrees F<br>180.75<br>180.75<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76<br>180.76                                                                                                                                                                                                                 | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>103.93<br>103.01<br>103.02<br>103.03<br>103.04                                                                                                                                             | degrees F 102.84 102.84 102.85 102.85 102.85 102.85 102.85 102.85 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | degrees F 4 95.698 5 95.698 6 95.701 7 95.702 7 95.704 8 95.706 9 95.707 9 95.709 1 95.711 2 95.712 3 95.714 4 95.715 5 95.717 6 95.719 7 95.722  T-130-3-1 degrees F                                                                                                                                              | degrees F scfm 159.14 647.7/ 159.14 654.2/ 159.15 652.8/ 159.15 652.8/ 159.16 660.8/ 159.16 644.4/ 159.16 642.3/ 159.17 642.3/ 159.17 633.2/ 159.18 662.7/ 159.18 664.0/ 159.18 664.9/ 159.18 654.9/ 159.19 674.1/ 159.19 674.1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 09:45:00 21 JUN 01 10:30:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00                                                                                                                                                                                                                                                                                                                 | T-150-1  degrees C (61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.21 101.4 101.6 101.79 101.98 102.37  EVAPORATO  T-150-1  degrees C C 103.53 103.72                                                                                     | T-150-2 legrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.47 101.71 101.95 102.19 102.42 102.66 102.79 102.92 103.05                                                                                                                                | T-150-3 legrees C 68.576 97.627 99.757 99.826 100.31 100.52 100.73 101.22 101.71 102.19 102.68 102.84 102.94 103.04 103.14  TERS, 0031                                                                                         | T-150-4 degrees C 69.401 97.503 99.515 100.27 100.48 100.69 100.9 101.11 101.51 101.97 102.44 102.9 103.18 103.26  END-2  T-150-4 degrees C 103.79 103.79                                                                       | degrees C 43,992 48,193 76,222 93,493 96,585 97,776 97,595 96,22 94,211 95,327 96,277 98,162 98,923 95,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43.095<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779<br>97.469<br>96.063<br>94.088<br>95.2<br>96.137<br>97.075<br>98.013<br>98.691<br>95.229                                                                          | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278<br>92.289<br>96.806<br>98.98<br>100.02<br>100.82<br>99.07<br>77.764<br>98.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815<br>98.835<br>99.176                                                                                                                                       | degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62<br>101.25<br>100.85<br>99.27<br>98.483<br>98.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | degrees C<br>38.441<br>38.814<br>39.187<br>40.175<br>46.309<br>58.478<br>76.601<br>91.963<br>98.899<br>100.89<br>102.04<br>102.56<br>102.89<br>99.51<br>99.779<br>100.05                                                                                                                                             | evaporator density  Grams/mi  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1624 1.1685 1.1739 1.1781 1.1824 1.1867 1.1909 1.1952  D-150-1 evaporator density  Grams/mi 1.2209 1.2251                                                               | evaporator level Inches 136.66 136.59 136.52 136.45 136.37 136.57 136.84 135.99 132.32 128.36 124.34 120.3 116.27 121.79 124.49 126.51  L-150-1 evaporator level nches 135.91 133.45                                                                                                                                             | evaporator<br>steam flow<br>Ib/hour<br>1.6159<br>9.6779<br>701.28<br>1132.2<br>1406.8<br>1730.4<br>1727.8<br>1729.9<br>1729.9<br>1729.9<br>1724.1<br>1746.7<br>1715.2                                                                                           | degrees F<br>75.869<br>75.89<br>75.91<br>75.93<br>75.951<br>75.971<br>75.992<br>76.011<br>76.032<br>76.052<br>76.072<br>76.093<br>76.113<br>76.133<br>76.154<br>76.174                                                         | scfm 166.25 166.16 166.06 165.97 165.79 165.7 165.61 165.52 165.43 165.25 165.48 165.26 164.97 164.88                                                                                        | "wcvac 11.564 11.555 11.555 11.551 11.543 11.538 11.526 11.527 11.543 11.537 11.526 11.527 11.513 11.509 11.504 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | **Wcvac 48.736 48.735 48.731 48.732 48.732 48.731 48.73 48.73 48.729 48.729 48.729 48.726 ***Page 48.726 ***Page 48.727 48.727 48.726 ***Page 48.727 48.727 48.726 ***Page 48.727 48.727 48.726 ***Page 48.727 48.727 48.726 ***Page 48.727 48.727 48.727 48.726 ***Page 48.727 48.727 48.727 48.726 ***Page 48.727 48.727 48.726 ***Page 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 48.727 4 | IN WC  0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                                                                                                                     | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                      | IN WC  PD-130-3-1 IN WC | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.098 0 2.098 0 2.098 0 2.098 0 1.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC 8.58 8.5791 8.57793 8.5763 8.5754 6.8.5736 3.8.5722 8.5717 9.8.5708 8.5669 7.8.5662 PD-130-1 IN WC 3.5662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees F 180.75 180.75 180.75 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.77                                                                                                                                                                                                                                                 | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>103.93<br>103.01<br>103.02<br>103.03<br>103.04                                                                                                                                             | degrees F 102.84 102.85 102.86 102.86 102.86 102.86 102.86 102.86 102.86 102.86 102.86 102.86 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 | degrees F<br>4 95.698<br>5 95.699<br>6 95.701<br>7 95.702<br>8 95.706<br>9 95.707<br>9 95.709<br>1 95.711<br>2 95.712<br>3 95.714<br>4 95.715<br>5 95.717<br>6 95.719<br>7 95.722<br>7 95.722                                                                                                                      | degrees F         scfm           159.14         647.77           159.14         654.22           159.15         655.28           159.15         652.83           159.15         647.93           159.16         660.81           159.16         644.41           159.17         642.33           159.17         641.5           159.18         662.74           159.18         664.00           159.19         644.02           159.19         644.02           159.19         647.82    T-130-4-1  degrees F  scfm  559.21  640.72  159.21  640.72  640.72  159.21  640.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:45:00 21 JUN 01 09:45:00 21 JUN 01 09:45:00 21 JUN 01 10:15:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 11:00:00 21 JUN 01 11:30:00 21 JUN 01 11:15:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00                                                                                                                                                                                                                                                                           | T-150-1  degrees C c 61.744 97.597 99.175 99.923 100.6 100.82 101.02 101.02 101.04 101.6 101.79 101.98 102.18 102.37  EVAPORATO  T-150-1  degrees C c 103.53 103.72 103.91 104.11                                                                            | T-150-2 legrees C                                                                                                                                                                                                                                              | T-150-3 legrees C 68.576 97.627 98.757 99.826 100.31 100.52 100.73 100.93 101.22 101.71 102.19 102.68 102.84 103.04 103.14  TERS, 0031I  T-150-3 legrees C 103.9 104.16 104.43 104.7                                           | T-150-4 degrees C 69.401 97.503 99.515 100.27 100.48 100.69 100.9 101.11 101.51 101.97 102.94 103 103.09 103.18 103.26  END-2  T-150-4 degrees C 103.79 103.96 104.24 104.52                                                    | degrees C<br>43,992<br>48,193<br>76,222<br>93,493<br>96,595<br>97,776<br>97,595<br>96,272<br>97,217<br>98,162<br>98,228<br>95,13<br>95,32<br>7-150-5<br>degrees C<br>97,637<br>98,124<br>98,612<br>98,612<br>98,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees C 43.095 48.396 76.637 93.117 97.779 97.469 96.063 94.088 95.2 96.137 97.075 98.013 98.691 95.048 95.229                                                                                                          | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278<br>92.289<br>96.806<br>98.98<br>100.07<br>100.82<br>100.82<br>99.67<br>97.764<br>98.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815<br>99.176                                                                                                                                                 | 7.150-9<br>degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62<br>101.25<br>100.85<br>99.27<br>98.483<br>98.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees C 38.441 38.814 39.187 40.175 46.309 58.478 76.601 91.963 98.899 100.89 102.56 102.59 100.05  T-150-10 degrees C 102.58 102.94 103.55                                                                                                                                                                        | evaporator density  Grams/ml  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739 1.1781 1.1827 1.1909 1.1952  D-150-1 evaporator density  Grams/ml 1.2209 1.2251 1.2294 1.2337                                                        | evaporator   level                                                                                                                                                                                                                                                                                                               | evaporator   steam flow    b/hour   1.6159   9.6779     701.28   1132.2     1406.8   1734.8     1730.4   1727.8     1729.9   1729.9     1724.1     1746.7     1715.2     F350-1     evaporator   steam flow    b/hour   1728.3     1733.5     1730.5     1727.2 | degrees F 75.869 75.89 75.91 75.93 75.951 75.971 75.992 76.011 76.032 76.052 76.072 76.093 76.113 76.133 76.154 76.174                                                                                                         | scfm 166.25 166.16 166.06 165.97 165.79 165.79 165.52 165.43 165.34 165.25 165.15 165.06 164.97 164.88                                                                                       | "wcvac 11.564 11.555 11.555 11.551 11.543 11.538 11.534 11.53 11.526 11.521 11.517 11.513 11.504 11.5 11.504 11.5 11.504 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **Wcvac 48.736 48.736 48.735 48.731 48.732 48.731 48.73 48.729 48.729 48.727 48.727 48.726 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided Research 130-2 ***Provided | IN WC  0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                           | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                      | IN WC  PD-130-3-1 IN WC | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC 8.58 8.5791 8.5792 8.5763 8.5754 6.5736 8.5736 8.5736 8.5736 8.5736 8.5736 8.5736 8.5736 8.5736 8.5736 8.55699 7.8.5662 PD-130-1 IN WC 8.5607 1.8.5558 8.5559 8.5558 8.5559 8.5558 8.5558 8.5559 8.5558 8.5559 8.5558 8.5559 8.5558 8.5559 8.5558 8.5558 8.5559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | degrees F 180.75 180.75 180.75 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.77 180.77                                                                                                                                                                                                                                                 | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>103.93<br>103.01<br>103.02<br>103.04<br>103.04                                                                                                                                             | degrees F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees F 4 95.698 5 95.698 6 95.701 7 95.702 8 95.706 9 95.707 9 95.709 1 95.711 2 95.712 2 95.713 3 95.714 4 95.715 5 95.717 6 95.722  T-130-3-1 degrees F 4 95.731 5 95.733 5 95.733 7 95.736                                                                                                                   | degrees F scfm 159.14 647.7; 159.15 652.8; 159.15 652.8; 159.16 660.8; 159.16 644.4; 159.17 641.5; 159.17 632.2; 159.18 662.7; 159.17 633.2; 159.18 664.0; 159.18 642.9; 159.19 647.8;  T-130-4-1 degrees F scfm 159.21 649.2; 159.21 649.2; 159.21 649.2; 159.21 649.2; 159.21 649.2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 10:00:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 10:45:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:45:00                                                                                                                                                                                                                  | T-150-1  degrees C c 61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.21 101.4 101.6 101.79 101.98 102.18 102.18 102.17  EVAPORATO  T-150-1  degrees C c 103.53 103.72 103.91                                                               | T-150-2 legrees C 62,986 98.4 100.02 100.38 100.74 101.01 101.24 101.47 101.71 101.95 102.19 102.42 102.66 102.79 103.05  PR PARAME  T-150-2 legrees C 103.88 104.12 104.35                                                                                    | T-150-3 legrees C 68.576 97.627 98.757 99.826 100.31 100.52 100.73 101.92 101.71 102.19 102.68 102.84 103.04 103.14  T-150-3 legrees C 103.9 104.16 104.16 104.43                                                              | T-150-4 degrees C 69.401 97.503 99.515 100.27 100.48 100.69 100.9 101.11 101.51 101.51 101.30 103.09 103.18 103.26  END-2  T-150-4 degrees C 103.79 103.79 103.99 103.19                                                        | 43,992<br>48,193<br>76,222<br>93,493<br>96,585<br>96,776<br>97,595<br>96,272<br>94,211<br>95,327<br>96,272<br>98,162<br>98,928<br>95,13<br>95,32<br>95,33<br>95,33<br>95,33<br>95,33<br>95,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.095<br>48.396<br>76.637<br>93.117<br>96.137<br>97.779<br>97.469<br>96.063<br>94.088<br>95.2<br>96.137<br>97.075<br>98.013<br>98.691<br>95.048<br>95.229                                                                | degrees C<br>37.156<br>37.211<br>38.235<br>42.507<br>50.239<br>63.102<br>81.278<br>92.289<br>96.806<br>98.98<br>100.07<br>100.82<br>99.067<br>97.764<br>98.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815<br>98.835<br>99.176                                                                                                                                       | 7-150-9  degrees C 37.428 37.439 37.552 38.604 44.778 57.098 75.452 91.434 97.301 99.488 100.62 101.25 100.85 99.27 98.483 98.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees C 38.441 38.814 39.187 40.175 46.309 58.478 76.601 91.963 98.899 100.89 102.04 102.56 102.89 99.51 99.779 100.05                                                                                                                                                                                             | evaporator density  Grams/ml  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739 1.1781 1.1824 1.1867 1.1909 1.1952  D-150-1 evaporator density  Grams/ml 1.2209 1.2251 1.2294                                                        | evaporator   level                                                                                                                                                                                                                                                                                                               | evaporator   steam flow    b/hour                                                                                                                                                                                                                               | degrees F 75.869 75.89 75.91 75.93 75.951 75.971 75.992 76.011 76.032 76.052 76.072 76.093 76.113 76.133 76.154 76.174                                                                                                         | scfm 166.25 166.16 166.06 165.97 165.88 165.79 165.61 165.52 165.43 165.25 165.15 165.06 164.97 164.88                                                                                       | "wcvac" 11.564 11.555 11.555 11.551 11.543 11.538 11.526 11.521 11.513 11.509 11.509 11.509 11.509 11.475 11.475 11.475 11.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *Wcvac 48.736 48.735 48.734 48.733 48.732 48.732 48.731 48.73 48.729 48.729 48.729 48.726 48.726 **Wcvac 48.722 48.721 48.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                                                          | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                                                                                    | IN WC  PD-130-3-1 IN WC | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC 8.58 4 8.5791 3 8.5782 1 8.5773 9 8.566 8 8.5746 6 8.5746 6 8.5746 6 8.5746 6 8.5746 6 8.5746 6 8.5699 7 8.5698 8 8.5699 7 8.5662  PD-130-1 IN WC 1 8.5607 1 8.5597 1 8.5597 3 8.5597 3 8.5597 3 8.5597 5 8.5597 6 8.5597 6 8.5597 7 8.5597 8 8.5597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees F 180.75 180.75 180.75 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.77 180.77                                                                                                                                                                                                                                                 | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>102.98<br>103.03<br>103.04<br>103.04<br>103.04                                                                                                                                             | degrees F 103.94 102.86 102.87 102.87 102.87 102.87 102.87 102.87 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 103.07 103.07 103.07 103.07 103.07 103.07 103.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | degrees F 4 95.698 5 95.698 6 95.701 7 95.702 8 95.704 8 95.706 9 95.707 9 95.712 2 95.712 2 95.713 4 95.715 6 95.717 6 95.722  T-130-3-1 degrees F 4 95.733 6 95.735 7 95.736 8 95.738                                                                                                                            | degrees F         scfm           159.14         647.77           159.15         654.22           159.15         655.23           159.15         652.83           159.16         660.81           159.16         664.93           159.17         642.73           159.17         642.74           159.17         633.22           159.18         662.74           159.18         664.03           159.18         642.91           159.19         674.82           159.19         674.82           159.19         647.82           159.21         649.24           159.21         649.24           159.22         636.57           159.22         636.57           159.22         675.22           159.23         659.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 09:45:00 21 JUN 01 10:15:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 14:45:00 21 JUN 01 14:45:00 21 JUN 01 14:30:00 21 JUN 01 14:30:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00                                                                                                                                      | T-150-1  degrees C c 61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.02 101.21 101.4 101.6 101.79 101.98 102.18 102.37  EVAPORATO  T-150-1 degrees C c 103.53 103.72 103.91 104.11 104.3 104.49 104.69                                     | T-150-2 legrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.71 101.95 102.19 102.42 102.66 102.79 102.92 103.05  PARAME  T-150-2 legrees C 6 103.88 104.12 104.35 104.59 104.83 105.07 105.31                                                         | T-150-3 legrees C 68.576 97.627 98.757 99.826 100.31 100.52 100.73 100.93 101.22 101.71 102.19 102.68 102.94 103.04 103.14  TERS, 0031I  T-150-3 legrees C 103.9 104.16 104.43 104.7 104.97 105.21                             | T-150-4 degrees C 69.401 97.503 99.515 100.27 100.48 100.69 100.9 101.11 101.51 101.97 102.94 103 103.09 103.18 103.26  END-2  T-150-4 degrees C 103.79 103.96 104.24 104.8 105.07 105.31                                       | degrees C<br>43,992<br>48,193<br>76,222<br>93,493<br>96,595<br>97,776<br>97,595<br>96,272<br>94,211<br>95,327<br>96,272<br>97,217<br>98,162<br>98,928<br>95,13<br>95,32<br>77,637<br>98,124<br>98,612<br>98,612<br>98,98<br>99,149<br>99,319<br>99,488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | degrees C 43.095 48.396 76.637 93.117 97.779 97.469 96.063 94.088 95.2 96.137 97.075 98.013 98.691 95.048 95.229   T-150-6 degrees C 697.437 97.909 98.381 98.784 98.942 99.099 99.256                                    | degrees C 37.156 37.211 38.235 42.507 50.239 63.102 81.278 92.289 96.806 98.98 100.07 100.82 100.62 99.067 97.764 98.296   T-150-7 degrees C 101.1 101.71 101.9 102.09 102.28 102.28 102.28 102.86 102.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815<br>99.176<br>T-150-8<br>degrees C<br>102.03<br>102.46<br>102.65<br>102.84<br>103.03<br>103.22<br>103.38                                                   | 7.150-9<br>degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62<br>101.25<br>100.85<br>99.27<br>98.483<br>98.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees C 38.441 38.814 39.187 40.175 46.309 58.478 76.601 91.963 98.899 100.89 102.04 102.56 102.89 99.51 99.779 100.05  T-150-10 degrees C 102.58 102.94 103.25 103.85 104.46                                                                                                                                      | evaporator density  Grams/ml  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739 1.1781 1.1827 1.1909 1.1952  D-150-1 evaporator density  Grams/ml 1.2209 1.2251 1.2294 1.2337 1.236 1.2422 1.2455                                    | evaporator   level                                                                                                                                                                                                                                                                                                               | evaporator steam flow   Ib/hour                                                                                                                                                                                                                                 | 75.869 75.89 75.991 75.991 75.993 75.951 75.971 75.992 76.011 76.032 76.052 76.072 76.093 76.113 76.133 76.154 76.174                                                                                                          | scfm 166.25 166.16 166.06 165.97 165.79 165.7 165.61 165.52 165.43 165.25 165.15 165.06 164.97 164.88                                                                                        | "wcvac 11.564 11.555 11.555 11.551 11.543 11.538 11.534 11.53 11.526 11.527 11.517 11.513 11.504 11.5 11.504 11.5 11.504 11.5 11.504 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | **Wcvac 48.736 48.736 48.735 48.731 48.732 48.732 48.731 48.73 48.729 48.729 48.727 48.727 48.726 ***  **I30-2** **Wcvac 48.722 48.721 48.721 48.721 48.721 48.721 48.721 48.721 48.719 48.719 48.719 48.719 48.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IN WC  0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                                       | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                                                                                            | PD-130-3-1<br>IN WC     | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.099 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC 8.58 8.5791 8.5792 8.5763 8.5754 8.5736 8.5746 8.5746 8.5736 8.5746 8.5746 8.5746 8.5746 8.5746 8.5746 8.5746 8.5746 8.5746 8.5569 7.8.5662 PD-130-1 IN WC 8.5567 8.5568 8.5557 8.5568 8.5557 8.5568 8.5557 8.5568 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5557 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5558 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8.5588 8. | degrees F 180.75 180.75 180.75 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.77 180.77 180.77 180.77 180.77 180.77 180.77                                                                                                                                                                                                       | degrees F<br>102.92<br>102.93<br>102.95<br>102.96<br>102.96<br>102.97<br>103.03<br>103.01<br>103.02<br>103.04<br>103.04                                                                                                                                             | degrees F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees F 4 95.698 5 95.698 6 95.701 7 95.702 8 95.706 9 95.707 9 95.709 1 95.711 2 95.712 2 95.712 4 95.715 5 95.717 6 95.719 7 95.722  T-130-3-1 4 95.731 5 95.731 5 95.731 6 95.731 7 95.738 95.738 95.738                                                                                                      | degrees F scfm 159.14 647.7; 159.15 652.8; 159.15 652.8; 159.16 660.8; 159.16 664.4; 159.16 642.3; 159.17 641.5; 159.17 63.2; 159.18 662.7; 159.17 63.3; 159.18 664.0; 159.18 642.9; 159.19 647.8;  T-130-4-1 degrees F scfm 159.21 649.2; 159.21 649.2; 159.21 649.2; 159.22 637.7; 159.22 637.7; 159.22 636.5; 159.23 659.5; 159.23 659.5;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 10:30:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 10:30:00 21 JUN 01 10:45:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 14:45:00 21 JUN 01 14:45:00 21 JUN 01 14:45:00 21 JUN 01 11:50:00 21 JUN 01 11:50:00 21 JUN 01 11:50:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00                                                                                                                                                                                               | T-150-1  degrees C (61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.21 101.4 101.6 101.79 101.98 102.37  EVAPORATO  T-150-1  degrees C (103.53 103.72 103.91 104.11 104.3 104.49 104.69 104.88 105.07                                      | T-150-2 legrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.71 101.95 102.19 102.42 102.66 102.79 102.92 103.05  P PARAME  T-150-2 legrees C 6 103.88 104.12 104.35 104.35 104.59 104.83 105.07 105.54 105.78                                         | T-150-3 legrees C 68.576 97.627 98.757 99.826 100.31 100.52 100.73 100.93 101.22 101.71 102.19 102.68 102.84 102.94 103.04 103.14  T-150-3 legrees C 103.9 104.16 104.43 104.7 104.97 105.21 105.52 1105.58                    | T-150-4 degrees C 69.401 97.503 99.515 100.27 100.48 100.69 100.9 101.11 101.51 101.51 101.97 102.44 102.9 103.18 103.26  END-2  T-150-4 degrees C 103.79 103.79 103.98 104.24 104.52 104.8 105.07 105.31 105.49                | degrees C<br>43,992<br>48,193<br>76,222<br>93,493<br>96,585<br>96,776<br>97,595<br>96,272<br>94,211<br>95,327<br>96,272<br>97,217<br>98,162<br>98,928<br>95,13<br>95,33<br>95,33<br>96,585<br>96,272<br>97,217<br>98,162<br>98,928<br>95,33<br>95,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.095 48.396 76.637 93.117 96.137 97.469 96.063 94.088 95.2 96.137 97.075 98.013 98.691 95.048 95.229                                                                                                                    | degrees C 37.156 37.211 38.235 42.507 50.239 96.806 98.98 100.07 100.82 100.82 99.067 97.764 98.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815<br>99.176<br>T-150-8<br>degrees C<br>102.03<br>102.46<br>102.65<br>102.84<br>103.03<br>103.22<br>103.38<br>103.5<br>103.62                                | 7-150-9<br>degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62<br>101.25<br>100.85<br>99.27<br>98.483<br>98.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees C 38.441 38.814 39.187 40.175 46.309 58.478 76.601 91.963 98.899 100.89 102.04 102.56 102.89 99.51 99.779 100.05  T-150-10 degrees C 102.58 102.94 103.25 103.55 103.85 104.46 104.46 104.63 104.79                                                                                                          | evaporator density  Grams/mi  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739 1.1781 1.1824 1.1867 1.1909 1.1952  D-150-1 evaporator density  Grams/mi 1.2209 1.2251 1.2337 1.238 1.2422 1.2465 1.2508                             | evaporator   level                                                                                                                                                                                                                                                                                                               | evaporator   steam flow    b/hour   1.6159   9.6779     701.28   1132.2     1406.8   1734.8     1730.4   1727.8     1729.9   1724.1     1746.7   1715.2                                                                                                         | 75.869 75.89 75.89 75.91 75.93 75.951 75.971 75.992 76.011 76.032 76.052 76.072 76.093 76.113 76.133 76.154 76.174                                                                                                             | scfm 166.25 166.16 166.06 165.97 165.88 165.79 165.52 165.43 165.25 165.15 165.06 164.97 164.88                                                                                              | "wcvac 11.564 11.555 11.555 11.551 11.543 11.538 11.534 11.53 11.526 11.521 11.517 11.513 11.509 11.509 11.50 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.5 | **Wcvac 48.736 48.735 48.734 48.733 48.732 48.732 48.733 48.73 48.729 48.729 48.729 48.726 ***Wcvac 48.727 48.721 48.721 48.721 48.719 48.719 48.719 48.717 48.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IN WC  0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                           | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                             | PD-130-3-1<br>IN WC     | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NWC 8.58 4 8.5791 3 8.5782 1 8.5773 9 8.568 8 8.5754 6 8.5745 6 8.5745 6 8.5745 6 8.5742 2 8.5717 2 8.5712 2 8.5717 2 8.569 8 8.5699 7 8.569 8 8.5699 7 8.5662  PD-130-1 IN WC 1 8.5574 9 8.568 8 8.5557 9 8.558 8 8.5557 9 8.5588 8 8.5557 9 8.5588 8 8.5557 9 8.5588 8 8.5551 8 8.5554 9 8.5558 9 8.5558 9 8.5558 9 8.5558 9 8.5558 9 8.5558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T-335-2  degrees F  180.75  180.75  180.76  180.76  180.76  180.76  180.76  180.76  180.76  180.76  180.77  180.77  180.77  180.77  180.77  180.77  180.77  180.77  180.77                                                                                                                                                                                  | degrees F<br>102.92<br>102.93<br>102.95<br>102.96<br>102.96<br>102.97<br>102.98<br>103.03<br>103.01<br>103.04<br>103.04<br>103.04<br>103.04<br>103.11<br>103.12<br>103.13<br>103.14<br>103.15                                                                       | degrees F. 102.84 102.85 102.85 102.85 102.85 102.85 102.85 102.85 102.85 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.95 102.9 | degrees F 4 95.699 5 95.699 6 95.701 7 95.702 8 95.704 8 95.706 9 95.707 9 95.709 1 95.712 2 95.712 3 95.714 4 95.715 5 95.717 6 95.719 7 95.722  T-130-3-1 degrees F 95.735 95.735 95.736 95.738 95.738 95.744 95.743 95.744                                                                                      | degrees F scfm 159.14 647.77 159.15 652.83 159.16 644.43 159.17 642.77 159.17 641.159.17 633.26 159.18 662.74 159.18 662.74 159.19 674.12 159.19 674.12 159.21 647.82 159.22 636.57 159.23 659.53 159.23 659.53 159.23 665.61 159.23 665.61 159.23 665.61 159.23 665.61 159.23 667.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 09:45:00 21 JUN 01 10:15:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 14:45:00 21 JUN 01 14:45:00 21 JUN 01 14:45:00 21 JUN 01 15:15:00 21 JUN 01 15:15:00 21 JUN 01 15:15:00 21 JUN 01 15:30:00 21 JUN 01 15:30:00 21 JUN 01 15:30:00 21 JUN 01 15:45:00 21 JUN 01 15:45:00 21 JUN 01 15:45:00 21 JUN 01 15:45:00 21 JUN 01 15:45:00 21 JUN 01 15:45:00 21 JUN 01 15:45:00 21 JUN 01 15:45:00 21 JUN 01 15:45:00 | T-150-1  degrees C (61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.21 101.4 101.6 101.79 101.98 102.37  EVAPORATO  T-150-1  degrees C (103.53 103.72 103.91 104.11 104.3 104.49 104.69 104.88 105.07 105.27 105.46                        | T-150-2 legrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.47 101.71 101.95 102.19 102.49 102.66 102.79 102.92 103.05  P PARAME  T-150-2 legrees C 6103.88 104.12 104.35 104.13 105.07 105.54 105.78 105.94 106.08                                   | T-150-3 legrees C 68.576 97.627 99.826 100.31 100.52 100.73 100.93 101.22 101.71 102.19 102.88 102.84 103.04 103.14  T-150-3 legrees C 103.99 104.16 104.43 104.97 105.52 105.52 105.68 105.84 106                             | T-150-4 degrees C 69.401 97.503 99.515 100.27 100.48 100.69 101.11 101.51 101.97 102.44 102.9 103.18 103.26  END-2  T-150-4 degrees C 103.79 103.49 104.52 104.8 105.07 105.31 105.49 105.66 105.84 105.66                      | degrees C 43,992 48,193 76,222 93,493 96,585 96,585 97,776 97,595 96,22 94,211 95,327 96,272 97,217 98,162 98,95,13 95,32   T-150-5 degrees C 69,886 124 98,612 98,98 99,149 99,319 99,488 99,149 99,319 99,488 7100,09 90,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | degrees C 43.095 48.396 76.637 93.117 96.137 97.779 97.469 96.063 94.088 95.22 96.137 97.075 98.013 98.691 95.229   T-150-6 degrees C 697.437 97.909 98.381 98.784 98.942 99.099 99.256 99.414 99.571 99.692 99.756       | degrees C 37.156 37.211 38.235 42.507 50.239 63.102 81.278 92.289 96.806 98.98 100.07 100.82 99.065 71.00.82 99.065 71.00.82 99.06 80.00 98.296 98.296 98.296 98.296 98.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | degrees C 37.268 37.359 38.954 43.269 51.187 63.852 82.349 93.465 97.873 99.864 101.01 101.64 101.59 98.815 99.176  T-150-8  degrees C 102.03 102.46 102.65 102.84 103.03 103.22 103.38 103.5 103.62 103.74 103.86                                                                                              | 7.150-9 degrees C 37.428 37.439 37.552 38.604 44.778 57.098 75.452 91.434 97.301 99.488 100.62 101.25 100.85 99.27 98.483 98.954  7.150-9 degrees C 101.27 101.66 101.94 102.21 102.49 102.69 102.85 103.01 103.17 103.33 103.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | degrees C 38.441 38.814 39.187 40.175 46.309 58.478 76.601 91.963 98.899 100.89 102.04 102.56 102.89 99.51 99.779 100.05  T-150-10 degrees C 102.58 102.94 103.25 103.25 103.55 104.45 104.63 104.79 104.95 105.1                                                                                                    | evaporator density  Grams/ml  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739 1.1781 1.1824 1.1827 1.1909 1.1952  D-150-1 evaporator density  Grams/ml 1.2294 1.2327 1.238 1.2422 1.2485 1.2465 1.2508                             | evaporator   level                                                                                                                                                                                                                                                                                                               | evaporator steam flow  b /hour                                                                                                                                                                                                                                  | degrees F 75.869 75.89 75.991 75.93 75.951 75.971 75.992 76.011 76.032 76.052 76.072 76.093 76.113 76.133 76.154 76.174                                                                                                        | scfm 166.25 166.16 166.06 165.97 165.79 165.71 165.61 165.52 165.43 165.25 165.15 165.06 164.97 164.88                                                                                       | "wcvac 11.564 11.555 11.555 11.551 11.543 11.538 11.538 11.534 11.53 11.526 11.521 11.517 11.513 11.509 11.50 11.51 11.59 11.50 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.5 | **Wevac 48.736 48.736 48.735 48.731 48.732 48.732 48.731 48.73 48.729 48.729 48.727 48.727 48.727 48.727 48.727 48.721 48.721 48.721 48.721 48.719 48.719 48.719 48.719 48.719 48.719 48.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IN WC  0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008                                     | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                                                             | PD-130-3-1<br>IN WC     | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC 8.58 8.5791 8.5792 8.5763 8.5754 8.5740 8.5760 8.5746 8.5746 8.5746 8.5746 8.5746 8.5746 8.5746 8.5766 8.5766 8.5766 8.5766 8.5766 8.5766 8.5766 8.5767 8.566 8.5568 8.5568 8.5553 8.5551 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 | T-335-2 degrees F 180.75 180.75 180.75 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.77 180.77 180.77 180.77 180.77 180.77 180.77 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78                                                                                                                                              | degrees F 102.92 102.93 102.94 102.95 102.96 102.97 102.98 103.01 103.01 103.02 103.03 103.04 103.04  T-130-1-1 degrees F 103.09 103.11 103.12 103.13 103.14 103.15 103.16 103.17 103.17                                                                            | degrees F 102.84 102.85 102.86 102.86 102.86 102.86 102.86 102.86 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 102.96 | degrees F 4 95.698 5 95.698 6 95.701 7 95.702 8 95.706 9 95.707 9 95.709 1 95.711 2 95.712 3 95.714 4 95.715 6 95.717 7 95.72 8 95.731 6 95.733 6 95.735 6 95.735 6 95.735 7 95.736 8 95.736 8 95.737 95.738 95.744 95.743 95.744 95.744                                                                           | degrees F scfm 159.14 647.7; 159.15 652.8; 159.15 652.8; 159.15 647.9; 159.16 644.9; 159.17 642.3; 159.17 642.3; 159.17 641.1; 159.17 633.2; 159.18 662.7; 159.18 664.0; 159.18 642.9; 159.19 647.8;  T-130-4-1 F-130-1 degrees F scfm 159.21 649.2; 159.21 649.2; 159.22 637.7; 159.22 637.7; 159.23 659.5; 159.23 659.5; 159.23 665.6; 159.23 674.3; 159.23 674.3; 159.23 674.3; 159.23 674.3; 159.23 674.3; 159.23 674.3; 159.24 670.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 10:15:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 14:45:00 21 JUN 01 14:30:00 21 JUN 01 14:30:00 21 JUN 01 15:45:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00 21 JUN 01 15:50:00                                       | T-150-1  degrees C c 61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.02 101.21 101.4 101.6 101.79 101.98 102.18 102.37  EVAPORATO  T-150-1 degrees C c 103.53 103.72 103.91 104.11 104.3 104.49 104.69 104.88 105.07 105.27                | T-150-2 legrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.71 101.95 102.19 102.42 102.66 102.79 102.92 103.05  PARAME  T-150-2 legrees C 6 103.88 104.12 104.35 104.59 104.83 105.07 105.31 105.54 105.78                                           | T-150-3 legrees C 68.576 97.627 98.757 99.826 100.31 100.52 100.73 101.22 101.71 102.19 102.68 102.94 103.04 103.14  TERS, 0031  T-150-3 legrees C 103.9 104.43 104.7 104.97 105.21 105.37 105.52 105.68                       | T-150-4 degrees C 69.401 97.503 99.515 100.27 100.48 100.69 100.9 101.11 101.51 101.97 102.44 102.9 103.18 103.26  END-2  T-150-4 degrees C 103.79 103.96 104.24 104.52 104.8 105.07 105.31 105.49 105.64 105.64                | degrees C 43,992 48,193 76,222 93,493 96,595 96,272 94,211 95,327 96,272 97,217 98,162 98,928 95,13 95,32   T-150-5 degrees C 697,637 98,124 98,612 98,98 99,149 99,149 99,149 99,149 99,149 99,488 99,657 99,827 100,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | degrees C 43.095 48.396 76.637 93.117 97.779 97.469 96.063 94.088 95.2 96.137 97.075 98.013 98.691 95.048 95.229   T-150-6 degrees C 697.437 97.909 98.381 98.784 98.942 99.999 99.256 99.414 99.571 99.692               | degrees C 37.156 37.211 38.235 42.507 50.239 63.102 81.278 92.289 96.806 98.98 100.07 100.82 100.82 99.067 97.764 98.296   T-150-7 degrees C 101.1 101.71 101.99 102.28 102.26 102.26 102.26 102.67 102.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815<br>99.176<br>T-150-8<br>degrees C<br>102.03<br>102.46<br>102.65<br>102.84<br>103.03<br>103.03<br>103.62<br>103.62                                         | 7.150-9<br>degrees C<br>37.428<br>37.49<br>37.552<br>38.604<br>44.778<br>57.098<br>75.452<br>91.434<br>97.301<br>99.488<br>100.62<br>101.25<br>100.85<br>100.85<br>101.27<br>101.66<br>101.94<br>102.21<br>102.49<br>102.69<br>102.69<br>103.31<br>103.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees C 38.441 38.814 39.187 40.175 46.309 58.478 76.601 91.963 98.899 100.89 102.04 102.56 102.89 99.51 99.779 100.05  T-150-10 degrees C 102.58 102.94 103.25 103.85 104.15 104.46 104.63 104.79 104.95                                                                                                          | evaporator density  Grams/ml  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739 1.1781 1.1827 1.1909 1.1952  D-150-1 evaporator density  Grams/ml 1.2209 1.2251 1.2337 1.238 1.2422 1.2465 1.2508 1.2555 1.2593                      | evaporator   level                                                                                                                                                                                                                                                                                                               | evaporator   steam flow    b/hour   1.6159   9.6779     701.28   1132.2     1406.8   1734.8     1739.9   1729.8     1729.9     1724.1     1746.7     1715.2                                                                                                     | degrees F 75.869 75.89 75.91 75.93 75.951 75.971 75.992 76.011 76.032 76.052 76.052 76.093 76.113 76.133 76.154 76.174                                                                                                         | scfm 166.25 166.16 165.97 165.88 165.79 165.52 165.43 165.25 165.15 165.06 164.97 164.88                                                                                                     | "wcvac 11.564 11.555 11.555 11.551 11.543 11.538 11.538 11.526 11.521 11.547 11.559 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11.509 11 | **WCVaC 48.736 48.736 48.735 48.731 48.732 48.732 48.731 48.73 48.729 48.729 48.727 48.727 48.727 48.727 48.721 48.721 48.721 48.721 48.721 48.719 48.719 48.718 48.717 48.717 48.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN WC  0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                                                                          | PD-130-3-1<br>IN WC     | PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4-1 IN WC PD-130-4 IN WC PD-130-4 IN WC PD-130-4 I | IN WC 8.58 8.5791 8.5773 8.5773 8.5774 8.5774 8.5774 8.5792 8.5717 9.8.5692 PD-130-1 IN WC 18.5592 8.5593 8.5593 8.5554 8.5553 8.5554 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5553 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8 | T-335-2  degrees F 180.75 180.75 180.75 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.77 180.77 180.77 180.77 180.77 180.77 180.78 180.78 180.78 180.78 180.78 180.78                                                                                                                                                                                | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>102.99<br>103.03<br>103.01<br>103.04<br>103.04<br>103.04<br>103.04<br>103.11<br>103.12<br>103.13<br>103.14<br>103.15<br>103.17<br>103.17                                                   | degrees F 103.04 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 103.05 | degrees F 4 95.699 6 95.701 7 95.702 8 95.704 8 95.706 9 95.707 9 95.709 1 95.711 2 95.712 2 95.712 3 95.714 4 95.715 6 95.717 6 95.719 7 95.722  T-130-3-1 degrees F 4 95.731 5 95.731 5 95.735 8 95.735 95.736 95.736 95.736 95.737 95.738 95.744 1 95.748 2 95.748 3 95.748 3 95.748 3 95.748 3 95.748 5 95.748 | degrees F scfm 159.14 647.7; 159.15 652.8; 159.15 652.8; 159.15 647.9; 159.16 644.9; 159.17 642.3; 159.17 642.3; 159.17 641.1; 159.17 633.2; 159.18 662.7; 159.18 664.0; 159.18 642.9; 159.19 647.8;  T-130-4-1 F-130-1 degrees F scfm 159.21 649.2; 159.21 649.2; 159.22 637.7; 159.22 637.7; 159.23 659.5; 159.23 659.5; 159.23 665.6; 159.23 674.3; 159.23 674.3; 159.23 674.3; 159.23 674.3; 159.23 674.3; 159.23 674.3; 159.24 670.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 10:45:00 21 JUN 01 10:30:00 21 JUN 01 10:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 14:45:00 21 JUN 01 14:45:00 21 JUN 01 14:45:00 21 JUN 01 15:15:00 21 JUN 01 15:15:00 21 JUN 01 15:15:00 21 JUN 01 16:30:00 21 JUN 01 16:30:00 21 JUN 01 16:15:00 21 JUN 01 16:15:00 21 JUN 01 16:15:00 21 JUN 01 16:15:00 21 JUN 01 16:15:00 21 JUN 01 16:15:00 21 JUN 01 16:15:00 21 JUN 01 16:15:00 21 JUN 01 16:15:00                                       | T-150-1  degrees C c 61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.21 101.4 101.6 101.79 101.98 102.18 102.37  EVAPORATO  T-150-1  degrees C c 103.53 103.72 103.91 104.11 104.3 104.49 104.88 105.07 105.27 105.46 105.65 105.84 106.04 | T-150-2 legrees C 62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.47 101.71 101.95 102.19 102.42 102.66 102.79 102.92 103.05  PARAME  T-150-2 legrees C c 103.88 104.12 104.35 104.35 104.55 104.59 104.83 105.07 105.54 105.78 105.94 106.08 106.22 106.39 | T-150-3 legrees C 68.576 97.627 99.826 100.31 100.52 100.73 100.93 101.22 101.71 102.19 102.88 102.84 103.04 103.14  T-150-3 legrees C 103.9 104.16 104.43 104.97 105.52 105.68 105.84 106.15 106.15 106.15 106.17             | T-150-4 degrees C 69.401 97.503 99.515 100.27 100.48 100.69 100.9 101.11 101.51 101.97 102.44 102.9 103.18 103.26  END-2  T-150-4 degrees C 103.79 104.84 105.51 105.66 105.84 106.01 106.18 106.36 106.53                      | degrees C 43,992 48,193 76,222 93,493 96,585 97,776 97,595 96,22 94,211 95,327 96,272 97,217 98,162 98,928 95,13 95,32   T-150-5 degrees C 69,693 99,49 99,319 99,49 99,149 99,319 99,49 100,36 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 100,63 | degrees C 43.095 48.396 76.637 93.117 96.137 97.779 97.469 96.063 94.088 95.22 96.137 97.075 98.013 98.691 95.229 97.437 97.97.99 98.381 98.784 98.942 99.099 99.256 99.414 99.571 99.692 99.756 99.82 99.884 99.949      | degrees C 37.156 37.211 38.235 42.507 50.239 63.102 81.278 92.289 96.806 98.98 100.07 7100.82 190.82 99.06 7100.82 99.06 7100.82 100.82 99.06 100.07 97.764 98.296 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 98.296 100.07 97.764 98.296 100.07 97.764 98.296 100.07 97.764 98.296 100.07 97.764 98.296 100.07 97.764 98.296 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 97.764 100.07 | degrees C 37.268 37.359 38.954 43.269 51.187 63.852 82.349 93.465 97.873 99.864 101.01 101.64 101.59 98.815 99.176  T-150-8 degrees C 102.03 102.46 102.65 102.84 103.03 103.22 103.38 103.55 103.62 103.74 103.86 103.98 104.1 104.22                                                                          | 7.150-9 degrees C 37.428 37.439 37.552 38.604 44.778 57.098 75.452 91.434 97.301 99.488 100.62 101.25 100.85 99.27 98.483 98.954  7.150-9 degrees C 101.27 101.66 101.94 102.69 102.69 102.85 103.01 103.17 103.33 103.48 103.84 103.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | degrees C 38.441 38.814 39.187 40.175 46.309 58.478 76.601 91.963 98.899 100.89 102.56 102.89 99.51 99.779 100.05  T-150-10 degrees C 102.58 102.94 103.25 103.25 103.55 104.45 104.63 104.79 104.95 105.26 105.26 105.26 105.26 105.26 105.26 105.26 105.26 105.26 105.26 105.26 105.26 105.26 105.26 105.26 105.41 | evaporator   density                                                                                                                                                                                                                                            | evaporator   level     Inches   136.66   136.59   136.52   136.45   136.37   136.57   136.84   135.9   132.32   128.36   124.34   120.3   116.27   121.79   124.49   126.51     L-150-1   evaporator   level   133.45   132.47   132.23   131.99   131.62   131.11   130.6   129.82   128.93   128.78   129.03   129.28   131.12 | evaporator steam flow   Ib/hour                                                                                                                                                                                                                                 | degrees F 75.869 75.89 75.991 75.993 75.951 75.971 75.992 76.011 76.032 76.052 76.072 76.093 76.113 76.133 76.154 76.174   T-336-1C degrees F 76.296 76.316 76.357 76.387 76.387 76.387 76.499 76.499 76.499 76.542 76.54      | scfm 166.25 166.16 166.06 165.97 165.79 165.77 165.61 165.52 165.43 165.25 165.15 165.06 164.97 164.88                                                                                       | "wcvac 11.564 11.555 11.555 11.551 11.543 11.533 11.526 11.527 11.543 11.539 11.574 11.573 11.504 11.51 11.504 11.51 11.504 11.51 11.504 11.504 11.51 11.504 11.51 11.504 11.51 11.504 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 11.475 1 | **Wevac 48.736 48.736 48.735 48.731 48.732 48.732 48.731 48.73 48.73 48.729 48.729 48.727 48.726 ***  **I30-2 PC ***  **Wevac 48.722 48.721 48.721 48.721 48.721 48.717 48.717 48.717 48.715 48.715 48.715 48.715 48.715 48.713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN WC  0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 | PD-130-3-1<br>IN WC     | PD-130-4-1 IN WC  PD-130-4-1 IN WC  2.099  PD-130-4-1 IN WC  2.099  2.099  2.099  2.099  2.099  2.099  2.099  2.099  2.099  2.099  2.099  2.099  2.099  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.098  2.096  2.096  2.096  2.096  2.096  2.096  2.096  2.096  2.096  2.096  2.096  2.096  2.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC 8.58 8.5791 8.5792 8.5763 8.5754 8.5662 PD-130-1 IN WC 3.5597 8.5662 PD-130-1 8.5597 8.5598 8.5593 8.5551 8.5552 8.5551 8.5542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8.55542 8 | T-335-2  degrees F 180.75 180.75 180.75 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.77 180.77 180.77 180.77 180.77 180.77 180.77 180.77 180.77 180.77 180.77 180.77 180.77 180.77 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 | degrees F 102.92 102.93 102.94 102.95 102.96 102.97 102.98 103.01 103.01 103.02 103.03 103.04 103.04  T-130-1-1 degrees F 103.09 103.11 103.12 103.13 103.14 103.15 103.16 103.17 103.18 103.19 103.19                                                              | degrees F 102.94 103.04 103.05 103.05 103.01 103.15 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 103.16 | degrees F 4 95.698 5 95.698 6 95.701 7 95.702 8 95.706 9 95.707 9 95.707 9 95.712 2 95.712 3 95.714 4 95.715 5 95.717 6 95.722  T-130-3-1 degrees F 95.731 95.733 95.734 95.735 7 95.736 8 95.737 95.736 95.737 95.736 95.737 95.738 95.744 95.743 95.745 95.746 95.748 95.748 95.748 95.748                       | degrees F scfm 159.14 647.7; 159.15 652.8; 159.15 665.1; 159.15 652.8; 159.16 660.8; 159.16 644.2; 159.17 641.4; 159.17 632.2; 159.18 662.7; 159.18 664.0; 159.18 664.0; 159.18 644.9; 159.19 647.8;  T-130-4-1 fedgrees F scfm 159.21 649.2; 159.22 637.7; 159.22 637.7; 159.23 659.5; 159.23 659.5; 159.23 665.68; 159.23 674.3; 159.24 670.6; 159.24 638.04; 159.24 661.15; 159.24 661.15; 159.25 673.6; 159.25 673.6; 159.26 673.6; 159.27 673.6; 159.28 665.66; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.29 673.6; 159.25 673.6; 159.25 673.6;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Time  21 JUN 01 08:15:00 21 JUN 01 08:30:00 21 JUN 01 08:45:00 21 JUN 01 09:00:00 21 JUN 01 09:30:00 21 JUN 01 09:45:00 21 JUN 01 09:45:00 21 JUN 01 10:15:00 21 JUN 01 10:15:00 21 JUN 01 10:30:00 21 JUN 01 11:30:00 21 JUN 01 11:30:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:45:00 21 JUN 01 11:30:00 21 JUN 01 14:15:00 21 JUN 01 14:30:00 21 JUN 01 14:30:00 21 JUN 01 15:15:00 21 JUN 01 15:15:00 21 JUN 01 15:15:00 21 JUN 01 15:15:00 21 JUN 01 15:15:00 21 JUN 01 16:15:00 21 JUN 01 16:00:00 21 JUN 01 16:15:00 21 JUN 01 16:15:00 21 JUN 01 16:15:00 21 JUN 01 16:15:00 21 JUN 01 16:30:00                                                          | T-150-1  degrees C c 61.744 97.597 99.175 99.923 100.15 100.38 100.6 100.82 101.02 101.21 101.4 101.6 101.79 101.98 102.18 102.37  EVAPORATO  T-150-1 degrees C c 103.53 103.72 103.91 104.11 104.3 104.49 104.69 104.88 105.07 105.27 105.46 105.66 105.66  | T-150-2 legrees C (62.986 98.4 100.02 100.38 100.74 101.01 101.24 101.71 101.95 102.19 102.42 102.66 102.79 102.92 103.05  T-150-2 legrees C (30.88 104.12 104.35 104.59 104.83 105.07 105.31 105.54 105.78 105.94 106.08 106.22 106.35                        | T-150-3 legrees C 68.576 97.627 98.757 99.826 100.31 100.52 100.73 100.93 101.22 101.71 102.19 102.68 102.94 103.04 103.14  TERS, 00311  T-150-3 legrees C 103.9 104.13 104.7 104.97 105.21 105.37 105.52 105.68 106.15 106.31 | T-150-4 degrees C 69.401 97.503 99.515 100.27 100.48 100.69 100.9 101.11 101.51 101.97 102.94 103.18 103.26  END-2  T-150-4 degrees C 103.79 103.96 104.24 104.52 104.8 105.07 105.31 105.49 105.64 106.18 106.01 106.18 106.03 | degrees C 43,992 48,193 76,222 93,493 96,595 96,272 94,211 95,327 96,272 97,217 98,162 98,928 95,13 95,32 77,637 98,124 98,612 98,98 99,149 99,319 99,488 99,637 99,827 100,09 100,36 100,63 100,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | degrees C 43.095 48.396 76.637 93.117 97.779 97.469 96.063 94.088 95.2 96.137 97.075 98.013 98.691 95.048 95.229   T-150-6 degrees C 697.437 97.909 98.381 98.784 98.942 99.099 99.256 99.414 99.571 99.692 99.756 99.884 | degrees C 37.156 37.211 38.235 42.507 50.239 63.102 81.278 92.289 96.806 98.98 100.07 100.82 100.82 99.067 97.764 98.296   T-150-7 degrees C 101.1 101.71 101.99 102.28 102.46 102.61 102.67 102.79 102.86 102.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees C<br>37.268<br>37.359<br>38.954<br>43.269<br>51.187<br>63.852<br>82.349<br>93.465<br>97.873<br>99.864<br>101.01<br>101.64<br>101.59<br>98.815<br>99.176<br>T-150-8<br>degrees C<br>102.03<br>102.46<br>102.65<br>102.84<br>103.03<br>103.03<br>103.52<br>103.38<br>103.52<br>103.74<br>103.98<br>103.98 | 7-150-9 degrees C 101.27 102.49 102.49 102.69 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 103.8 10 | degrees C 38.441 38.814 39.187 40.175 46.309 58.478 76.601 91.963 98.899 100.89 102.04 102.56 102.89 99.51 99.779 100.05  T-150-10 degrees C 102.58 102.94 103.25 103.85 104.15 104.46 104.63 104.79 104.95 105.41                                                                                                   | evaporator density  Grams/ml  1.1823 1.1819 1.1814 1.1809 1.1795 1.1711 1.1664 1.1624 1.1648 1.1695 1.1739 1.1781 1.1827 1.1909 1.1952  D-150-1 evaporator density  Grams/ml 1.2209 1.2251 1.2337 1.238 1.2422 1.2465 1.2508 1.2553 1.2593 1.2636 1.2679 1.2721 | evaporator   level                                                                                                                                                                                                                                                                                                               | evaporator steam flow  bb/hour                                                                                                                                                                                                                                  | 75.869 75.89 75.991 75.991 75.993 75.951 75.971 75.992 76.011 76.032 76.052 76.072 76.093 76.113 76.133 76.154 76.174   T-336-1C degrees F 76.296 76.316 76.337 76.357 76.377 76.398 76.418 76.438 76.459 76.499 76.592 76.554 | scfm 166.25 166.16 166.06 165.97 165.79 165.79 165.52 165.43 165.34 165.25 165.15 165.06 164.97 164.88 F 164.33 164.24 164.15 164.06 163.97 163.88 163.78 163.69 163.61 163.42 163.33 163.24 | "wcvac 11.564 11.555 11.555 11.551 11.551 11.543 11.538 11.534 11.53 11.526 11.527 11.517 11.513 11.504 11.51 11.504 11.51 11.504 11.475 11.476 11.462 11.488 11.454 11.445 11.445 11.445 11.445 11.445 11.445 11.445 11.445 11.445 11.442 11.424 11.424 11.424 11.424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **Wcvac 48.736 48.736 48.735 48.731 48.732 48.732 48.731 48.73 48.729 48.729 48.727 48.726 ***  **I30-2** **Wcvac 48.727 48.721 48.721 48.721 48.721 48.721 48.721 48.721 48.719 48.719 48.719 48.719 48.717 48.716 48.715 48.715 48.715 48.715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN WC  0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008       | IN WC -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056                                                         | PD-130-3-1<br>IN WC     | IN WC 0 2.100 0 2.100 0 2.100 0 2.100 0 2.100 0 2.099 0 2.099 0 2.099 0 2.099 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.098 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.096 0 2.095 0 2.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN WC 8.58 4 8.5791 3 8.5782 1 8.5773 9 8.568 8 8.5746 6 8.5746 6 8.5746 6 8.5746 6 8.5746 6 8.5746 6 8.5746 7 8.569 8 8.6699 7 8.569 8 8.6602  PD-130-1 IN WC 3 8.5602  PD-130-1 IN WC 3 8.5602  PD-130-1 IN WC 3 8.56062  SSE 8.5662  PD-130-1 IN WC 3 8.56062  RSE 8.5662  PD-130-1 IN WC 3 8.56062  RSE 8.5662  RSE 8.5662  RSE 8.5663 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5563 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 RSE 8.5663 | T-335-2 degrees F 180.75 180.75 180.75 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.77 180.77 180.77 180.77 180.77 180.77 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78                                                                                                                                | degrees F<br>102.92<br>102.93<br>102.94<br>102.95<br>102.96<br>102.97<br>103.93<br>103.01<br>103.02<br>103.03<br>103.04<br>103.04<br>103.04<br>103.03<br>103.01<br>103.03<br>103.01<br>103.03<br>103.11<br>103.12<br>103.12<br>103.13<br>103.14<br>103.15<br>103.16 | degrees F 102.96 102.87 102.87 102.87 102.87 102.87 102.87 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 102.97 | degrees F 4 95.698 5 95.698 6 95.701 7 95.702 8 95.706 9 95.707 9 95.709 1 95.711 2 95.712 3 95.714 4 95.715 5 95.717 6 95.722  T-130-3-1 degrees F 4 95.731 95.733 6 95.735 7 95.738 9 95.744 1 95.743 1 95.744 1 95.744 1 95.745 2 95.744 3 95.746 4 95.748 5 95.746 6 95.752 7 95.754                           | degrees F scfm 159.14 647.77 159.14 654.21 159.15 652.81 159.15 647.93 159.16 660.81 159.16 642.33 159.17 642.33 159.17 642.33 159.17 641.59.18 662.74 159.18 664.00 159.18 664.00 159.18 642.33 159.19 647.82 159.19 647.82 159.19 647.82 159.19 647.82 159.21 640.72 159.22 636.57 159.22 636.57 159.23 659.58 159.23 659.58 159.23 659.58 159.23 674.34 159.24 661.13 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.25 673.85 159.2 |



# **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0

# NWCF Fluoride Hot Sump Tank - NCC-119

# Metals, Anions, and Miscellaneous

| Analyte    | Units | Method<br>Number | Sample L<br>981203 |     | Sample L<br>990226 |     | Sample Le<br>990306 |     | Sample L<br>990317 |     |
|------------|-------|------------------|--------------------|-----|--------------------|-----|---------------------|-----|--------------------|-----|
|            |       |                  | Results            | LQF | Results            | LQF | Results             | LQF | Results            | LQF |
| рН         |       | EPA150.1         | 0.45               |     | 0.35               | В   | 0.34                | U   | 0.34               | U   |
| Acidity    | N     | AC7012           |                    |     |                    |     |                     |     |                    |     |
| Aluminum   | μg/L  | SW6010B          |                    |     | 8.29E+06           |     | 3.04E+07            |     | 2.31E+07           |     |
| Antimony   | μg/L  | SW6010B          | 4.52E+02           | U   | 4.40E+02           | U   | 2.82E+03            | U   | 2.82E+03           | U   |
| Arsenic    | μg/L  | SW6010B          | 5.04E+02           | U   | 4.74E+02           | U   | 5.74E+03            | UN  | 5.74E+03           | UN  |
| Barium     | μg/L  | SW6010B          | 1.11E+03           |     | 2.94E+02           |     | 1.80E+03            | В   | 1.53E+03           | В   |
| Beryllium  | μg/L  | SW6010B          | 1.8E+01            | В   | 3.8E+01            | В   | 1.31E+02            | В   | 1.11E+02           | В   |
| Boron      | μg/L  | SW6010B          |                    |     |                    |     |                     |     |                    |     |
| Cadmium    | μg/L  | SW6010B          | 6.59E+04           |     | 3.85E+04           |     | 1.43E+05            |     | 1.06E+05           |     |
| Calcium    | μg/L  | SW6010B          |                    |     |                    |     |                     |     |                    |     |
| Chloride   | μg/L  | AC7171           |                    |     |                    |     |                     |     |                    |     |
| Chromium   | μg/L  | SW6010B          | 2.64E+04           |     | 3.34E+04           |     | 1.07E+05            |     | 9.03E+04           |     |
| Cobalt     | μg/L  | SW6010B          |                    |     | 2.74E+02           | В . | 1.25E+03            | В   | 1.64E+03           | В   |
| Copper     | μg/L  | SW6010B          |                    |     | 2.75E+03           |     | 5.40E+03            | Ε   | 5.80E+03           | Е   |
| Fluoride   | µg/L  | AC7093           | 5.77E+05           | В   | 8.84E+05           | ΒE  | 2.45E+06            | ΒE  | 2.80E+06           | В   |
| Iron       | μg/L  | SW6010B          |                    |     |                    |     |                     |     |                    |     |
| Lead       | μg/L  | SW6010B          | 1.82E+04           |     | 1.35E+04           |     | 4.95E+04            | N   | 3.83E+04           | N   |
| Manganese  | μg/L  | SW6010B          |                    |     | 3.78E+04           |     | 1.42E+05            |     | 1.13E+05           |     |
| Mercury    | μg/L  | SW7470A          | 1.19E+05           |     | 1.95E+07           | N   | 1.41E+07            |     | 1.58E+07           |     |
| Nickel     | μg/L  | SW6010B          | 1.19E+04           |     | 1.15E+04           | N   | 2.73E+04            |     | 2.20E+04           |     |
| Nitrate    | μg/L  | AC7074           |                    |     |                    |     |                     |     |                    |     |
| Phosphorus | μg/L  | SW6010B          |                    |     |                    |     |                     |     |                    |     |
| Potassium  | μg/L  | SW6010B          |                    |     |                    |     |                     |     |                    |     |
| Selenium   | μg/L  | SW6010B          | 3.32E+02           | U   | 5.34E+02           | U   | 3.14E+03            | U   | 3.14E+03           | U   |
| Silver     | µg/L  | SW6010B          | 1.38E+02           | В   | 3.18E+02           | В   | 2.32E+02            | U   | 2.32E+02           | U   |
| Sodium     | μg/L  | SW6010B          |                    |     |                    |     |                     |     |                    |     |
| Sulfur     | µg/L  | SW6010B          |                    |     |                    |     |                     |     |                    |     |
| Thallium   | μg/L  | SW6010B          | 4.68E+02           | U   | 5.68E+02           | U   | 3.76E+03            | U   | 3.76E+03           | U   |
| Uranium    | μg/L  | AC7920           |                    |     | 5.41E+03           |     | 1.46E+04            |     | 9.68E+03           |     |
| Vanadium   | μg/L  | SW6010B          | 1.64E+02           | U   | 1.12E+02           | В   | 4.54E+02            | U   | 4.54E+02           | U   |
| Zinc       | μg/L  | SW6010B          | 2.01E+04           |     | 8.36E+03           |     | 1.42E+04            | Е   | 1.20E+04           | Е   |
| Zirconium  | μg/L  | SW6010B          |                    |     |                    |     |                     |     |                    |     |
| UDS        | μg/L  | AC7972           |                    |     |                    |     |                     |     |                    |     |
| TIC        | μg/L  | AC8060           |                    |     | 4.66E+04           | U   | 5.82E+04            | U   | 5.82E+04           | U   |
| TOC        | μg/L  | SW9060           |                    |     | 1.29E+05           | В   | 3.06E+05            | В   | 3.06E+05           | В   |

#### **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0

# NWCF Fluoride Hot Sump Tank - NCC-119 (con't.)

Metals, Anions, and Miscellaneous (con't)

| Analyte    | Units | Method<br>Number | Sample L<br>990320 | _   | Sample L<br>990407 | -   | Sample L<br>990411 |     | Sample L<br>990624 | _   |
|------------|-------|------------------|--------------------|-----|--------------------|-----|--------------------|-----|--------------------|-----|
|            |       |                  | Results            | LQF | Results            | LQF | Results            | LQF | Results            | LQF |
| pН         |       | EPA150.1         | 0.34               | U   | 0.34               | U   | 0.34               | U   |                    |     |
| Acidity    | N     | AC7012           |                    |     |                    |     |                    |     | 5.8E00             |     |
| Aluminum   | μg/L  | SW6010B          | 2.16E+07           |     | 3.20E+07           |     | 2.55E+07           |     | 2.05E+07           |     |
| Antimony   | μg/L  | SW6010B          | 2.82E+03           | U   | 2.82E+03           | U   | 2.82E+03           | U   | 7.60E+02           | U   |
| Arsenic    | μg/L  | SW6010B          | 9.19E+03           | BN  | 5.74E+03           | U   | 5.74E+03           | Ü   | 2.59E+03           | В   |
| Barium     | μg/L  | SW6010B          | 1.55E+03           | В   | 1.94E+03           | В   | 2.00E+03           | В   | 7.66E+02           | E   |
| Beryllium  | μg/L  | SW6010B          | 1.01E+02           | В   | 1.72E+02           | В   | 1.31E+02           | В   | 1.01E+02           |     |
| Boron      | μg/L  | SW6010B          |                    |     |                    |     |                    |     |                    |     |
| Cadmium    | μg/L  | SW6010B          | 1.09E+05           |     | 3.70E+04           | Ε   | 2.90E+04           | E   | 1.46E+04           |     |
| Calcium    | μg/L  | SW6010B          |                    |     |                    |     |                    |     |                    |     |
| Chloride   | μg/L  | AC7171           |                    |     |                    |     |                    |     |                    |     |
| Chromium   | μg/L  | SW6010B          | 9.73E+04           |     | 9.67E+04           |     | 9.97E+04           |     | 4.51E+04           |     |
| Cobalt     | μg/L  | SW6010B          | 3.74E+02           | U   | 4.85E+02           | В   | 5.45E+02           | В   | 3.15E+02           | В   |
| Copper     | μg/L  | SW6010B          | 5.43E+03           | Е   | 6.73E+03           | Ε   | 6.53E+03           | E   | 3.45E+03           |     |
| Fluoride   | μg/L  | AC7093           | 3.38E+06           |     | 1.94E+06           |     | 2.10E+06           | В   | 6.95E+05           | В   |
| Iron       | μg/L  | SW6010B          |                    |     |                    |     |                    |     |                    |     |
| Lead       | μg/L  | SW6010B          | 3.82E+04           | N   | 1.02E+05           | E   | 9.68E+04           | Е   | 4.55E+04           |     |
| Manganese  | μg/L  | SW6010B          | 1.07E+05           |     | 2.12E+05           |     | 2.03E+05           |     | 1.02E+05           |     |
| Mercury    | μg/L  | SW7470A          | 2.19E+07           |     | 2.06E+07           |     | 2.13E+07           |     | 2.97E+06           |     |
| Nickel     | μg/L  | SW6010B          | 2.25E+04           |     | 2.28E+04           |     | 2.17E+04           |     | 1.40E+04           |     |
| Nitrate    | μg/L  | AC7074           |                    |     |                    |     |                    |     |                    |     |
| Phosphorus | μg/L  | SW6010B          |                    |     |                    |     |                    |     |                    |     |
| Potassium  | µg/L  | SW6010B          |                    |     |                    |     |                    |     |                    |     |
| Selenium   | μg/L  | SW6010B          | 3.14E+03           | U   | 3.14E+03           | U   | 3.14E+03           | U   | 6.12E+02           | U   |
| Silver     | μg/L  | SW6010B          | 2.32E+02           | U   | 2.32E+02           | U   | 2.32E+02           | U   | 9.9E+01            | В   |
| Sodium     | μg/L  | SW6010B          |                    |     |                    |     |                    |     |                    |     |
| Sulfur     | μg/L  | SW6010B          |                    |     |                    |     |                    |     |                    |     |
| Thallium   | μg/L  | SW6010B          | 3.76E+03           | U   | 3.76E+03           | U   | 3.76E+03           | U   | 1.11E+03           | U   |
| Uranium    | μg/L  | AC7920           | 1.02E+04           |     | 1.65E+04           |     | 1.37E+04           |     | 8.49E+03           |     |
| Vanadium   | μg/L  | SW6010B          | 4.54E+02           | U   | 4.54E+02           | U   | 4.54E+02           | U   | 1.71E+02           | В   |
| Zinc       | μg/L  | SW6010B          | 1.01E+04           | E   | 1.68E+04           | E   | 1.48E+04           | E   | 9.45E+03           |     |
| Zirconium  | μg/L  | SW6010B          |                    |     |                    |     |                    |     |                    |     |
| UDS        | μg/L  | AC7972           |                    |     |                    |     |                    |     |                    |     |
| TIC        | μg/L  | AC8060           | 5.82E+04           | U   | 5.82E+04           | U   | 5.82E+04           | U   | 6.83E+04           | U   |
| TOC        | μg/L  | SW9060           | 3.91E+05           | В   | 1.19E+05           |     | 7.54E+04           | В   | 1.92E+05           | В   |

### **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0 Page 10 of 42

# NWCF Fluoride Hot Sump Tank - NCC-119 (con't.)

Metals, Anions, and Miscellaneous (con't)

| Analyte    | Units | Method<br>Number | Sample Log #<br>9909071 |     | Sample Log #<br>9910191 |     | Sample Log #<br>9911071 |     | Sample Log #<br>0001121 |     |
|------------|-------|------------------|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|
|            |       |                  | Results                 | LQF | Results                 | LQF | Results                 | LQF | Results                 | LQF |
| pН         |       | EPA150.1         |                         |     |                         |     |                         |     |                         |     |
| Acidity    | N     | AC7012           | 1.6E00                  |     | 4.3E-01                 | В   | 1.4E00                  |     | 1.1E00                  |     |
| Aluminum   | μg/L  | SW6010B          | 2.42E+06                |     | 1.49E+06                |     | 1.67E+06                |     | 1.53E+06                |     |
| Antimony   | µg/L  | SW6010B          | 7.56E+02                | U   | 7.56E+02                | U   | 7.56E+02                | U   | 1.58E+02                | U   |
| Arsenic    | μg/L  | SW6010B          | 8.34E+02                | U   | 2.57E+03                | В   | 1.14E+03                | В   | 5.17E+02                | Ų   |
| Barium     | μg/L  | SW6010B          | 2.69E+02                | ΒE  | 7.98E+01                | ΒE  | 1.91E+02                | ΒE  | 2.23E+02                |     |
| Beryllium  | μg/L  | SW6010B          | 1.5E+01                 | В   | < 4.2E00                | U   | 6.3E00                  | В   | 9E00                    | В   |
| Boron      | μg/L  | SW6010B          |                         |     |                         |     |                         |     |                         |     |
| Cadmium    | μg/L  | SW6010B          | 4.41E+03                |     | 1.09E+03                |     | 2.95E+03                |     | 2.54E+03                |     |
| Calcium    | μg/L  | SW6010B          |                         |     |                         |     |                         |     |                         |     |
| Chloride   | μg/L  | AC7171           |                         |     |                         |     |                         |     |                         |     |
| Chromium   | μg/L  | SW6010B          | 6.66E+03                |     | 2.96E+03                |     | 7.76E+03                |     | 6.12E+03                | Ε   |
| Cobalt     | μg/L  | SW6010B          | 7.98E+01                | U   | 7.98E+01                | U   | 1.16E+02                | В   | 9.8E+01                 | В   |
| Copper     | μg/L  | SW6010B          | 8.67E+02                |     | 2.50E+02                | В   | 7.73E+02                |     | 9.61E+02                | Ε   |
| Fluoride   | μg/L  | AC7093           | 6.01E+04                | В   | 2.42E+04                | В   | 7.30E+04                | В   | 6.69E+04                | В   |
| Iron       | μg/L  | SW6010B          |                         |     |                         |     |                         |     |                         |     |
| Lead       | μg/L  | SW6010B          | 5.51E+03                |     | 2.24E+03                | В   | 4.53E+03                |     | 4.10E+03                |     |
| Manganese  | μg/L  | SW6010B          | 1.78E+04                |     | 6.98E+03                |     | 1.65E+04                |     | 1.38E+04                |     |
| Mercury    | μg/L  | SW7470A          | 2.51E+03                | Ε   | 9.28E+02                | ΒE  | 3.42E+03                |     | 2.83E+03                | ВЕ  |
| Nickel     | μg/L  | SW6010B          | 5.72E+03                |     | 1.98E+03                |     | 5.42E+03                |     | 4.20E+03                |     |
| Nitrate    | µg/L  | AC7074           |                         |     |                         |     |                         |     |                         |     |
| Phosphorus | µg/L  | SW6010B          |                         |     |                         |     |                         |     |                         |     |
| Potassium  | μg/L  | SW6010B          |                         |     |                         |     |                         |     |                         |     |
| Selenium   | μg/L  | SW6010B          | 6.09E+02                | U   | 6.09E+02                | U   | 6.09E+02                | U   | 8.76E+02                | U   |
| Silver     | μg/L  | SW6010B          | 4.4E+01                 | U   | 4.4E+01                 | Ų   | 4.4E+01                 | U   | 6.6E+01                 | В   |
| Sodium     | µg/L  | SW6010B          |                         |     |                         |     |                         |     |                         |     |
| Sulfur     | μg/L  | SW6010B          |                         |     |                         |     |                         |     |                         |     |
| Thallium   | μg/L  | SW6010B          | 1.11E+03                | U   | 1.11E+03                | U   | 1.11E+03                | U   | 4.87E+02                | U   |
| Uranium    | µg/L  | AC7920           | 1.51E+03                |     | 6.99E+02                |     | 1.03E+03                |     | 7.33E+02                |     |
| Vanadium   | µg/L  | SW6010B          | 7.77E+01                | U   | 7.77E+01                | U   | 7.77E+01                | U   | 3.5E+01                 | U   |
| Zinc       | µg/L  | SW6010B          | 1.85E+03                |     | 6.11E+02                |     | 1.60E+03                |     | 1.49E+03                |     |
| Zirconium  | µg/L  | SW6010B          |                         |     |                         |     |                         |     |                         |     |
| UDS        | μg/L  | AC7972           |                         |     |                         |     |                         |     |                         |     |
| TIC        | μg/L  | AC8060           | 2.70E+03                | UE  | 3.45E+03                | U   | 3.45E+03                | U   | 2.70E+04                | U   |
| тос        | µg/L  | SW9060           | 4.81E+04                |     | 1.32E+04                |     | 2.95E+04                |     | 2.19E+05                |     |

# **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0 Page 11 of 42

# NWCF Fluoride Hot Sump Tank - NCC-119 (con't.)

Metals, Anions, and Miscellaneous (con't)

| Analyte    | Units | Method<br>Number | Sample Log #<br>0003012 |     | Sample Log #<br>0102193 |     | Sample Log #<br>0106214 |     | Sample Log #<br>0202251 |     |
|------------|-------|------------------|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|
|            |       |                  | Results                 | LQF | Results                 | LQF | Results                 | LQF | Results                 | LQF |
| pН         |       | EPA150.1         |                         |     |                         |     |                         |     |                         |     |
| Acidity    | N     | AC7012           | 3.3E00                  |     | 3.03E+00                |     | 1.74E+00                |     | 3.83E00                 |     |
| Aluminum   | μg/L  | SW6010B          | 5.39E+05                |     | 1.47E+07                |     | 8.43E+06                |     | 2.97E+07                |     |
| Antimony   | μg/L  | SW6010B          | 1.58E+02                | U   | 2.54E+03                | В   | 1.56E+03                | В   | 1.54E+03                | В   |
| Arsenic    | μg/L  | SW6010B          | 5.17E+02                | U   | 9.08E+02                | U   | 5.8E+02                 | U   | 4.65E+02                | В   |
| Barium     | μg/L  | SW6010B          | 9.9E+01                 | В   | 8.39E+03                |     | 2.96E+03                |     | 2.25E+04                |     |
| Beryllium  | μg/L  | SW6010B          | 3E00                    | В   | 2.02E+02                |     | 6.00E+01                | В   | 1.82E+02                |     |
| Boron      | μg/L  | SW6010B          |                         |     |                         |     |                         |     | 3.71E+05                |     |
| Cadmium    | μg/L  | SW6010B          | 6.52E+03                |     | 5.72E+05                |     | 1.47E+05                |     | 2.29E+05                |     |
| Calcium    | μg/L  | SW6010B          |                         |     |                         |     |                         |     | 4.77E+06                |     |
| Chloride   | μg/L  | AC7171           |                         |     |                         |     |                         |     | 6.86E+05                |     |
| Chromium   | μg/L  | SW6010B          | 5.44E+03                |     | 4.49E+05                |     | 8.70E+04                |     | 1.67E+05                |     |
| Cobalt     | μg/L  | SW6010B          | 2.21E+02                | В   | 2.72E+03                |     | 1.42E+03                | В   |                         |     |
| Copper     | μg/L  | SW6010B          | 4.57E+02                |     | 8.91E+04                |     | 1.91E+04                |     |                         |     |
| Fluoride   | μg/L  | AC7093           | 4.35E+04                | В   | 2.97E+06                | UN  | 1.00E+06                |     | 3.41E+06                |     |
| iron       | μg/L  | SW6010B          |                         |     |                         |     |                         |     | 1.28E+06                |     |
| Lead       | μg/L  | SW6010B          | 1.58E+03                | В   | 2.95E+05                |     | 8.63E+04                |     | 1.00E+05                |     |
| Manganese  | μg/L  | SW6010B          | 4.85E+03                |     | 1.68E+06                |     | 3.39E+05                |     | 2.97E+05                |     |
| Mercury    | μg/L  | SW7470A          | 2.24E+04                |     | 5.09E+05                |     | 1.14E+05                |     | 6.28E+06                |     |
| Nickel     | µg/L  | SW6010B          | 4.20E+03                |     | 1.88E+05                |     | 5.53E+04                |     | 9.49E+04                |     |
| Nitrate    | μg/L  | AC7074           |                         |     |                         |     |                         |     | 4.42E+08                |     |
| Phosphorus | μg/L  | SW6010B          |                         |     |                         |     |                         |     | 2.00E+04                |     |
| Potassium  | μg/L  | SW6010B          |                         |     |                         |     |                         |     | 2.46E+06                |     |
| Selenium   | μg/L  | SW6010B          | 8.76E+02                | U   | 5.85E+02                | U   | 9.6E+02                 | U   | 3.64E+02                | U   |
| Silver     | μg/L  | SW6010B          | 3.3E+01                 | U   | 3.43E+02                | В   | 4E+02                   | U   | 2.47E+03                |     |
| Sodium     | μg/L  | SW6010B          |                         |     |                         |     |                         |     | 1.50E+07                |     |
| Sulfur     | μg/L  | SW6010B          |                         |     |                         |     |                         |     | 1.21E+06                |     |
| Thallium   | μg/L  | SW6010B          | 4.87E+02                | U   | 7.67E+02                | U   | 8E+02                   | U   | 4.14E+02                | U   |
| Uranium    | μg/L  | AC7920           | 5.30E+02                |     | 2.11E+05                |     | 6.22E+04                |     |                         |     |
| Vanadium   | μg/L  | SW6010B          | 3.5E+01                 | U   | 1.67E+03                | В   | 5.60E+02                | В   | 8.48E+02                | В   |
| Zinc       | μg/L  | SW6010B          | 4.62E+02                |     | 8.22E+04                |     | 3.23E+04                |     | 4.34E+04                |     |
| Zirconium  | μg/L  | SW6010B          |                         |     |                         |     |                         |     | 1.17E+06                |     |
| UDS        | μg/L  | AC7972           |                         |     | 1.00E+05                |     | 1.29E+06                |     | 3.8E+04                 |     |
| TIC        | μg/L  | AC8060           | 4.68E+04                | U   | 1.22E+05                | UE  | 1.19E+05                | UE  |                         |     |
| TOC        | μg/L  | SW9060           | 2.51E+04                | В   | 6.13E+05                | В   | 7.55E+05                | В   | 3.47E+05                |     |

EDF- 2506 Rev. No. 0 Page 12 of 42

## NWCF Fluoride Hot Sump Tank - NCC-119 (con't.)

| Analyte                         | Units          | Method<br>Number | Sample L<br>98120 |          | Sample L<br>99022 |          | Sample L<br>99030 |     | Sample L<br>99031 |          |
|---------------------------------|----------------|------------------|-------------------|----------|-------------------|----------|-------------------|-----|-------------------|----------|
|                                 |                |                  | Results           | LQF      | Results           | LQF      | Results           | LQF | Results           | LQI      |
| Semi-Volatile O                 | rganic C       | ompounds         |                   |          |                   |          |                   |     |                   |          |
| 2,4-Dinitrophenol               | μg/L           | SW8270C          | 1.90E+02          | JBD<br>M | 2.5E+01           | UM       | 7.3E+01           | М   |                   |          |
| 2,4-Dinitrotoluene              | μg/L           | SW8270C          | 2E+01             | U        | 2.5E+01           | U        | 2.5E+01           | U   |                   |          |
| 2,6-Dinitrotoluene              | μg/L           | SW8270C          | 2E+01             | U        | 2.5E+01           | U        | 2.5E+01           | U   |                   |          |
| 4-Nitrophenol                   | μg/L           | SW8270C          | 2E+01             | U        | 2.5E+01           | U        | 2.5E+01           | U   |                   |          |
| 4,6-Dinitro-2-<br>nethylphenol  | μg/L           | SW8270C          | 2E+01             | UM       | 3.1E+01           | М        | 2.5E+01           | U   |                   |          |
| Bis-(2-ethylhexyl)<br>phthalate | μg/L           | SW8270C          | 1.90E+02          | BZD      | 3.4E+01           |          | 5.40E+02          | D   |                   |          |
| Butylbenzyl phthalate           | μg/L           | SW8270C          | 2E+01             | U        | 2.5E+01           | U        | 2.5E+01           | U   |                   |          |
| Diethylphthalate                | μg/L           | SW8270C          | 4.6E+01           |          | 2.5E+01           | UM       | 2.5E+01           | UM  |                   |          |
| Di-n-octyl phthalate            | µg/L           | SW8270C          | 2E+01             | U        | 2.5E+01           | U        | 2.5E+01           | U   |                   |          |
| Nitrobenzene                    | μg/L           | SW8270C          | 2E+01             | U        | 4.1E+01           | М        | 2.5E+01           | UM  |                   |          |
| n-<br>Nitrosodimethylamine      | μg/L           | SW8270C          | 2E+01             | U        | 2.5E+01           | U        | 2.5E+01           | U   |                   |          |
| Pyridine                        | μg/L           | SW8270C          | 2E+01             | U        | 2.5E+01           | U        | 2.5E+01           | U   |                   |          |
| ri-n-butyl phosphate            | μg/L           | SW8270C          | 2E+01             | υ        | 2.5E+01           | UM       | 2.5E+01           | UM  |                   |          |
| Volatile Organic                | Compo          | unds             |                   |          |                   |          |                   |     |                   |          |
| 1,1-Dichloroethane              | μg/ <b>L</b>   | SW8260A          | 1E+01             | U        | 2E00              | UН       | 2E00              | U   | 3E00              | U I<br>M |
| 1,1,1-Trichloroethane           | μg/L           | SW8260A          | 1E+01             | U        | 2E00              | UН       | 2E00              | U   | 3E00              | UH       |
| 2-Butanone                      | μg/L           | SW8260A          | 1.20E+01          |          | 3E00              | UН       | 3E00              | U   | 8E00              | UH       |
| 2-Hexanone                      | μg/L           | SW8260A          | 3E00              | J M      | 3E00              | U H<br>M | 3E00              | UM  | 2.3E+01           | U ł<br>M |
| 1-Methyl-2-pentanone            | μ <b>g/l</b> L | SW8260A          | 1E+01             | U        | 3E00              | U H<br>M | 3E00              | UM  | 1.2E+01           | U F<br>M |
| Acetone                         | μg/L           | SW8260A          | 1E+01             | U        | 2E00              | JH       | 2E00              | U   | 4E+00             | UH       |
| 3enzene                         | μg/L           | SW8260A          | 1E+01             | U        | 2E00              | UН       | 2E00              | U   | 3E00              | U F<br>M |
| 3romodichloromethane            | μg/L           | SW8260A          | 1E+01             | U        | 2E00              | UН       | 2E00              | U   | 3E00              | UH       |
| Bromoform                       | μg/L           | SW8260A          | 1E+01             | U        | 2E00              | UН       | 2E00              | U   | 1.4E+01           | UH       |
| Bromomethane                    | μg/L           | SW8260A          | 1E+01             | U        | 6E00              | JH       | 3E00              | J   | 1.2E+02           | B H<br>M |
| Carbon disulfide                | μg/L           | SW8260A          | 1E+01             | U        | 2E00              | UН       | 2E00              | U   | 4E00              | UH       |
| Carbon tetrachloride            | μg/L           | SW8260A          | 1E+01             | U        | 2E00              | UН       | 2E00              | υ   | 7E00              | UH       |
| Chloroform                      | μg/L           | SW8260A          | 1E+01             | U        | 2E00              | UН       | 2E00              | υ   | 3E00              | Uŀ       |
| Chloromethane                   | μg/L           | SW8260A          | 1E+01             | U        | 2E00              | JHM      | 2E00              | UM  | 1.7E+01           | U F<br>M |
| Dibromochloromethane            | μg/L           | SW8260A          | 1E+01             | U        | 2E00              | UН       | 2E00              | U   | 6E00              | UH       |
| Dichloromethane                 | μg/L           | SW8260A          | 1E+01             | UM       | 2E00              | U H<br>M | 2E00              | UM  | 8.6E+01           | нк       |
| Styrene                         | μg/L           | SW8260A          | 1E+01             | UM       | 2E00              | U H<br>M | 2E00              | UM  | 1.4E+01           | U F<br>M |
| Trichlorofluoromethane          | μg/L           | SW8260A          | 1E+01             | U        | 2E00              | UН       | 2E00              | U   | 4E00              | UH       |

μg/L

21 / 3.79E+03

21 / 6.23E+02

17 / 5.78E+02

21 / 3.74E+03

## **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0 Page 13 of 42

## NWCF Fluoride Hot Sump Tank - NCC-119 (con't.)

| Analyte                         | Units        | Method<br>Number | Sample L<br>99032 |            | Sample L<br>99040 | -   | Sample L<br>99041 | -   | Sample L<br>99062 |    |
|---------------------------------|--------------|------------------|-------------------|------------|-------------------|-----|-------------------|-----|-------------------|----|
|                                 |              |                  | Results           | LQF        | Results           | LQF | Results           | LQF | Results           | LQ |
| Semi-Volatile Or                | ganic C      | ompounds         |                   |            |                   |     |                   |     |                   |    |
| 2,4-Dinitrophenol               | μg/L         | SW8270C          | 2.7E+02           | M D        | 2.9E+01           | М   | 2.5E+01           | U M | 2.5E+01           | UN |
| 2,4-Dinitrotoluene              | μg/L         | SW8270C          | 5E+01             | U D        | 2.5E+01           | U   | 2.5E+01           | U   | 2.5E+01           | U  |
| 2,6-Dinitrotoluene              | μg/L         | SW8270C          | 5E+01             | U D        | 2.5E+01           | U   | 2.5E+01           | U   | 2.5E+01           | U  |
| 4-Nitrophenol                   | μg/L         | SW8270C          | 5E+01             | U D        | 2.5E+01           | U   | 2.5E+01           | U   | 2.5E+01           | U  |
| 4,6-Dinitro-2-<br>methylphenol  | μg/L         | SW8270C          | 5E+01             | U M<br>D   | 2.5E+01           | UM  | 2.5E+01           | UM  | 2.5E+01           | UN |
| Bis-(2-ethylhexyl)<br>phthalate | μg/L         | SW8270C          | 5E+01             | UD         | 4.5E+01           | В   | 6.8E+01           | В   | 3.6E+01           |    |
| Butylbenzyl phthalate           | μg/L         | SW8270C          | 5E+01             | U D        | 2.5E+01           | U   | 2.5E+01           | U   | 2.5E+01           | U  |
| Diethylphthalate                | μg/ <b>L</b> | SW8270C          | 5E+01             | U M<br>D   | 2.5E+01           | UM  | 2.5E+01           | UM  | 2.5E+01           | UN |
| Di-n-octyl phthalate            | μg/L         | SW8270C          | 5E+01             | U D        | 2.5E+01           | UΖ  | 2.5E+01           | U   | 2.5E+01           | U  |
| Nitrobenzene                    | μg/L         | SW8270C          | 5E+01             | D<br>D     | 2.5E+01           | UM  | 2.5E+01           | UM  | 2.5E+01           | UN |
| n-<br>Nitrosodimethylamine      | μg/L         | SW8270C          | 5E+01             | U M<br>D   | 2.5E+01           | U M | 2.5E+01           | U   | 2.5E+01           | U  |
| Pyridine                        | μ <b>g/L</b> | SW8270C          | 5E+01             | U D        | 2.5E+01           | U   | 2.5E+01           | U   | 2.5E+01           | U  |
| Fri-n-butyl phosphate           | μg/L         | SW8270C          | 5E+01             | U M<br>D   | 2.5E+01           | UM  | 2.5E+01           | UM  | 2.5E+01           | U  |
| Volatile Organic                | Compo        | unds             |                   |            |                   |     |                   |     |                   |    |
| 1,1-Dichloroethane              | μg/L         | SW8260A          | 3E00              | U M        | 3E00              | UM  | 3E00              | UM  | 2E00              | U  |
| 1,1,1-Trichloroethane           | µg/L         | SW8260A          | 3E00              | U          | 3E00              | U   | 3E00              | U   | 2E00              | U  |
| 2-Butanone                      | μg/L         | SW8260A          | 8E00              | U          | 8E00              | U   | 8E00              | U   | 3E00              | U  |
| 2-Hexanone                      | μ <b>g/L</b> | SW8260A          | 2.3E+01           | UM         | 2.3E+01           | UM  | 2.3E+01           | UM  | 3E00              | U  |
| 4-Methyl-2-pentanone            | µg/L         | SW8260A          | 1.2E+01           | UM         | 1.2E+01           | UM  | 1.2E+01           | U M | 3E00              | U  |
| Acetone                         | μg/L         | SW8260A          | 4E00              | U          | 6E00              | J   | 4E00              | JB  | 9E00              | JВ |
| Benzene                         | µg/L         | SW8260A          | 3E00              | υ <b>м</b> | 3E00              | UM  | 3E00              | UM  | 2E00              | UN |
| Bromodichloromethane            | µg/L         | SW8260A          | 3E00              | U          | 3E00              | υ   | 3E00              | U   | 2E00              | U  |
| Bromoform                       | µg/L         | SW8260A          | 1.4E+01           | U          | 1.4E+01           | υ   | 1.4E+01           | U   | 2E00              | U  |
| Bromomethane                    | μg/L         | SW8260A          | 5.9E+01           | вм         | 9.5E+01           | М   | 4.7E+01           | ВМ  | 7E00              | JM |
| Carbon disulfide                | μg/L         | SW8260A          | 4E00              | U          | 4E00              | U   | 4E00              | U   | 2E00              | U  |
| Carbon tetrachloride            | μg/L         | SW8260A          | 7E00              | U          | 7E00              | U   | 7E00              | U   | 2E00              | U  |
| Chloroform                      | µg/L         | SW8260A          | 3E00              | U          | 3E00              | U   | 3E00              | U   | 2E00              | u  |
| Chloromethane                   | μg/L         | SW8260A          | 1.7E+01           | UM         | 8.9E+01           | М   | 1.7E+01           | UM  | 2E00              | U  |
| Dibromochloromethane            | μg/L         | SW8260A          | 6E00              | U          | 6E00              | U   | 6E00              | U   | 2E00              | U  |
| Dichloromethane                 | μg/L         | SW8260A          | 6E00              | UM         | 6E00              | UM  | 2.1E+01           | М   | 2E00              | U  |
| Styrene                         | μg/L         | SW8260A          | 1.4E+01           | UM         | 1.4E+01           | UM  | 1.4E+01           | U M | 2E00              | UΙ |
| Trichlorofluoromethane          | μg/L         | SW8260A          | 4E00              | υ          | 4E00              | U   | <b>4</b> E00      | U   | 2E00              | U  |

EDF- 2506 Rev. No. 0 Page 14 of 42

## NWCF Fluoride Hot Sump Tank - NCC-119 (con't.)

| Analyte                         | Units        | Method<br>Number | Sample Le<br>990907 |               | Sample Lo<br>991019 |     | Sample L<br>991107 |       | Sample L<br>000112 |        |
|---------------------------------|--------------|------------------|---------------------|---------------|---------------------|-----|--------------------|-------|--------------------|--------|
|                                 |              |                  | Results             | LQF           | Results             | LQF | Results            | LQF   | Results            | LQ     |
| Semi-Volatile Or                | ganic C      | ompounds         |                     |               |                     |     |                    |       |                    |        |
| 2,4-Dinitrophenol               | μg/L         | SW8270C          | 8E+01               | М             | 4E+01               | υM  | 9.9E+01            | М     | 4E+01              | D<br>D |
| 2,4-Dinitrotoluene              | µg/L         | SW8270C          | 2.5E+01             | U             | 2E+01               | ť   | 2E+01              | U     | 4E+01              | UE     |
| 2,6-Dinitrotoluene              | μg/L         | SW8270C          | 2.5E+01             | U             | 2E+01               | U   | 2E+01              | U     | 4E+01              | υŒ     |
| 4-Nitrophenol                   | μg/L         | SW8270C          | 2.5E+01             | U             | 2E+01               | U   | 1E+01              | U     | 4E+01              | Ų      |
| 4,6-Dinitro-2-<br>methylphenol  | μg/L         | SW8270C          | 2.5E+01             | U             | 4E+01               | U M | 4E+01              | U M   | 4E+01              | U N    |
| Bis-(2-ethylhexyl)<br>phthalate | μg/L         | SW8270C          | 2.5E+01             | U             | 2E+01               | U   | 2E+01              | บ     | 4E+01              | U      |
| Butylbenzyl phthalate           | μg/L         | SW8270C          | 2.5E+01             | υ             | 2E+01               | U   | 2E+01              | U     | 4E+01              | U      |
| Diethylphthalate                | μg/L         | SW8270C          | 2.5E+01             | UM            | 2E+01               | UM  | 2E+01              | U M   | 4E+01              | U      |
| Di-n-octyl phthalate            | μg/L         | SW8270C          | 2.5E+01             | U             | 2E+01               | U   | 2E+01              | U     | 4E+01              | UE     |
| Nitrobenzene                    | μg/L         | SW8270C          | 2.5E+01             | UM            | 4E+01               | U   | 2E+01              | U     | 4E+01              | UE     |
| n-<br>Nitrosodimethylamine      | μg/L         | SW8270C          | 2.5E+01             | U             | 4E+01               | U   | 4E+01              | บ     | 4E+01              | U      |
| Pyridine                        | µg/L         | SW8270C          | 2.5E+01             | υ             | 2E+01               | U   | 2E+01              | U     | 4E+01              | U      |
| Tri-n-butyl phosphate           | μg/L         | SW8270C          | 2.5E+01             | UM            | 2E+01               | UМ  | 2E+01              | υм    | 4E+01              | U      |
| Volatile Organic                |              |                  | 2.32.101            | 0 101         | 22.01               |     | 22.101             | 0 141 | 42.01              |        |
| 1,1-Dichloroethane              | μg/L         | SW8260A          | 1E00                | U             | 1E00                | U   | 1E+01              | U     | 1E00               | υ      |
| 1,1,1-Trichloroethane           | μg/L         | SW8260A          | 1E00                | U             | 1E00                | U   | 1E+01              | U     | 1E00               | U      |
| 2-Butanone                      | μg/L         | SW8260A          | 2E00                | U             | 2E00                | U   | 1E+01              | U     | 2E00               | UN     |
| 2-Hexanone                      | μg/L         | SW8260A          | 2E00                | U             | 2E00                | U   | 1E+01              | U     | 2E00               | U      |
|                                 |              |                  |                     |               | 2E00                | U   | 1E+01              | U     | 2E00               | UI     |
| 4-Methyl-2-pentanone            | μg/L<br>     | SW8260A          | 2E00                | U             |                     |     |                    |       |                    |        |
| Acetone                         | µg/L         | SW8260A          | 4E00                | JBM           | 2E00                | U   | 3E00               | J B   | 4E00               | J N    |
| Benzene                         | µg/L         | SW8260A          | 1E00                | UM            | 1E00                | UM  | 3E00               | JBM   | 1E00               | UN     |
| Bromodichloromethane            | μg/L         | SW8260A          | 1E00                | U             | 1E00                | U   | 1E+01              | U     | 1E00               | U      |
| Bromoform                       | µg/L         | SW8260A          | 2E00                | UM            | 2E00                | U   | 1E+01              | U     | 2E00               | U      |
| Bromomethane                    | μg/L         | SW8260A          | 2E00                | U             | 2E00                | U   | 1E+01              | U     | 2E00               | U      |
| Carbon disulfide                | µg/L         | SW8260A          | 1E00                | U             | 1E00                | U   | 1E+01              | U     | 1E00               | U      |
| Carbon tetrachloride            | μg/ <b>L</b> | SW8260A          | 2E00                | U             | 2E00                | U   | 1E+01              | U     | 2E00               | U      |
| Chloroform                      | µg/Ł         | SW8260A          | 1E00                | υ             | 1E00                | U   | 1E+01              | U     | 1E00               | U      |
| Chloromethane                   | μg/L         | SW8260A          | 2E00                | U             | 2E00                | U   | 1E+01              | U     | 2E00               | UI     |
| Dibromochloromethane            | μg/L         | SW8260A          | 1E00                | U             | 1E00                | U   | 1E+01              | U     | 1E00               | U      |
| Dichloromethane                 | µg/L         | SW8260A          | 1E00                | U             | 1E00                | UM  | 1E+01              | UM    | 1E00               | บเ     |
| Styrene                         | μg/L         | SW8260A          | 1E00                | UM            | 1E00                | UΜ  | 1E+01              | UM    | 1E00               | UI     |
| Trichlorofluoromethane          | μg/L         | SW8260A          | 1E00                | U             | 1E00                | U   | 1E+01              | U     | 1E00               | U      |
| Tentatively Ident               | ified Or     | ganic Comp       | ounds               |               |                     |     |                    |       |                    |        |
| no. Ided / total conc.          | μg/L         |                  | 15 / 6.48E+02       | SVOCs<br>only | 10 / 8.88E+02       |     | 11 / 3.27E+02      |       | 1 / 1.80E+04       |        |

EDF- 2506 Rev. No. 0 Page 15 of 42

## NWCF Fluoride Hot Sump Tank - NCC-119 (con't.)

| Analyte                         | Units        | Method<br>Number | Sample L<br>00030 |     | Sample I<br>01021 |               | Sample Lo<br>010621 |     | Sample L<br>02022 |     |
|---------------------------------|--------------|------------------|-------------------|-----|-------------------|---------------|---------------------|-----|-------------------|-----|
|                                 |              |                  | Results           | LQF | Results           | LQF           | Results             | LQF | Results           | LQF |
| Semi-Volatile Or                | rganic C     | ompounds         |                   |     |                   |               |                     |     |                   |     |
| 2,4-Dinitrophenol               | µg/L         | SW8270C          | 9E00              | J   | 2E+01             | υM            | 4.4E+01             | М   | 1.4E+01           | UM  |
| 2,4-Dinitrotoluene              | μg/L         | SW8270C          | 2E+01             | U   | 2E+01             | U             | 2E+01               | U   | 8E00              | U   |
| 2,6-Dinitrotoluene              | μg/L         | SW8270C          | 2E+01             | U   | 1.2E+01           | J             | 2E+01               | U   | 1.1E+01           | U   |
| 4-Nitrophenol                   | μg/L         | SW8270C          | 2E+01             | U   | 2E+01             | U             | 2E+01               | UM  | 3E+01             | UΧ  |
| 4,6-Dinitro-2-<br>methylphenol  | μg/L         | SW8270C          | 2E+01             | U   | 2E+01             | UM            | 2E+01               | UM  | 1.3E+01           | UM  |
| Bis-(2-ethylhexyl)<br>phthalate | μg/L         | SW8270C          | 6E00              | J   | 2E+01             | U             | 1.4E+02             | U   | 9E00              | UM  |
| Butylbenzyl phthalate           | μg/L         | SW8270C          | 2E+01             | U   | 2E+01             | U             | 2E+01               | U   | 9E00              | υм  |
| Diethylphthalate                | μg/L         | SW8270C          | 8E00              | J M | 2E+01             | UM            | 2E+01               | UM  | 1.2E+01           | UM  |
| Di-n-octyl phthalate            | µg/L         | SW8270C          | 2E+01             | U   | 2E+01             | U             | 2E+01               | U   | 6E00              | U   |
| Nitrobenzene                    | μg/L         | SW8270C          | 2E+01             | UM  | 2E+01             | U             | 2E+01               | U   | 7E00              | υм  |
| n-<br>Nitrosodimethylamine      | μg/L         | SW8270C          | 2E+01             | UM  | 1.4E+02           |               | 3.6E+01             |     | 2.4E+01           | υx  |
| Pyridine                        | μg/L         | SW8270C          | 2E+01             | U   | 2E+01             | U             | 2E+01               | U   | 1.5E+01           | U   |
| Tri-n-butyl phosphate           | μg/L         | SW8270C          | 2E+01             | UM  | 2E+01             | U             |                     |     | 1.1E+01           | ВЈМ |
| Volatile Organic                | Compo        | unds             |                   |     |                   |               |                     |     |                   |     |
| 1,1-Dichloroethane              | μg/L         | SW8260A          | 1E+01             | U   | 1E+01             | U             | 1E+01               | U   | 1E+01             | U   |
| 1,1,1-Trichloroethane           | μg/L         | SW8260A          | 1E+01             | U   | 1E+01             | U             | 1E+01               | U   | 1E+01             | U   |
| 2-Butanone                      | μg/L         | SW8260A          | 1E+01             | UM  | 1E+01             | U             | 1E+01               | U   | 1E+01             | U   |
| 2-Hexanone                      | μg/L         | SW8260A          | 1E+01             | υM  | 2E+01             | U M<br>Z      | 2E+01               | υz  | 1E+01             | U   |
| 4-Methyl-2-pentanone            | μg/L         | SW8260A          | 1E+01             | U   | 2E+01             | UΖ            | 2E+01               | υz  | 1E+01             | U   |
| Acetone                         | μg/L         | SW8260A          | 7E00              | вјм | 2E+01             | UZY           | 2E+01               | υZ  | 7E00              | JB  |
| Benzene                         | μg/L         | SW8260A          | 1E+01             | UM  | 1E+01             | U             | 1E+01               | U   | 1E+01             | U M |
| Bromodichloromethane            | μg/L         | SW8260A          | 1E+01             | U   | 1E+01             | U             | 1E+01               | U   | 1E+01             | U   |
| Bromoform                       | μg/L         | SW8260A          | 1E+01             | U   | 1E+01             | U             | 1E+01               | U   | 1E+01             | U   |
| Bromomethane                    | μg/L         | SW8260A          | 1E+01             | U   | 1.8E+01           |               | 3.7E+01             | вм  | 2.6E+01           |     |
| Carbon disulfide                | μg/L         | SW8260A          | 1E+01             | U   | 1E+01             | U             | 1E+01               | U   | 1E+01             | U   |
| Carbon tetrachloride            | μg/L         | SW8260A          | 1E+01             | U   | 1E+01             | UM            | 1E+01               | U   | 1E+01             | UM  |
| Chloroform                      | μg/L         | SW8260A          | 1E+01             | U   | 1E+01             | U             | 1E+01               | U   | 1E+01             | U   |
| Chloromethane                   | μg/L         | SW8260A          | 1E+01             | U   | 6E00              | J             | 1E+01               | U   | 1.7E+01           | M   |
| Dibromochloromethane            | μg/L         | SW8260A          | 1E+01             | U   | 1E+01             | U             | 1E+01               | U   | 1E+01             | U   |
| Dichloromethane                 | μg/L         | SW8260A          | 4.8E+01           | М   | 2E+01             | UZY           | 2E+01               | UΖ  | 1E+01             | U   |
| Styrene                         | μ <b>g/L</b> | SW8260A          | 1E+01             | UM  | 1E+01             | U             | 2E+01               | UΖ  | 1E+01             | UM  |
| Trichlorofluoromethane          | μg/L         | SW8260A          | 1E+01             | U   | 1E+01             | U             | 1E+01               | U   | 1E+01             | U   |
| Tentatively Iden                | tified Or    | ganic Comp       | ounds             |     |                   |               |                     |     |                   |     |
| no. Ided / total conc.          | μg/L         |                  | 4 / 4.91E+02      |     | 9 / 2.94E+02      | SVOCs<br>only | 21 / 5.22E+02       |     | 12 / 4.94E+02     |     |



431.02 02/26/2002 Rev. 10

## **ENGINEERING DESIGN FILE**

 $\begin{array}{c} \text{EDF-} & 2506 \\ \text{Rev. No.} & 0 \\ \hline \text{Page 16 of 42} \end{array}$ 

## NWCF Non-Fluoride Hot Sump Tank - NCC-122

Metals, Anions, and Miscellaneous

| Analyte    | Units | Method<br>Number | Sample L<br>990205 |     | Sample Li<br>990418 | •   | Sample L<br>000328 | -   | Sample L<br>010212 | _   |
|------------|-------|------------------|--------------------|-----|---------------------|-----|--------------------|-----|--------------------|-----|
|            |       |                  | Results            | LQF | Results             | LQF | Results            | LQF | Results            | LQF |
| pН         |       | EPA150.1         | 0.35               |     | 0.63                | В   |                    |     |                    |     |
| Acidity    | N     | AC7012           |                    |     |                     |     | 3.3E-01            | В   | 4.1E-01            |     |
| Aluminum   | μg/L  | SW6010B          | 2.06E+04           |     | 6.72E+05            |     | 1.88E+05           |     | 2.01E+04           |     |
| Antimony   | μg/L  | SW6010B          | 4.52E+02           | U   | 2.20E+02            | U   | 1.32E+02           | U   | 9E00               | В   |
| Arsenic    | μg/L  | SW6010B          | 5.04E+02           | U   | 2.37E+02            | U   | 8.5E+01            | U   | 4.5E00             | U   |
| Barium     | μg/L  | SW6010B          | 1.10E+02           | В   | 1.17E+02            | В   | 4.13E+02           |     | 1.54E+01           |     |
| Beryllium  | μg/L  | SW6010B          | 2.0E00             | В   | 3.0E00              | В   | 1.7E00             |     | 3E-01              | В   |
| Boron      | µg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Cadmium    | μg/L  | SW6010B          | 2.76E+02           | В   | 2.11E+03            | N   | 4.55E+02           |     | 7.88 <b>E+</b> 02  |     |
| Calcium    | μg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Chloride   | µg/L  | AC7171           |                    |     |                     |     |                    |     |                    |     |
| Chromium   | µg/L  | SW6010B          | 2.24E+03           |     | 4.29E+03            | N   | 1.27E+03           |     | 6.57E+02           |     |
| Cobalt     | µg/L  | SW6010B          | 7.4E+01            | U   | 2.4E+01             | В   | 1.67E+01           |     | 5.7E00             | В   |
| Copper     | μg/L  | SW6010B          | 5.24E+02           | В   | 4.83E+02            |     | 8.60E+02           |     | 1.39E+02           |     |
| Fluoride   | μg/L  | AC7093           | 2.56E+04           | UE  | 3.31E+04            | В   | 1.85E+04           | U   | 1.14E+05           | UN  |
| Iron       | µg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Lead       | μg/L  | SW6010B          | 3.72E+02           | U   | 1.92E+03            | В   | 8.60E+02           |     | 4.19E+02           |     |
| Manganese  | μg/L  | SW6010B          | 3.64E+03           |     | 7.32E+03            |     | 2.33E+03           |     | 2.17E+03           |     |
| Mercury    | μg/L  | SW7470A          | 1.91E+04           |     | 6.34E+05            |     | 1.90E+03           |     | 7.44E+03           |     |
| Nickel     | μg/L  | SW6010B          | 1.81E+03           |     | 1.60E+03            |     | 9.07E+02           |     | 3.01E+02           |     |
| Nitrate    | μg/L  | AC7074           |                    |     |                     |     |                    |     |                    |     |
| Phosphorus | µg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Potassium  | μg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Selenium   | μg/L  | SW6010B          | 3.32E+02           | U   | 2.67E+02            | U   | 7.8 <b>E+01</b>    | U   | 2.9E00             | U   |
| Silver     | μg/L  | SW6010B          | 1.28E+02           | U   | 6.2E+01             | U   | 2.5E+01            | U   | 1.7E00             | U   |
| Sodium     | μg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Sulfur     | μg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Thallium   | μg/L  | SW6010B          | 4.68E+02           | U   | 2.84E+02            | U   | 1.18E+02           | U   | 3.8E00             | U   |
| Uranium    | μg/L  | AC7920           | 1.89E+02           | U   | 3.17E+02            |     | 1.29E+02           |     | 3.42E+02           |     |
| Vanadium   | μg/L  | SW6010B          | 1.64E+02           | U   | 3.6E+01             | U   | 4.5E+01            | U   | 3.4E+00            | В   |
| Zinc       | μg/L  | SW6010B          | 2.57E+03           |     | 2.88E+03            |     | 5.78E+03           |     | 2.17E+02           |     |
| Zirconium  | μg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| UDS        | μg/L  | AC7972           |                    |     |                     |     | 0.00E00            |     | 2E+05              |     |
| TIC        | μg/L  | AC8060           | 5.83E+04           | U   | 5.82E+04            | U   | 1.40E+05           | UE  | 2.38E+04           | U E |
| тос        | μg/L  | SW9060           | 4.95E+04           |     | 1.18E+05            | В   | 8.20E+04           | В   | 7.92E+04           | В   |

EDF- 2506 Rev. No. 0

## NWCF Non-Fluoride Hot Sump Tank - NCC-122 (con't.)

## Metals, Anions, and Miscellaneous (con't.)

| Analyte    | Units | Method<br>Number | Sample Le<br>010622 | •   | Sample Lo<br>020214 |     |         |     |         |     |
|------------|-------|------------------|---------------------|-----|---------------------|-----|---------|-----|---------|-----|
|            |       |                  | Results             | LQF | Results             | LQF | Results | LQF | Results | LQF |
| рН         |       | EPA150.1         |                     |     |                     |     |         |     |         |     |
| Acidity    | N     | AC7012           | 5.1E-01             |     | 7.19E-01            |     |         |     |         |     |
| Aluminum   | μg/L  | SW6010B          | 1.7E+03             |     | 8.63E+02            |     |         |     |         |     |
| Antimony   | µg/L  | SW6010B          | 4.7E+01             | U   | 3.7E+01             | U   |         |     |         |     |
| Arsenic    | μg/L  | SW6010B          | 2.9E+01             | U   | 3.3E+01             | U   |         |     |         |     |
| Barium     | μg/L  | SW6010B          | 9E00                | В   | 1.0E+01             | В   |         |     |         |     |
| Beryllium  | μg/L  | SW6010B          | 1E00                | U   | 1E00                | U   |         |     |         |     |
| Boron      | μg/L  | SW6010B          |                     |     | 3.56E+03            |     |         |     |         |     |
| Cadmium    | μg/L  | SW6010B          | 4E00                | U   | 6.0E00              | В   |         |     |         |     |
| Calcium    | μg/L  | SW6010B          |                     |     | 9.84E+02            | Ε   |         |     |         |     |
| Chloride   | μg/L  | AC7171           |                     |     | 3.24E+04            | U   |         |     |         |     |
| Chromium   | μg/L  | SW6010B          | 2.7E+01             | В   | 5.5E+01             | В   |         |     |         |     |
| Cobalt     | μg/L  | SW6010B          | 1E+01               | U   |                     |     |         |     |         |     |
| Copper     | μg/L  | SW6010B          | 1.4E+01             | U   |                     |     |         |     |         |     |
| Fluoride   | μg/L  | AC7093           | 7.02E+04            | U   | 2.35E+04            | U   |         |     |         |     |
| Iron       | μg/L  | SW6010B          |                     |     | 2.32E+03            |     |         |     |         |     |
| Lead       | μg/L  | SW6010B          | 6.3E+01             | U   | 4.4E+01             | U   |         |     |         |     |
| Manganese  | μg/L  | SW6010B          | 1.3E+01             | В   | 3.2E+01             |     |         |     |         |     |
| Mercury    | μg/L  | SW7470A          | 3.95E+03            |     | 1.66E+04            |     |         |     |         |     |
| Nickel     | μg/L  | SW6010B          | 3.2E+01             | В   | 6.0E+01             | В   |         |     |         |     |
| Nitrate    | μg/L  | AC7074           |                     |     | 4.04E+07            |     |         |     |         |     |
| Phosphorus | μg/L  | SW6010B          |                     |     | 8.1E+01             | В   |         |     |         |     |
| Potassium  | μg/L  | SW6010B          |                     |     | 2.62E+02            | U   |         |     |         |     |
| Selenium   | μg/L  | SW6010B          | 4.8E+01             | U   | 3.6E+01             | U   |         |     |         |     |
| Silver     | μg/L  | SW6010B          | 2E+01               | U   | 2.0E+01             | U   |         |     |         |     |
| Sodium     | μg/L  | SW6010B          |                     |     | 4.12E+03            |     |         |     |         |     |
| Sulfur     | μg/L  | SW6010B          |                     |     | 2.62E+02            | В   |         |     |         |     |
| Thallium   | μg/L  | SW6010B          | 4E+01               | U   | 4.1E+01             | U   |         |     |         |     |
| Uranium    | mg/L  | AC7920           | 3.2E+02             | U   |                     |     |         |     |         |     |
| Vanadium   | μg/L  | SW6010B          | 1E+01               | U   | 1.4E+01             | U   |         |     |         |     |
| Zinc       | μg/L  | SW6010B          | 5.3E+01             |     | 4.1E+01             |     |         |     |         |     |
| Zirconium  | μg/L  | SW6010B          |                     |     | 6.0E+01             | В   |         |     |         |     |
| UDS        | μg/L  | AC7972           | 5.0E+03             | U   | 1E+05               |     |         |     |         |     |
| TIC        | μg/L  | AC8060           | 2.38E+04            | UE  |                     |     |         |     |         |     |
| тос        | μg/L  | SW9060           | 1.48E+05            | В   | 2.94E+04            |     |         |     |         |     |

EDF- 2506 Rev. No. 0 Page 18 of 42

## NWCF Non-Fluoride Hot Sump Tank - NCC-122 (con't.)

| Analyte                         | Units        | Method<br>Number | Sample L<br>990205 |     | Sample L<br>99041 |       | Sample L<br>000328 |     | Sample L<br>010212 |    |
|---------------------------------|--------------|------------------|--------------------|-----|-------------------|-------|--------------------|-----|--------------------|----|
|                                 |              |                  | Results            | LQF | Results           | LQF   | Results            | LQF | Results            | LQ |
| Semi-Volatile Orç               | ganic C      | ompounds         |                    |     |                   |       |                    |     |                    |    |
| 2,4-Dinitrophenol               | μg/L         | SW8270C          |                    |     | 2.5E+01           | UM    | 7.8E+01            | М   | 1.2E+02            | М  |
| 2,4-Dinitrotoluene              | μg/L         | SW8270C          |                    |     | 2.5E+01           | U     | 2E+01              | U   | 7E00               | J  |
| 2,6-Dinitrotoluene              | µg/L         | SW8270C          |                    |     | 2.5E+01           | U     | 2E+01              | U   | 2E+01              | U  |
| 4-Nitrophenol                   | μg/L         | SW8270C          |                    |     | 2.5E+01           | U     | 1.8E+01            | J M | 2E+01              | U  |
| 4,6-Dinitro-2-<br>methylphenol  | μg/L         | SW8270C          |                    |     | 2.5E+01           | UM    | 2E+01              | UM  | 2E+01              | UN |
| Bis-(2-ethylhexyl)<br>phthalate | μg/L         | SW8270C          |                    |     | 2.5E+01           | U     | 4E+01              |     | 5.2E+01            |    |
| Butylbenzyl phthalate           | μg/L         | SW8270C          |                    |     | 2.5E+01           | U     | 2E+01              | U   | 2E+01              | U  |
| Diethylphthalate                | μg/L         | SW8270C          |                    |     | 2.5E+01           | UM    | 1E+01              | J   | 2E+01              | UM |
| Di-n-octyl phthalate            | μg/L         | SW8270C          |                    |     | 2.5E+01           | U     | 2E+01              | U   | 5.8E+01            |    |
| Nitrobenzene                    | μg/L         | SW8270C          |                    |     | 2.5E+01           | UM    | 2E+01              | U   | 2E+01              | J  |
| n-<br>Nitrosodimethylamine      | μg/L         | SW8270C          |                    |     | 2.5E+01           | UM    | 2E+01              | U   | 3.6E+02            | D  |
| Pyridine                        | μg/L         | SW8270C          |                    |     | 2.5E+01           | U     | 2E+01              | U   | 2E+01              | U  |
| Tri-n-butyl phosphate           | μg/L         | SW8270C          |                    |     | 2.5E+01           | UM    | 2E+01              | UM  | 4.8E+01            |    |
| Volatile Organic                | Compo        | unds             |                    |     |                   |       |                    |     |                    |    |
| 1,1-Dichloroethane              | μg/L         | SW8260A          |                    |     | 3E00              | UM    | 1E+01              | U   | 1E+01              | U  |
| 1,1,1-Trichloroethane           | μg/L         | SW8260A          |                    |     | 3E00              | U     | 1E+01              | U   | 1E+01              | U  |
| 2-Butanone                      | μ <b>g/L</b> | SW8260A          |                    |     | 8E00              | U     | 1E+01              | U   | 1E+01              | U  |
| 2-Hexanone                      | μg/L         | SW8260A          |                    |     | 2.3E+01           | UM    | 1E+01              | U   | 1E+01              | U  |
| 4-Methyl-2-pentanone            | μg/L         | SW8260A          |                    |     | 1.2E+01           | UM    | 1E+01              | U   | 1E+01              | U  |
| Acetone                         | μg/L         | SW8260A          |                    |     | 4E00              | U     | 1.8E+01            | вм  | 1.1E+02            | E  |
| Benzene                         | μg/L         | SW8260A          |                    |     | 3E00              | U M   | 1E+01              | UM  | 1E+01              | U  |
| Bromodichloromethane            | μ <b>g/L</b> | SW8260A          |                    |     | 3E00              | U     | 1E+01              | U   | 1E+01              | U  |
| Bromoform                       | μg/L         | SW8260A          |                    |     | 1.4E+01           | U     | 1E+01              | U   | 1E+01              | U  |
| Bromomethane                    | μg/L         | SW8260A          |                    |     | 7E00              | UM    | 1E+01              | U M | 1.9E+01            |    |
| Carbon disulfide                | μg/L         | SW8260A          |                    |     | 4E00              | U     | 1E+01              | U   | 1E+01              | U  |
| Carbon tetrachloride            | μg/L         | SW8260A          |                    |     | 7E00              | U     | 1E+01              | U   | 1E+01              | U  |
| Chloroform                      | μg/ <b>L</b> | SW8260A          |                    |     | 3E00              | U     | 1E+01              | U   | 1E+01              | U  |
| Chloromethane                   | μ <b>g/L</b> | SW8260A          |                    |     | 1.7E+01           | UМ    | 1E+01              | U   | 3.7E+01            | M  |
| Dibromochloromethane            | µg/L         | SW8260A          |                    |     | 6E00              | U     | 1E+01              | U   | 1E+01              | υ  |
| Dichloromethane                 | μg/L         | SW8260A          |                    |     | 6E00              | UM    | 1E+01              | UM  | 1E+01              | U  |
| Styrene                         | μg/L         | SW8260A          |                    |     | 1.4E+01           | UM    | 1E+01              | UM  | 1E+01              | U  |
| Trichlorofluoromethane          | μg/L         | SW8260A          |                    |     | 4E00              | U     | 1E+01              | U   | 1E+01              | U  |
| Tentatively Ident               |              |                  | ounds              |     |                   |       |                    |     |                    |    |
| •                               |              | • '              |                    |     |                   | SVOCs |                    |     |                    |    |

EDF- 2506 Rev. No. 0 Page 19 of 42

## NWCF Non-Fluoride Hot Sump Tank - NCC-122 (con't.)

Volatile Organic Compounds and Semi-volatile Organic Compounds (con't.)

| Analyte                         | Units        | Method<br>Number | Sample L<br>01062 |          | Sample L<br>020214 |     |         |     |         |     |
|---------------------------------|--------------|------------------|-------------------|----------|--------------------|-----|---------|-----|---------|-----|
|                                 |              |                  | Results           | LQF      | Results            | LQF | Results | LQF | Results | LQF |
| Semi-Volatile Org               | ganic C      | ompounds         |                   |          |                    |     |         |     |         |     |
| 2,4-Dinitrophenol               | μg/L         | SW8270C          | 1.1E+02           | М        | 1.3E+01            | U M |         |     |         |     |
| 2,4-Dinitrotoluene              | μg/L         | SW8270C          | 2E+01             | U        | 8E00               | U   |         |     |         |     |
| 2,6-Dinitrotoluene              | μg/L         | SW8270C          | 2E+01             | U        | 1.1E+01            | U   |         |     |         |     |
| 4-Nitrophenol                   | μg/L         | SW8270C          | 2E+01             | UM       | 3E+01              | υx  |         |     |         |     |
| 4,6-Dinitro-2-<br>methylphenol  | μg/L         | SW8270C          | 2E+01             | UM       | 1.3E+01            | UM  |         |     |         |     |
| Bis-(2-ethylhexyl)<br>phthalate | μg/L         | SW8270C          | 2E+01             | U        | 9E00               | UM  |         |     |         |     |
| Butylbenzyl phthalate           | μg/L         | SW8270C          | 2E+01             | U        | 9E00               | υM  |         |     |         |     |
| Diethylphthalate                | μg/L         | SW8270C          | 2E+01             | UM       | 1.2E+01            | υM  |         |     |         |     |
| Di-n-octyl phthalate            | μg/L         | SW8270C          | 2E+01             | U        | 6E00               | U   |         |     |         |     |
| Nitrobenzene                    | μg/L         | SW8270C          | 2E+01             | U        | 7E00               | UM  |         |     |         |     |
| n-<br>Nitrosodimethylamine      | μ <b>g/L</b> | SW8270C          | 4.2E+01           |          | 2.4E+01            | UX  |         |     |         |     |
| Pyridine                        | μ <b>g/L</b> | SW8270C          | 2E+01             | υ        | 1.5E+01            | U   |         |     |         |     |
| Tri-n-butyl phosphate           | μg/L         | SW8270C          |                   |          | 4.2E+01            | ВМ  |         |     |         |     |
| Volatile Organic                | Compo        | unds             |                   |          |                    |     |         |     |         |     |
| 1,1-Dichloroethane              | μg/L         | SW8260A          | 1E+01             | U        | 1E+01              | U   |         |     |         |     |
| 1,1,1-Trichloroethane           | μg/L         | SW8260A          | 1E+01             | U        | 1E+01              | U   |         |     |         |     |
| 2-Butanone                      | µg/L         | SW8260A          | 1E+01             | U        | 1E+01              | U   |         |     |         |     |
| 2-Hexanone                      | μ <b>g/L</b> | SW8260A          | 2E+01             | UΖ       | 1E+01              | U   |         |     |         |     |
| 4-Methyl-2-pentanone            | μg/L         | SW8260A          | 2E+01             | UΖ       | 1E+01              | U   |         |     |         |     |
| Acetone                         | μg/L         | SW8260A          | 3.2E+01           | Y        | 5.1E+01            | В   |         |     |         |     |
| Benzene                         | μg/L         | SW8260A          | 1E+01             | U        | 1E+01              | UM  |         |     |         |     |
| Bromodichloromethane            | μg/L         | SW8260A          | 1E+01             | U        | 1E+01              | U   |         |     |         |     |
| Bromoform                       | μg/L         | SW8260A          | 1E+01             | U        | 1E+01              | U   |         |     |         |     |
| Bromomethane                    | µg/L         | SW8260A          | 1.6E+02           | E B<br>M | 4E+01              |     |         |     |         |     |
| Carbon disulfide                | μg/L         | SW8260A          | 1E+01             | U        | 1E+01              | U   |         |     |         |     |
| Carbon tetrachloride            | µg/L         | SW8260A          | 1E+01             | U        | 1E+01              | UM  |         |     |         |     |
| Chloroform -                    | μg/L         | SW8260A          | 1E+01             | U        | 1E+01              | U   |         |     |         |     |
| Chloromethane                   | μ <b>g/L</b> | SW8260A          | 1E+01             | U        | 7E+01              | М   |         |     |         |     |
| Dibromochloromethane            | µg/L         | SW8260A          | 1E+01             | U        | 1E+01              | U   |         |     |         |     |
| Dichloromethane                 | μg/L         | SW8260A          | 2E+01             | υz       | 1E+01              | U   |         |     |         |     |
| Styrene                         | μg/L         | SW8260A          | 1E+01             | U        | 1E+01              | U M |         |     |         |     |
| Trichlorofluoromethane          | μg/L         | SW8260A          | 1E+01             | U        | 1E+01              | U   |         |     |         |     |

7 / 1.65E+02

no. Ided / total conc. μg/L

9 / 1.61E+02



431.02 02/26/2002 Rev. 10

## **ENGINEERING DESIGN FILE**

 $\begin{array}{c} \text{EDF-} & 2506 \\ \text{Rev. No.} & 0 \\ \hline \text{Page 20 of 42} \end{array}$ 

## NWCF Decontamination Hold Tanks - NCD-123 & NCD-129

Metals, Anions, and Miscellaneous

| Analyte    | Units | Method<br>Number | Sample Lo<br>990210 |     | Sample Lo<br>990402 |     | Sample Le<br>990617 |     | Sample L<br>010417 |     |
|------------|-------|------------------|---------------------|-----|---------------------|-----|---------------------|-----|--------------------|-----|
|            |       |                  | Results             | LQF | Results             | LQF | Results             | LQF | Results            | LQF |
| pН         |       | EPA150.1         | 0.97                |     | 0.34                | U   |                     |     |                    |     |
| Acidity    | N     | AC7012           |                     |     |                     |     | 5.7E-01             | В   | 7.79E-01           |     |
| Aluminum   | μg/L  | SW6010B          | 9.14E+04            |     | 7.39E+04            |     | 5.25E+04            |     | 7.14E+03           |     |
| Antimony   | μg/L  | SW6010B          | 3.12E+02            | В   | 2.20E+02            | U   | 4.57E+02            |     | 2.06E+03           |     |
| Arsenic    | μg/L  | SW6010B          | 2.52E+02            | U   | 2.37E+02            | U   | 3.9E+01             | U   | 1.45E+01           | U   |
| Barium     | μg/L  | SW6010B          | 9.5E+01             | В   | 1.07E+02            | В   | 3.39E+02            |     | 2.26E+03           |     |
| Beryllium  | μg/L  | SW6010B          | 2.0E00              | В   | 2E00                | U   | 1E00                | U   | 5E-01              | U   |
| Boron      | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                    |     |
| Cadmium    | μg/L  | SW6010B          | 6.94E+02            |     | 3.81E+02            |     | 1.35E+02            |     | 4.5E+01            |     |
| Calcium    | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                    |     |
| Chloride   | μg/L  | AC7171           |                     |     |                     |     |                     |     |                    |     |
| Chromium   | μg/L  | SW6010B          | 4.21E+03            |     | 4.88E+03            |     | 2.13E+03            |     | 5.78E+02           |     |
| Cobalt     | μg/L  | SW6010B          |                     |     | 2.2E+01             | U   | 2.3E+01             | В   | 5E00               | U   |
| Copper     | μg/L  | SW6010B          |                     |     | 1.32E+03            |     | 3.10E+03            |     | 1.6E+02            |     |
| Fluoride   | μg/L  | AC7093           | 2.56E+04            | UE  | 2.57E+04            | U   | 1.28E+04            | U   | 7.02E+04           | U   |
| Iron       | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                    |     |
| Lead       | μg/L  | SW6010B          | 4.11E+02            | В   | 2.16E+03            |     | 1.92E+03            |     | 1.16E+03           |     |
| Manganese  | μg/L  | SW6010B          |                     |     | 4.38E+04            |     | 1.24E+04            |     | 5.36E+02           |     |
| Mercury    | μg/L  | SW7470A          | 3.63E+02            |     | 1.03E+03            |     | 2.93E+03            | E   | 2.12E+02           |     |
| Nickel     | μg/L  | SW6010B          | 8.58E+02            |     | 2.21E+03            |     | 1.23E+03            |     | 3.47E+02           |     |
| Nitrate    | μg/L  | AC7074           |                     |     |                     |     |                     |     |                    |     |
| Phosphorus | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                    |     |
| Potassium  | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                    |     |
| Selenium   | μg/L  | SW6010B          | 1.66E+02            | U   | 2.67E+02            | υ   | 4.3E+01             | U   | 2.4E+01            | U   |
| Silver     | μg/L  | SW6010B          | 6.4E+01             | U   | 1.08E+01            | В   | 7.7E+01             | В   | 1E+01              | U   |
| Sodium     | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                    |     |
| Sulfur     | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                    |     |
| Thallium   | μg/L  | SW6010B          | 2.34E+02            | U   | 2.84E+02            | U   | 3.4E+01             | U   | 2E+01              | U   |
| Uranium    | μg/L  | AC7920           | 1.90E+02            | U   |                     |     |                     |     | 3.2E+02            | U   |
| Vanadium   | μg/L  | SW6010B          | 8.2E+01             | U   | 5.0E+01             | В   | 3.5E+01             | В   | 2.05E+01           | В   |
| Zinc       | μg/L  | SW6010B          | 6.98E+03            |     | 2.13E+04            |     | 1.16E+04            |     | 3.1E+03            |     |
| Zirconium  | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                    |     |
| UDS        | μg/L  | AC7972           |                     |     |                     |     |                     |     | 2.5E+04            |     |
| TIC        | μg/L  | AC8060           | 9.32E+04            | U   |                     |     |                     |     | 5.95E+04           | UΕ  |
| тос        | μg/L  | SW9060           | 1.24E+06            |     |                     |     |                     |     | 1.66E+05           |     |

EDF- 2506 Rev. No. 0

## NWCF Decontamination Hold Tanks - NCD-123 & NCD-129 (con't.)

## Metals, Anions, and Miscellaneous (con't.)

| Analyte    | Units | Method<br>Number | Sample Lo<br>010702 |     |      |      |  |
|------------|-------|------------------|---------------------|-----|------|------|--|
|            |       |                  | Results             | LQF | <br> | <br> |  |
| рН         |       | EPA150.1         |                     |     |      |      |  |
| Acidity    | N     | AC7012           | 7.2E-01             |     |      |      |  |
| Aluminum   | μg/L  | SW6010B          | 2.14E+04            |     |      |      |  |
| Antimony   | μg/L  | SW6010B          | 3.24E+02            |     |      |      |  |
| Arsenic    | μg/L  | SW6010B          | 1.45E+01            | U   |      |      |  |
| Barium     | μg/L  | SW6010B          | 3.03E+03            |     |      |      |  |
| Beryllium  | μg/L  | SW6010B          | 5E-01               | В   |      |      |  |
| Boron      | μg/L  | SW6010B          |                     |     |      |      |  |
| Cadmium    | μg/L  | SW6010B          | 1.85E+02            |     |      |      |  |
| Calcium    | μg/L  | SW6010B          |                     |     |      |      |  |
| Chloride   | μg/L  | AC7171           |                     |     |      |      |  |
| Chromium   | μg/Ľ  | SW6010B          | 4E+03               |     |      |      |  |
| Cobalt     | μg/L  | SW6010B          | 3.85E+01            | В   |      |      |  |
| Copper     | μg/L  | SW6010B          | 4E+02               |     |      |      |  |
| Fluoride   | μg/L  | AC7093           | 7.02E+04            | U   |      |      |  |
| Iron       | μg/L  | SW6010B          |                     |     |      |      |  |
| Lead       | μg/L  | SW6010B          | 2.02E+02            | В   |      |      |  |
| Manganese  | μg/L  | SW6010B          | 8.06E+02            |     |      |      |  |
| Mercury    | μg/L  | SW7470A          | 1.21E+03            |     |      |      |  |
| Nickel     | µg/L  | SW6010B          | 2.93E+03            |     |      |      |  |
| Nitrate    | μg/L  | AC7074           |                     |     |      |      |  |
| Phosphorus | μg/L  | SW6010B          |                     |     |      |      |  |
| Potassium  | μg/L  | SW6010B          |                     |     |      |      |  |
| Selenium   | μg/L  | SW6010B          | 2.4E+01             | U   |      |      |  |
| Silver     | µg/L  | SW6010B          | 2.22E+02            |     |      |      |  |
| Sodium     | μg/L  | SW6010B          |                     |     |      |      |  |
| Sulfur     | μg/L  | SW6010B          |                     |     |      |      |  |
| Thallium   | μg/L  | SW6010B          | 2E+01               | U   |      |      |  |
| Uranium    | μg/L  | AC7920           | 3.2E+02             | U   |      |      |  |
| Vanadium   | μg/L  | SW6010B          | 2.7E+01             | В   |      |      |  |
| Zinc       | μg/L  | SW6010B          | 2.27E+03            |     |      |      |  |
| Zirconium  | μg/L  | SW6010B          |                     |     |      |      |  |
| UDS        | μg/L  | AC7972           | 5.0E+03             | U   |      |      |  |
| TIC        | μg/L  | AC8060           | 2.38E+04            | UE  |      |      |  |
| TOC        | μg/L  | SW9060           | 1.98E+04            | UE  |      | <br> |  |

EDF- 2506 Rev. No. 0 Page 22 of 42

## NWCF Decontamination Hold Tanks - NCD-123 & NCD-129 (con't.)

| Analyte                         | Units        | Method<br>Number | Sample L<br>990210 |                   | Sample L<br>990402 |          | Sample L<br>99061 |               | Sample I<br>01041 |      |
|---------------------------------|--------------|------------------|--------------------|-------------------|--------------------|----------|-------------------|---------------|-------------------|------|
|                                 |              |                  | Results            | LQF               | Results            | LQF      | Results           | LQF           | Results           | LQ   |
| Semi-Volatile Or                | ganic C      | ompounds         |                    |                   |                    |          |                   |               |                   |      |
| 2,4-Dinitrophenol               | µg/L         | SW8270C          | 7.6E+01            | М                 | 2.5E+01            | UM       | 2.6E+01           | М             | 2E+01             | UN   |
| 2,4-Dinitrotoluene              | μg/L         | SW8270C          | 2.5E+01            | U                 | 2.5E+01            | U        | 2E+01             | U             | 2E+01             | U    |
| 2,6-Dinitrotoluene              | μg/L         | SW8270C          | 2.5E+01            | U                 | 2.5E+01            | U        | 2E+01             | U             | 2E+01             | U    |
| 4-Nitrophenol                   | μg/L         | SW8270C          | 2.5E+01            | U                 | 2.5E+01            | U        | 2E+01             | U             | 2E+01             | U    |
| 4,6-Dinitro-2-<br>methylphenol  | μg/L         | SW8270C          | 2.5E+01            | U                 | 2.5E+01            | UM       | 2E+01             | UM            | 2E+01             | U    |
| Bis-(2-ethylhexyl)<br>ohthalate | μg/L         | SW8270C          | 4.7E+01            |                   | 2.5E+01            | U        | 2E+01             | U             | 2E+01             | U    |
| Butylbenzyl phthalate           | µg/L         | SW8270C          | 2.5E+01            | U                 | 2.5E+01            | U        | 2E+01             | U             | 2E+01             | u    |
| Diethylphthalate                | μg/L         | SW8270C          | 2.5E+01            | υм                | 2.5E+01            | υM       | 2E+01             | U             | 2E+01             | U    |
| Di-n-octyl phthalate            | μg/L         | SW8270C          | 2.5E+01            | U                 | 2.5E+01            | υz       | 2E+01             | U             | 2E+01             | U    |
| Nitrobenzene                    | μg/L         | SW8270C          | 2.5E+01            | U                 | 2.5E+01            | υ        | 2E+01             | U M           | 2E+01             | U    |
| n-<br>Nitrosodimethylamine      | μg/L         | SW8270C          | 2.5E+02            | UD                | 2.5E+01            | UM       | 2E+01             | U             | 2E+01             | u    |
| Pyridine                        | μg/L         | SW8270C          | 2.5E+02            | UD                | 2.5E+01            | U        | 2E+01             | U             | 2E+01             | L    |
| Fri-n-butyl phosphate           | μg/L         | SW8270C          | 2.5E+01            | UM                | 2.5E+01            | υм       | 2E+01             | U             | 2E+01             | U    |
| Volatile Organic                |              | unds             |                    |                   |                    |          |                   |               |                   |      |
| 1,1-Dichloroethane              | µg/L         | SW8260A          | 5E+01              | U D<br>H          | 1E+01              | U M      | 1E+01             | U             | 1E+01             | U    |
| 1,1,1-Trichloroethane           | μg/L         | SW8260A          | 5E+01              | U D<br>H          | 1E+01              | U        | 1E+01             | U             | 1E+01             | ι    |
| 2-Butanone                      | μg/L         | SW8260A          | 5E+01              | U D<br>H          | 1E+01              | υ        | 1E+01             | U             | 1E+01             | u    |
| 2-Hexanone                      | μg/L         | SW8260A          | 5E+01              | U D<br>H          | 5E+01              | UM       | 1E+01             | U             | 1E+01             | u    |
| 4-Methyl-2-pentanone            | μg/L         | SW8260A          | 5E+01              | U D<br>H          | 5E+01              | U M<br>Z | 1E+01             | U             | 1E+01             | u    |
| Acetone                         | µg/L         | SW8260A          | 1.3E+01            | J D H             | 1E+01              | -<br>U   | 8E00              | JBM           | 1.4E+01           |      |
| Benzene                         | μg/L         | SW8260A          | 5E+01              | U D<br>H M        | 1E+01              | UM       | 1E+01             | UM            | 1E+01             | u    |
|                                 |              |                  |                    | UD                |                    |          |                   | U             |                   | u    |
| Bromodichloromethane            | μg/L         | SW8260A          | 5E+01              | H<br>U D          | 1E+01              | U        | 1E+01             |               | 1E+01             |      |
| Bromoform                       | µg/L         | SW8260A          | 5E+01              | Н<br>U D          | 2E+01              | υz       | 1E+01             | U             | 1E+01             | U    |
| Bromomethane                    | μg/L         | SW8260A          | 5E+01              | H M<br>U D        | 1E+01              | UM       | 1E+01             | UM            | 1E+01             | u    |
| Carbon disulfide                | μ <b>g/L</b> | SW8260A          | 5E+01              | Н                 | 1E+01              | U        | 1E+01             | U             | 1E+01             | U    |
| Carbon tetrachloride            | μg/L         | SW8260A          | 5E+01              | H                 | 1E+01              | U        | 1E+01             | U             | 1E+01             | ι    |
| Chloroform                      | μg/L         | SW8260A          | 5E+01              | H<br>H            | 1E+01              | U        | 1E+01             | U             | 1E+01             | L    |
| Chloromethane                   | μg/L         | SW8260A          | 5E+01              | U D<br>H          | 2E+01              | U M<br>Z | 1E+01             | U             | 1E+01             | U    |
| Dibromochloromethane            | μg/L         | SW8260A          | 5E+01              | U D<br>H          | 1E+01              | U        | 1E+01             | U             | 1E+01             | L    |
| Dichloromethane                 | μg/L         | SW8260A          | 5E+01              | H<br>H            | 1E+01              | υм       | 1E+01             | U             | 1E+01             | , u  |
| Styrene                         | μg/L         | SW8260A          | 5E+01              | U D<br>H <b>M</b> | 2E+01              | UM<br>Z  | 1E+01             | UM            | 1E+01             | u    |
| Trichlorofluoromethane          | μg/L         | SW8260A          | 5E+01              | U D<br>H          | 1E+01              | U        | 1E+01             | U             | 1E+01             | U    |
| Tentatively Ident               | ified Or     | ganic Comp       | oounds             |                   |                    |          |                   |               |                   |      |
| no. Ided / total conc.          | μg/L         |                  | 20 / 1.03E+04      | SVOCs<br>only     | 6 / 2.21E+02       |          | 12 / 3.99E+02     | SVOCs<br>only | 5 / 3.05E+02      | SVO( |

EDF- 2506 Rev. No. 0 Page 23 of 42

## NWCF Decontamination Hold Tanks - NCD-123 & NCD-129 (con't.)

| Analyte                        | Units        | Method<br>Number | Sample L<br>01070 |          |         |     |         |     |         |     |
|--------------------------------|--------------|------------------|-------------------|----------|---------|-----|---------|-----|---------|-----|
|                                |              |                  | Results           | LQF      | Results | LQF | Results | LQF | Results | LQI |
| Semi-Volatile Or               | ganic C      | ompounds         |                   |          |         |     |         |     |         |     |
| 2,4-Dinitrophenol              | µg/L         | SW8270C          | 2E+01             | U H<br>M |         |     |         |     |         |     |
| 2,4-Dinitrotoluene             | μg/L         | SW8270C          | 2E+01             | UН       |         |     |         |     |         |     |
| 2,6-Dinitrotoluene             | μg/L         | SW8270C          | 2E+01             | UН       |         |     |         |     |         |     |
| 4-Nitrophenol                  | μg/L         | SW8270C          | 2E+01             | <b>м</b> |         |     |         |     |         |     |
| 4,6-Dinitro-2-<br>methylphenol | μg/L         | SW8270C          | 2E+01             | UH<br>M  |         |     |         |     |         |     |
| Bis-(2-ethylhexyl)             |              |                  |                   |          |         |     |         |     |         |     |
| phthalate                      | µg/L         | SW8270C          | 2E+01             | UН       |         |     |         |     |         |     |
| Butylbenzyl phthalate          | μg/L         | SW8270C          | 2E+01             | UН       |         |     |         |     |         |     |
| Diethylphthalate               | μg/L         | SW8270C          | 2E+01             | U H<br>M |         |     |         |     |         |     |
| Di-n-octyl phthalate           | μg/L         | SW8270C          | 2E+01             | υн       |         |     |         |     |         |     |
| Nitrobenzene                   | μg/L         | SW8270C          | 2E+01             | UН       |         |     |         |     |         |     |
| n-<br>Nitrosodimethylamine     | μg/L         | SW8270C          | 2E+01             | UН       |         |     |         |     |         |     |
| Pyridine                       | μg/L         | SW8270C          | 2E+01             | UН       |         |     |         |     |         |     |
| Tri-n-butyl phosphate          | μg/L         | SW8270C          |                   |          |         |     |         |     |         |     |
| Volatile Organic               | Compo        | unds             |                   |          |         |     |         |     |         |     |
| 1,1-Dichloroethane             | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| 1,1,1-Trichloroethane          | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| 2-Butanone                     | μg/L         | SW8260A          | 1E+01             | υ        |         |     |         |     |         |     |
| 2-Hexanone                     | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| 4-Methyl-2-pentanone           | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| Acetone                        | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| Benzene                        | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| Bromodichloromethane           | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| Bromoform                      | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| Bromomethane                   | μg/ <b>L</b> | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| Carbon disulfide               | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| Carbon tetrachloride           | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| Chloroform                     | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| Chloromethane                  | μg/L         | SW8260A          | 1E+01             | UM       |         |     |         |     |         |     |
| Dibromochloromethane           | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| Dichloromethane                | μg/L         | SW8260A          | 6E00              | JBM      |         |     |         |     |         |     |
| Styrene                        | μg/L         | SW8260A          | 1E+01             | U        |         |     |         |     |         |     |
| Trichlorofluoromethane         | μg/L         | SW8260A          | 1E+01             | U        |         | -   |         |     |         |     |
| Tentatively Iden               | tified Or    | ganic Comp       | ounds             |          |         |     |         |     |         |     |
|                                |              |                  |                   | SVOCs    |         |     |         |     |         |     |



Log Search

Date of Search: 2003-06-16 13:42:09.522 Run by: JEFF LONG \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Search Criteria: Start Log....:980624 1 End Log....:980624 1 Log Approval .: ALL Logs Result Type..: All Entries Lab/Group....:ALL Groups Name Column..:Lab Sample ID Total # Logs Found...: 1 Total # Results Found: 9 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Request Name Log Type Charge Num Log Approval Info Log # I L d Lab Meth a Anax ID # b lyst Analyte ARL Result 56161B201 011010 16:29 KIMBERLY A WHITEH 980624-1 WL-133 PLANT 57171 7BGP CHLORIDE A.. 5.1E+01 +- 1.6E+01 ug/mL 1 8BP53 57171 7BGP CHLORIDE A.. 5.1E+01 +- 1.6E+01 ug/mL
57093 7BGP FLUORIDE A.. 8.49E+01 +- 6.2E+00 ug/mL
97074 7BCS NITRATE A.. 6.58E-01 +- 8.0E-02 Molar
97168 7BCS SULFATE A.. 2.61E+02 +- 2.2E+01 ug/ml
87100 7BCS ALUMINUM A.. 3.61E-02 +- 1.2E-03 MOLAR
57015 7BGP ACID A.. 4.0E-01 +- 1.8E-01 Normal Acid
47981 7BGP SPGR A.. 1.02375E+00 +- 6.6E-05 @ 25/4
17920 7BCS URANIUM A.. 3.42E-03 +- 3.3E-04 G/L
17972 7BGP UDS A.. 43.524 G/L 8BP53 2 8BP53 3 8BP53 8BP53 6 8BP53 8BP53 7 8 8BP53 9 8BP53

\*\*\*\*\*\*\* END \*\*\*\*\*\*

Log Search

Date of Search: 2003-06-16 13:44:19.946 Run by: JEFF LONG \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Search Criteria:

Start Log....:960928 1 End Log....:960928 1 Log Approval.:ALL Logs Result Type..:All Entries Lab/Group....:ALL Groups Name Column..:Lab Sample ID

Total # Logs Found...: 1 Total # Results Found: 98

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| Log | #   | Request | Name | Log   | туре       | Char | ge Num | Log  | Approval | Info |
|-----|-----|---------|------|-------|------------|------|--------|------|----------|------|
| I   |     |         |      | L     |            |      |        |      |          |      |
| đ   | Lab |         | Meth | a Ana | . <b>-</b> |      |        |      |          |      |
| x   | ID  |         | #    | b lys | t Analyte  | ARL  | Re     | sult |          |      |
|     |     |         |      |       |            |      |        |      |          |      |
|     |     |         |      |       |            |      |        |      |          |      |

| 96 | 0928-1 | WL-133CONDC | RCRA          | 522020702 Not Approved                |
|----|--------|-------------|---------------|---------------------------------------|
| 1  | 6CX56  | 57012       | 7RAH ACID     | A 5.274E-01 +- 8.6E-03 Normal Acid    |
| 2  | 6CX56  | 57012       | 7RAH ACID     | A 5.255E-01 +- 8.6E-03 Normal Acid    |
| 3  | 6CX57  | 87100       | 7BCS ALUMINUM |                                       |
|    |        |             | BORON         | A < 1.16162E-03 MOLAR                 |
|    |        |             | IRON          | A 6.8E-04 +- 2.3E-04 MOLAR            |
|    |        |             | ZIRCONIU      | M A < 1.00485E-03 MOLAR               |
|    |        |             | CALCIUM       | A 1.17E-03 +- 1.2E-04 MOLAR           |
| 4  | 6CX56  | 11023       | 1BCS AL/F RAT | IO A Ratio Not Performed              |
| 5  | 6CX56  | 57171       | 7RAH CHLORIDE | A < 2.55951E+01  ug/ml                |
| 6  | 6CX56  | 57093       | 7RAH FLUORIDE | C Canceled Entry                      |
| 7  | 6CX58  | 17985       | 7BCS FLASH PC | IN A NO FLASH @ 60.00 deg C corrected |
| 8  | 6CX58  | 17985       | 7BCS FLASH PC | IN A NO FLASH @ 60.00 deg C corrected |
| 9  | 6CX56  | 87970       | 7BCS GROSS BE | TA C Canceled Entry                   |
| 10 | 6CX56  | 17802       | 7BCS MERCURY  | C Canceled Entry                      |
| 11 | 6CX56  | 97168       | 7BCS SULFATE  | A < 1.84443E+01 uG/mL                 |
| 12 | 6CX56  | 67920       | 7RLC URANIUM  | A < 2.4629E-03 G/L                    |
| 13 | 6CX56  | 67920       | 7RLC URANIUM  | A < 2.4629E-03 G/L                    |
| 14 | 6CX56  | 7972        | 7 UDS         | C Canceled Entry                      |
| 15 | 6CX57  | 22800       | 2SDN SODIUM   | A 3.1077E+02 ug/mL                    |
|    |        |             | POTASSIU      | M A 5.6475E+01 ug/mL                  |
| 16 | 6CX56  | 97074       | 7BCS NITRATE  | C Canceled Entry                      |
| 17 | 6CX56  | 13202       | 3IDG PU239    | A $5.7E+01 +- 1.2E+01 d/s/ml$         |
|    |        |             | PU238         | A $2.40E+03 +- 2.6E+02 d/s/ml$        |
| 18 | 6CX56  | 13993       | 3MLE CS137    | A $1.025E+05 +- 7.1E+03 d/s/ml$       |
|    |        |             | EU154         | A $6.79E+02 +- 6.3E+01 d/s/ml$        |
|    |        |             | NB94          | A $3.07E+02 +- 3.2E+01 d/s/ml$        |
|    |        |             | RU106         | A $2.15E+03 +- 2.1E+02 d/s/ml$        |
|    |        |             | SB125         | A $9.79E+03 +- 4.9E+02 d/s/ml$        |
| 19 | 6CX56  | 13011       | 3WDT TRITIUM  | A 5.09528E+03 +- 1.2E-01 D/S/ML       |
| 20 | 6CX56  | 13011       | 3WDT TRITIUM  | A 5.25961E+03 +- 1.3E-01 D/S/ML       |
|    |        |             |               |                                       |

| Log    | #      | Request Name | Log   | g Type             | (      | Charge Num Log Approval Info            |
|--------|--------|--------------|-------|--------------------|--------|-----------------------------------------|
| d<br>x |        | Meth<br>#    | a Ana | a-<br>st Analyte   | ARL    | . Result                                |
| 21     | 6CX56  | 23381        | _     | TOTAL SR           | A      |                                         |
| 22     | 6CX56  | 3539         | 3     | IODINE             | c      |                                         |
| 23     | 6CX56  | 57017        | 7RAH  |                    | A      | <del>-</del>                            |
| 24     | 6CX56  | 57017        | 7RAH  |                    | Α      | <del></del>                             |
| 25     | 6CX57  | 32900        | 7CBG  | ANTIMONY           | A      |                                         |
|        |        |              |       | ARSENIC            | A      |                                         |
|        |        |              |       | BARIUM             | A<br>A | _                                       |
|        |        |              |       | BERYLLIUM          |        |                                         |
|        |        |              |       | CADMIUM            | A      |                                         |
|        |        |              |       | CHROMIUM<br>LEAD   | A<br>A |                                         |
|        |        |              |       | NICKEL             | A      |                                         |
|        |        |              |       | SELENIUM           | A      |                                         |
|        |        |              |       | SILVER             | A      |                                         |
|        |        |              |       | THALLIUM           | A      |                                         |
| 26     | 6CX57  | 32900        | 7CBG  | ANTIMONY           | Α      |                                         |
| 20     | OCAS / | 32300        | , CDG | ARSENIC            |        | Not Detected: MDL= 795.0 ug/L           |
|        |        |              |       | BARIUM             | Α      |                                         |
|        |        |              | ,     | BERYLLIUM          | Α      |                                         |
|        |        |              |       | CADMIUM            | Α      | _                                       |
|        |        |              |       | CHROMIUM           | Α      |                                         |
|        |        |              |       | LEAD               | Α      |                                         |
|        |        |              |       | NICKEL             | Α      | 1.3475E+03 ug/L                         |
|        |        |              |       | SELENIUM           | Α      | 8.65E+02 ug/L                           |
|        |        |              |       | SILVER             | Α      | Not Detected: MDL= 37.5 ug/L            |
|        |        |              |       | THALLIUM           | Α      | 3.39E+03 ug/L                           |
| 27     | 6CX61  | 32900        | 7CBG  | ANTIMONY           | Α      | 5.6E+01 ug/L                            |
|        |        |              |       | ARSENIC            | Α      | •                                       |
|        |        |              |       | BARIUM             | Α      | <del>_</del>                            |
|        |        |              |       | BERYLLIUM          | Α      | <u> </u>                                |
|        |        |              |       | CADMIUM            | Α      |                                         |
|        |        |              |       | CHROMIUM           | Α      | <del>_</del>                            |
|        |        |              |       | LEAD               |        | Not Detected: MDL= 39.0 ug/L            |
|        |        |              |       | NICKEL             | A      |                                         |
|        |        |              |       | SELENIUM           | A<br>A |                                         |
|        |        |              |       | SILVER<br>THALLIUM |        | Not Detected: MDL= 129.0 ug/L           |
| 28     | 6CX57  | 12800        | 2 CDM | MERCURY            | A      |                                         |
| 29     | 6CX57  | 12800        |       | MERCURY            | A      | ~                                       |
| 30     | 6CX61  | 12800        |       | MERCURY            |        | Not Detected: MDL= 2.0 ug/L             |
| 31     | 6CX58  | 8060         | 8     | TOC                | c      |                                         |
| 32     | 6CX58  | 18060        | 8BGP  |                    | A      |                                         |
| J &    | 301130 | 10000        |       | TOC(r)             | C      | <del>-</del>                            |
| 33     | 6CX62  | 18060        | 8BGP  |                    |        | Not enough sample to run a dup.         |
| 34     | 6CX59  | 19260        | 9HCJ  |                    |        | SEE ATTACHED                            |
| 35     | 6CX59  | 19260        | 9HCJ  |                    |        | SEE ATTACHED                            |
| 36     | 6CX60  | 19260        | 9HCJ  |                    | Α      |                                         |
| 37     | 6CX58  | 19270        |       | SVOA               |        | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |
| 38     | 6CX58  | 19270        |       | SVOA               |        |                                         |
|        |        |              |       |                    |        |                                         |

| Log | #     | Request Name | Log Ty   | рe         | Charge Num Log Approval Info |
|-----|-------|--------------|----------|------------|------------------------------|
| I   |       |              | L        |            |                              |
| đ   | Lab   | Meth         | a Ana-   |            |                              |
| x   | ID    | #            | b lyst A | nalyte ARI | L Result                     |
| 39  | 6CX62 | 19270        | 9JXJ SVO | A          | . Data Not Approved Yet      |
| 40  | 6CX56 | 87980        | 7BCS SPG |            | ~ ~                          |
| 41  | 6CX56 | 87980        | 7BCS SPG |            | . 1.02496E+00 @ 25/4         |
| 42  | 6CX56 | 87980        | 7BCS SPG |            | . 1.02496E+00 @ 25/4         |
| 43  | 6CX56 | 87970        |          | SS BETA A  |                              |
| 44  | 6CX56 | 97074        | 7BCS NIT |            | _                            |
| 45  | 6CX56 | 57093        | 7RAH FLU |            |                              |
| 46  | 6CX56 | 57093        | 7RAH FLU |            |                              |
| 47  | 6DM47 | 32900        | 7CBG ANT |            |                              |
|     |       |              | ARS      | ENIC C     | . Canceled Entry             |
|     |       |              | BAR      | IUM C      | . Canceled Entry             |
|     |       |              | BER      | YLLIUM C   | . Canceled Entry             |
|     |       |              | CADI     | MIUM C     | . Canceled Entry             |
|     |       |              | CHR      | OMIUM C    | . Canceled Entry             |
|     |       |              | LEA      | C.,        | . Canceled Entry             |
|     |       |              | NIC      | KEL C      | . Canceled Entry             |
|     |       |              | SEL      | ENIUM C    |                              |
|     |       |              | SIL      | JER C      | . Canceled Entry             |
|     |       |              | THAI     | LLIUM C    | . Canceled Entry             |
|     |       |              |          |            |                              |

\*\*\*\*\*\*\* END \*\*\*\*\*\*\*



Log Search

```
Run by: JEFF LONG
Date of Search: 2003-06-16 14:07:00.293
*************
Search Criteria:
  Start Log....:800101 1
  End Log....:801231 15
  Log Approval.:ALL Logs
  Result Type..:All Entries
  Lab/Group....:ALL Groups
  Name Column..:Lab Sample ID
    Request Name..:*WL-102*
Total # Logs Found...: 1
Total # Results Found: 12
********************
        Request Name Log Type Charge Num Log Approval Info
                     L
 I
 d Lab
                  Meth a Ana-
                  # b lyst Analyte ARL
                                              Result
 x ID
                                      13301-240-412Unapproved by
800616-9 WL-102
               5971 CLD GROSS-B ... +- 1.34437E+06+-41010.6 B/MIN/ML
34 WL-102
35 WL-102
                3993 LEE GAMMA SCAN ... ATTACHED
36 WL-102
               11000 JGJ SODIUM ... 4.32 & 4.34 G/L
37 WL-102
               11000 JGJ POTASSIUM ... 1.04 & 1.02 G/L
38 WL-102
                5171 JMR CHLORIDE ... +- 126.404+-8.97287 UG/ML
39 WL-102
                5092 BLH FLUORIDE ... +- 127.292+-5.89728 UG/ML
                                   ... +- .736395+-2.93917E-02 MOLAR
                5071 NWH NITRATE
40 WL-102
                     HAS SEMI-QUANT ... ATTACHED
41 WL-102
               11000
                     BLH ACID ... +- .473127+-2.07193E-02 NACID
42 WL-102
                5015
                                  ... +- 1.0297+-4.28787E-04
                6981 CLD SP-GR ...
5961 DBB NA/K ...
43 WL-102
66 WL-102
                5961 DBB SEMI-QUANT ...
67 WL-102
```

\*\*\*\*\*\*\* END \*\*\*\*\*\*\*



# EXON NUCLEAR IDAHO COMPANY, Inc.

Internal Correspondence

Date: October 5, 1983

To: W. B. Palmer WBP

From: D. W. Rhodes/Rhod-17-83 Will Rhodes

Subject: Composition of PEW Eyaporator Feed, Condensate and Bottoms

#### Distribution:

- D. R. Alexander
- B. R. Dickey
- G. W. Hogg
- J. E. Johnson
- G. E. Lohse
- L. W. McClure
- W. A. Mickelson
- R. E. Mizia
- E. P. Mondok
- P. I. Nelson
- A. P. Roeh
- R. E. Schindler
- M. D. Staiger
- M. C. Swenson
- F. S. Ward
- D. W. Rhodes-2

During the period August 5 through August 11, 1983, a sampling program was completed to help define the concentrations of chemicals and radionuclides in PEW feed, condensate and bottoms while the NWCF was operating.\* The results of similar sampling programs were reported earlier in (1) Rhod-6-81 (uranium recovery process operating) and (2) Rhod-1-81 (WCF operating).

The feed solution to the evaporator during the test consisted of waste from tanks WG-100(2), WH-101, WC-119, NCD-123, WL-104, and SFE-106. The waste solutions from the PEW-CFD tanks, WG-100 and WH-101, were analyzed as a composite. The condensate samples from WL-107(2), WL-163, and WL-106 were also analyzed as a composite. The results are given in Tables I, II, and III. No interpretation of the results was attempted, since each user has a different need. If you have any questions, please contact me at 6-3080.

<sup>\*</sup>The uranium extraction systems were not operating and the Rover burner operated only one day during the sampling period.

Table I

Chemical Composition of PEW Evaporator
Feed Solutions, Condensate and Bottoms

|                                                                                       |             |                                                                                                                            |                                                                                                                                     | ٧                                                                                                                                         | essel Num                                                                                                                                 | ber                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                      |
|---------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component                                                                             | <u>Unit</u> | WG-100<br>WH-101                                                                                                           | WC-119                                                                                                                              | NCD<br>123                                                                                                                                | WL-104                                                                                                                                    | SFE-106                                                                                                                               | WL-613                                                                                                                                                  | WL-106<br>WL-107<br>WL-163                                                                                                                                           |
| C1<br>F S04<br>Hg<br>A1<br>B Car<br>Fe<br>Mn<br>Mo<br>Nai<br>Pb<br>K Tin<br>NO3<br>pH | mg/L        | 67<br>16<br>83<br>0.2<br>240<br>ND<br>11<br>ND<br>ND<br>19<br>ND<br>ND<br>620<br>ND<br>ND<br>20<br>23<br>ND<br>ND<br>13640 | 135<br>29<br>12<br>6.8<br>9.6<br>3.9<br>37<br>0.6<br>3.4<br>8.4<br>0.3<br>ND<br>10<br>0.1<br>ND<br>3.8<br>3<br>ND<br>120646<br>0.77 | 97<br>296<br>42<br>4E-3<br>14<br>ND<br>230<br>52<br>39<br>160<br>1500<br>ND<br>6110<br>ND<br>21<br>71<br>1927<br>12<br>ND<br>5580<br>12.5 | 83<br>1424<br>104<br>0.7<br>460<br>20<br>160<br>2.6<br>13<br>55<br>0.6<br>6.6<br>185<br>ND<br>35<br>44<br>79<br>3.3<br>ND<br>4588<br>1.48 | 195<br>0.9<br>24<br>2E-3<br>100<br>ND<br>250<br>ND<br>16<br>27<br>2.4<br>ND<br>488<br>1.4<br>ND<br>29<br>8<br>ND<br>ND<br>220<br>2.34 | 2435<br>1777<br>6336<br>1201<br>2700<br>1800<br>18000<br>580<br>1100<br>1800<br>7000<br>ND<br>110000<br>48<br>470<br>430<br>26000<br>ND<br>39<br>556000 | 43<br>47<br>7.7<br>ND<br>2<br>1<br>0.4<br>0.7<br>0.3<br>ND<br>ND<br>0.2<br>ND<br>ND<br>ND<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| ND = Not [                                                                            | )etecte     | <u>a</u>                                                                                                                   |                                                                                                                                     |                                                                                                                                           |                                                                                                                                           |                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                      |

Table II

Sources of Waste Solutions During Boildown Test\*

| <u>Date</u>                              | Feed<br>Source                                             | Gallons                                      | <u>Tank</u>                          | Condensate<br>Batch No.  | Gallons                               |
|------------------------------------------|------------------------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------|---------------------------------------|
| 7-5<br>7-6<br>7-7<br>7-7<br>7-10<br>7-11 | WG-100<br>SFE-106<br>WC-119<br>WH-101<br>NCD-123<br>WG-100 | 2650<br>1250<br>2100<br>2900<br>2700<br>2550 | WL-107<br>WL-163<br>WL-106<br>WL-107 | 227<br>228<br>229<br>230 | 4000<br>4000<br>4000<br>4000<br>16000 |
| 7-11                                     | WL-104<br>Tota                                             | <u> </u>                                     | WL-613                               | Evaporator Botto         | ms <u>200</u><br>16200                |

<sup>\*</sup>The difference between the feed volume and the volume of condensate plus evaporator bottoms is 16200-14850=1350 gal. This difference is due to the input of small volumes of water from a variety of sources (VOG loop seals, off-gas drains, pump priming, etc.), that are not measured, as well as instrument and/or reading errors.

Table III

Radiochemical Composition of PEW Evaporator
Feed Solutions, Condensate and Bottoms

|                                                                                                                                                                                    |                |                                                                                                                              |                                                                                                                    | ٧                                                                                                     | essel Num                                                                                                                                         | ıber 🦠                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component                                                                                                                                                                          | <u>Unit</u>    | WG-100<br>WH-101                                                                                                             | WC-119                                                                                                             | NCD<br>123                                                                                            | WL-104                                                                                                                                            | SFE-106                                                                                                                                                | <u>WL-613</u>                                                                                                                                          | WL-106<br>WL-107<br>WL-163                                                                                                                               |
| Total U<br>I-129<br>Ce-144<br>Co-60<br>Cs-137<br>Eu-152<br>Eu-154<br>Eu-155<br>Ru-106<br>Sr-90<br>Sb-125<br>Mn-54<br>Pr-144<br>Y-90<br>H-3<br>Nb-95<br>K-40<br>Zr-95<br>ND = Not D | mg/L<br>μCi/mL | 6.1E-3<br>3.2E-4<br>6.3E-4<br>2.6E-2<br>ND<br>ND<br>0.29<br>3.3E-2<br>6.1E-3<br>ND<br>6.1E-3<br>3.3E-2<br>1.7E-3<br>ND<br>ND | <0.055 1.7E-4 9.8E-2 5.5E-5 1.5E-2 1.6E-1 ND 1.1E-3 6.0E-4 1.0E-2 0.10 1.8E-3 ND 9.8E-2 0.10 0.26 5.6E-4 ND 1.0E-3 | <0.055 3.1E-6 6.5E-5 6.6E-4 ND 5.7E-4 ND ND 2.3E-3 7.7E-6 5.7E-5 ND 6.5E-5 7.7E-6 1.5E-4 2.1E-5 ND ND | 3.9<br>5.5E-6<br>ND<br>1.5E-4<br>7.1E-4<br>1.9E-2<br>ND<br>ND<br>5.9E-4<br>1.9E-2<br>3.3E-3<br>3.9E-2<br>4.9E-5<br>ND<br>3.3E-3<br>ND<br>ND<br>ND | 0.22<br>2.9E-5<br>5.8E-4<br>6.3E-4<br>ND<br>3.7E-4<br>1.8E-2<br>1.4E-2<br>3.1E-3<br>ND<br>ND<br>1.2E-2<br>ND<br>ND<br>5.8E-4<br>1.2E-2<br>3.6E-4<br>ND | 217<br>2.1E-4<br>1.2<br>2.7E-2<br>0.17<br>2.73<br>0.16<br>0.13<br>4.7E-2<br>3.9<br>3.5<br>0.45<br>ND<br>1.2<br>3.5<br>2.1E-2<br>9.7E-2<br>ND<br>8.6E-2 | <0.055<br>8.2E-6<br>5.4E-7<br>ND<br>2.8E-7<br>5.2E-6<br>ND<br>ND<br>4.3E-5<br>1.9E-6<br>4.1E-6<br>ND<br>5.4E-7<br>1.9E-6<br>4.0E-2<br>8.2E-7<br>ND<br>ND |

## **COVER PAGE**

| 1. SDG Transmittal Date: 5/15/01                                                                 |                                                                 |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Subcontractor Name: INTEC ANALYTICAL Cl<br>Analytical Laboratories De<br>Bechtel BWXT Idaho, LLC | partment                                                        |
| 3. Contract Number: ER-SOW-169                                                                   | . #<br>. #                                                      |
| 4. SDG Type: Volatile Organics by GC/MS                                                          | ·                                                               |
| 5. Reporting Tier: Tier II                                                                       | Driginal Epidological Epidological WM-1810-010507-05 Entired    |
| 6. <u>SDG Number:</u> WM-186-010307                                                              | EP1006 000 7 - 02<br>WM-186-01050 7 - 02<br>WM-186-01050 7 - 02 |
| 7. SAP Number: N/A                                                                               | Enteres                                                         |
| 8. Applicable TOS Modification Numbers: N/A                                                      |                                                                 |
| 1 State                                                                                          | 5/15/01                                                         |
| Jeffrey L. Jeter Acting ALD Organic Analyses Supervisor                                          | Date                                                            |
| Shelly J. Sailer                                                                                 | 5/15/0 /<br>Date                                                |
| ALD Quality Assurance Officer                                                                    |                                                                 |
| Jeffrey L. Jeter                                                                                 | _ <i>5/15/0/</i><br>Date                                        |
| Volatile Analyses Technical Leader                                                               | ORIGINAL                                                        |

#### TOTAL VOC ANALYSIS DATA SHEET

## Idaho National Engineering and Environmental Laboratory Analytical Laboratories Department

Lab Code:

ALDINTEC

Contract Number:

NΑ

TOS Number:

SDG Number:

WM-186-010307

ALD Report Number: 0103072

Analytical Batch No: 0103072

Field Sample ID:

Method Number:

9260

Matrix:

WATER

Lab Sample ID:

1AM76

Sample wt/voi:

5 mL

WM-186-010307-TB

Lab File ID:

SV102644

Level (low/med):

Low

Date Sampled:

03/07/2001

%Solid:

0

Date Received:

03/08/2001

GC Column:

VOCOL

0.250 (mm)

Date Extracted:

03/21/2001

Soil Extract Volume:

N/A

Date Analyzed:

Soil Aliquot Volume:

N/A

Dilution Factor:

1

ell Erland orative or

|          |                                       | CONCENTRATION | ·   |
|----------|---------------------------------------|---------------|-----|
| CAS#     | COMPOUND                              | (ug/L)        | Q   |
| 74-87-3  | Chloromethane                         | 10            | ·U  |
| 75-01-4  | Vinyi Chloride                        | .10           | U   |
| 74-83-9  | Bromomethane                          | 10            | U   |
| 75-00-3  | Chloroethane                          | 10            | U   |
| 75-69-4  | Trichlorofluoromethane                | 10            | U   |
| 75-35-4  | 1,1-Dichloroethene                    | 10            | U·  |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10            | U   |
| 75-15-0  | Carbon Disulfide                      | 10            | U   |
| 67-64-1  | Acetone                               | 20            | UZY |
| 75-09-2  | Methylene Chloride                    | 20            | UZY |
| 156-60-5 | trans-1,2-Dichloroethene              | 10            | U   |
| 75-34-3  | 1,1-Dichloroethane                    | 10            | U   |
| 156-59-2 | cis-1,2-Dichloroethene                | 10            | U   |
| 78-93-3  | 2-Butanone                            | 10            | U.  |
| 67-66-3  | Chloroform                            | 10            | U   |
| 71-55-6  | 1,1,1-Trichloroethane                 | 10            | U   |
| 56-23-5  | Carbon Tetrachloride                  | 10            | UM  |
| 71-43-2  | Benzene                               | 10            | U   |
| 107-06-2 | 1,2-Dichloroethane                    | 20            | UMZ |
| 79-01-6  | Trichloroethene                       | 10            | U   |

05/14/2001

Prog. Ver.: 1.0

FORM I VOC - RCRA

Page 1 of 2

REV 10/98

019/45

## TOTAL VOC ANALYSIS DATA SHEET

# Idaho National Engineering and Environmental Laboratory Analytical Laboratories Department

Lab Code:

ALDINTEC

Contract Number:

NA

TOS Number:

NA

SDG Number:

WM-186-010307

ALD Report Number: 0103072 Field Sample ID:

WM-186-010307-TB

Analytical Batch No: 0103072

9260

Matrix:

WATER

Method Number:

Sample wt/vol:

Lab Sample ID:

1AM76

5 mL

Lab File ID:

SV102644

Level (low/med):

Low

Date Sampled:

03/07/2001

%Solid:

0

Date Received:

03/08/2001

GC Column: Soil Extract Volume: VOCOL

0.250 (mm)

Date Extracted:

03/21/2001

Soil Aliquot Volume:

N/A

Date Analyzed:

(A)

N/A

Dilution Factor:

| CAS#       | COMPOUND                       | CONCENTRATION (ug/L) | Q   |
|------------|--------------------------------|----------------------|-----|
| 78-87-5    | 1,2-Dichloropropane            | 10                   | U   |
| 75-27-4    | Bromodichloromethane           | 10                   | lu  |
| 10061-01-5 | cis-1,3-Dichloropropene        | 10                   | U   |
| 108-10-1   | 4-Methyl-2-Pentanone           | 20                   | UZ  |
| 108-88-3   | Toluene                        | 10                   | U   |
| 10061-02-6 | trans-1,3-Dichloropropene      | 10                   | U   |
| 79-00-5    | 1,1,2-Trichloroethane          | 10                   | U   |
| 127-18-4   | Tetrachloroethene              | 10                   | U   |
| 591-78-6   | 2-Hexanone                     | 20                   | UMZ |
| 124-48-1   | Dibromochloromethane           | 10                   | U   |
| 108-90-7   | Chlorobenzene                  | 10                   | U   |
| 100-41-4   | Ethylbenzene                   | 10                   | U   |
| 108-38-3   | m-xylene and 106-42-3 p-xylene | 20                   | U   |
| 95-47-6    | o-Xylene                       | 10                   | U   |
| 00-42-5    | Styrene                        | 10                   | U   |
| 5-25-2     | Bromoform                      | 10                   | U   |
| 9-34-5     | 1,1,2,2-Tetrachloroethane      | 20                   | UMZ |

05/14/2001

Prog. Ver.: 1.0

FORM I VOC - RCRA

Page 2 of 2

**REV 10/98** 

020/45

## TOTAL VOC ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Idaho National Engineering and Environmental Laboratory Analytical Laboratories Department

Lab Code:

ALDINTEC

Contract Number:

NA

TOS Number:

NA

SDG Number:

WM-186-010307

ALD Report Number: 0103072

Analytical Batch No: 0103072

Field Sample ID:

WM-186-010307-TB

Method Number:

9260

Matrix:

WATER

Lab Sample ID:

1AM76

Sample wt/vol:

Level (low/med):

5 mL

Lab File ID:

SV102644

Low

Date Sampled:

03/07/2001

%Solid:

0

Date Received:

03/08/2001

GC Column: Soil Extract Volume: VOCOL N/A ID:

0.250 (mm) Date Extracted: Date Analyzed:

03/21/2001

Soil Aliquot Volume:

N/A

Dilution Factor:

Number of TICs Found: 0

|   |            |                             | Concentration |     | Retention  |
|---|------------|-----------------------------|---------------|-----|------------|
|   | CAS Number | Tentatively Identified VOCs | (ug/L)        | Q . | Time (min) |
| 1 |            | Noņe                        |               |     |            |

FORM I-TIC VOC - RCRA 021/16

## COVER PAGE

| 1.  | Transmittal Date:        | 04/26/01                                                                                         |              |
|-----|--------------------------|--------------------------------------------------------------------------------------------------|--------------|
| 2.  | Subcontractor Name:      | INTEC Analytical Chemistry Laboratory Analytical Laboratories Department Bechtel BWXT Idaho, LLC |              |
| 3.  | Contract Number:         | Not Applicable                                                                                   |              |
| 4.  | SDG Type:                | Type- 1B                                                                                         |              |
| 5.  | Reporting Tier:          | Tier-2                                                                                           |              |
| 6.  | Delivery Schedule:       | Not Applicable                                                                                   |              |
| 7.  | SDG Number:              | WM-186-010307                                                                                    | 2            |
| 8.  | LTI Number:              | 01-03072                                                                                         |              |
| 9.  | TOS Number:              | Not Applicable                                                                                   | -            |
| 10. | TOS Modification Number: | Not Applicable                                                                                   |              |
| 11. | IDP Cost:                | Not Applicable                                                                                   |              |
| 12. | FSID Numbers:            | WM-186-010307                                                                                    | · Metals     |
| 13. | Billable OC Samples:     | None<br>Original                                                                                 | <del>-</del> |
|     |                          | Original<br>306: WM-1810-010507<br>Scaple: BF100160101                                           |              |

ORIGINAL

Lab Name: INEEL - ACL

Lab Code: ALDCPP Contract:BOP

TOS # : NA

LTI # : 0103072

SDG # :WM-186-010307

Matrix : WATER

Date Received: 03/07/2001

Field Sample ID#:

WM-186-010307

Lab Sample ID#: 1AM75

Sample Preparation Method(s) SEE NARRATIVE

% Solids: 0.0 (~~)

Concentration Units (ug/L or mg/kg wet weight basis): UG/L

|           |           |               | · 1        | 1             | i        |             |
|-----------|-----------|---------------|------------|---------------|----------|-------------|
| CAS No.   | Analyte   | Concentration | С          | Q.            | M        | v           |
| 7429-90-5 | ALUMINUM  | 6.87E+06      |            |               | P        |             |
| 7440-36-0 | ANTIMONY  | 2.73E+02      | ש          |               | P        |             |
| 7440-38-2 | ARSENIC   | 5.45E+02      | В          |               | ₽        |             |
| 7440-39-3 | BARIUM    | 3.03E+03      |            |               | P        |             |
| 7440-41-7 | BERYLLIUM | 4.04E+01      | В          | i             | P        |             |
| 7440-43-9 | CADMIUM   | 1.39E+05      | _          |               | P        | l           |
| 7440-47-3 | CHROMIUM  | 2.16E+05      |            |               | P        |             |
| 7440-48-4 | COBALT    | 1.20E+03      |            |               | ₽        |             |
| 7440-50-8 | COPPER    | 4.08E+04      | _          |               | P        |             |
| 7439-92-1 | LEAD      | 1.02E+05      | _          | •             | P        |             |
| 7439-96-5 | MANGANESE | 6.85E+05      | _          |               | ₽        | <b> _</b> _ |
| 7439-97-6 | MERCURY   | 2.60E+05      | 1_1        |               | CV       | <u> </u>    |
| 7440-02-0 | NICKEL    | 8.99E+04      | <b> </b> _ |               | P        | <u> </u>    |
| 7782-49-2 | SELENIUM  | 3.03E+02      | В          |               | P        | <u> </u>    |
| 7440-22-4 | SILVER    | 2.83E+02      | В          |               | P        | <u> </u>    |
| 7440-28-0 | THALLIUM  | 3.84E+02      | ש          |               | P        | <u> </u>    |
| 7440-62-2 | VANADIUM  | 5.96E+02      | В          |               | P        |             |
| 7440-66-6 | ZINC      | 2.59E+04      | 1_         |               | P        |             |
|           | İ         | <u> </u>      | _          |               | ļ        | .           |
|           |           |               | <u> </u> _ |               | ļ        | .]          |
|           |           |               | <u> </u> _ |               |          | .           |
|           |           |               | _          | ļ <del></del> | <u> </u> | .           |
|           |           |               |            |               |          | .           |
|           |           |               | . _        |               | ۱        | .           |

Cas No. Chemical Abstracts Service Registry Number; C = concentration qualifier code; Q = data qualifier Code;

M = method qualifier code; V = validation qualifier Code;

| Comments: |   |
|-----------|---|
|           | • |
|           |   |
|           |   |
|           |   |
|           |   |

SDG TYPE-1B FORM #1

SOW156

Co153.101.20

Original

WM-186-0103072-1

WM-186-0103072-1

WM-186-0103072-1

Enduct 10/4/2001

Enduct 10/4/2001

## DATA REPORT COVER PAGE

| 1.  | Transmittal Date:        | May 31, 2001                                                                                       |
|-----|--------------------------|----------------------------------------------------------------------------------------------------|
| 2.  | Subcontractor Name:      | INTEC Analytical Chemistry Laboratory  Analytical Laboratories Department  BECHTEL BWXT LLC, Idaho |
| 3.  | Contract Number:         | PLN-613                                                                                            |
| 4.  | SDG Type:                | Type – 3                                                                                           |
| 5.  | Reporting Tier:          | Tier – 2                                                                                           |
| 6.  | Delivery Schedule:       | Not Applicable                                                                                     |
| 7.  | SDG Number:              | WM-186-0103072                                                                                     |
| 8.  | LTI Number:              | 0103072                                                                                            |
| 9.  | TOS Number:              | Not Applicable                                                                                     |
| 10. | TOS Modification Number: | Not Applicable                                                                                     |
| 11. | IDP Cost:                | Internal BBWI charge number credited with all applicable work hours performed.                     |
| 12. | FSID Numbers:            | WM-186-010307                                                                                      |
|     |                          | · · · · · · · · · · · · · · · · · · ·                                                              |
| 13. | Billable QC Samples:     | None                                                                                               |

ORIGINAL

MISCELLANEOUS CLASSICAL ANALYSIS DATA SHEET

Page 1 of 1

Lab Name: INEEL - ACL

Lab Code: ALDCPP

Contract: ER SOW

TOS # : NA

LTI # : 0103072

SDG # :WM-186-010307 Z

Matrix : WATER

Date Received: 03/08/2001

5-30-0

Field Sample ID#:

WM-186-010307

Lab Sample ID#: 1AM75

% Solids: N/A

| Analyte                                   | Concentration                | UNITS                                  | С                   | Q | METHOD                                                         | v        |
|-------------------------------------------|------------------------------|----------------------------------------|---------------------|---|----------------------------------------------------------------|----------|
| ACID<br> FLUORIDE<br> TIC<br> TOC<br> UDS | 1.5<br> 2970<br> 119<br> 562 | N ACID<br>MG/L<br>MG/L<br>MG/L<br>MG/L | ם<br>ם<br>–         | E | ACMM 7012<br>ACMM 7093<br>ACMM 8060<br>USEPA 9060<br>ACMM 7972 |          |
| URANIUM                                   | 101                          | MG/L                                   | -                   |   | ACMM 7920                                                      | <br><br> |
|                                           |                              |                                        | -<br> -<br> -<br> - |   |                                                                |          |
|                                           |                              |                                        | -<br> -<br> -       |   |                                                                |          |
|                                           |                              |                                        | -<br> -<br> -       |   |                                                                |          |

| C = | concentration | qualifier | code; | Q = | data | qualifier | Code; |
|-----|---------------|-----------|-------|-----|------|-----------|-------|
|-----|---------------|-----------|-------|-----|------|-----------|-------|

Comments:

SDG TYPE-3 FORM #1

SOW156

V = validation qualifier Code;

#### FINAL REPORT for WM-186 SOLIDS

Log Type: \*\* TECHNICAL \*\*

Log Number : 01-05245 Phone Number : 6-7196 Report for : T.G. GARN Mailstop : 5218

Date Approved : Feb 11 2002 Time Approved : 10:26 Date Received: May 24 2001

Time Received: 16:26

GWA charged : 561DTA101 Reviewed by TIFFANY PARK

MSA mR/hr : WARM Signature \_\_\_\_\_

Hazard Index : 1E4 Laboratory QA Review

PCBs >50 ppm : NO Signature \_\_\_\_\_

COMMENTS:

|            | Lab Field                                         |                                            |
|------------|---------------------------------------------------|--------------------------------------------|
| Analysis   | Spl ID Spl ID                                     | Method Analyst Results                     |
| Aluminum   | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 2.23659E+00 wt%                  |
| Am241      | 1BF85 WM-186 SOLID LIB                            | 13201 IDG 4.04E+03 +- 4.0E+02 d/s/g        |
| Antimony   | 1BF85 WM-186 SOLID LIB                            | 42900 RHH Not Detected: IDL= 0.002292683 w |
| Arsenic    | 1BF85 WM-186 SOLID LIB                            | 42900 RHH Not Detected: IDL= 0.001414634 w |
| Barium     | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 1.5122E-03 wt%                   |
| Beryllium  | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 4.87805E-05 wt%                  |
| Boron      | 1BF86 WM-186 SOLID NAOH<br>1BF85 WM-186 SOLID LIB | 42900 RHH 2.11091E-02 wt%                  |
| CURIUM-242 | 1BF85 WM-186 SOLID LIB                            | 13960 IDG 3.19E+00+-2.10E+00 d/s/g         |
| Cadmium    | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 4.06341E-02 Wt%                  |
| Calcium    | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 4.67976E-01 wt%                  |
| Cerium     | 1BF85 WM-186 SOLID LIB                            | 42900 RHH Not Detected: IDL= 0.002780488 w |
| Cesium     | 1BF85 WM-186 SOLID LIB                            | 12800 SDN <.00114 wt%                      |
| Chloride   | 1BF87 WM-186 SOLID NACO                           | 28202 NWJ 1.58766E+03 ug/g                 |
| Chromium   | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 7.78537E-02 wt%                  |
| Co60       | 1BF85 WM-186 SOLID LIB                            | 33993 SJH 8.56E+04 +- 7.3E+03 pC/g         |
| Cobalt     | 1BF85 WM-186 SOLID LIB                            | 42900 RHH Not Detected: IDL= 0.0004878049  |
| Copper     | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 1.81951E-02 wt%                  |
| Cs134      | 1BF85 WM-186 SOLID LIB                            | 33993 SJH 1.12E+05 +- 1.0E+04 pC/g         |
| Cs137      | 1BF85 WM-186 SOLID LIB                            | 33993 SJH 9.09E+07 +- 2.6E+06 pC/g         |
| Curium-244 | 1BF85 WM-186 SOLID LIB                            | 13960 IDG 3.45E+01+-8.93E+00 d/s/g         |
| Eu154      | 1BF85 WM-186 SOLID LIB                            | 33993 SJH 2.28E+05 +- 3.3E+04 pC/g         |
| Fluoride   | 1BF87 WM-186 SOLID NACO                           | 28201 NWJ 6.23088E+02 ug/g                 |
| Gadolinium | 1BF85 WM-186 SOLID LIB                            |                                            |
| Iron       | 1BF85 WM-186 SOLID LIB                            |                                            |
| Lead       | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 3.03415E-02 wt%                  |
| Lithium    | 1BF86 WM-186 SOLID NAOH                           | 42900 RHH 6.0E-04 wt%                      |
| Magnesium  | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 1.71024E-01 wt%                  |
| Manganese  | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 1.87171E-01 wt%                  |
| Mercury    | 1BF85 WM-186 SOLID LIB                            | 12800 SDN < 0.00013 Wt%                    |
| Molybdenum | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 1.29268E-02 wt%                  |
| NB94       | 1BF85 WM-186 SOLID LIB                            | 33993 SJH 2.77E+04 +- 2.1E+03 pC/g         |
| Nickel     | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 5.37073E-02 wt%                  |
| Niobium    | 1BF85 WM-186 SOLID LIB                            | 42900 RHH 2.57561E-02 wt%                  |
| Nitrate    | 1BF86 WM-186 SOLID NAOH                           | 28204 NWJ 2.46185E+05 ug/g                 |

#### FINAL Report for 01-05245 continued

|                  | FINAL Report fo         | r 01-05245 continued                       |
|------------------|-------------------------|--------------------------------------------|
| Analysis         | Spl ID Spl ID           | Method Analyst Results                     |
| Np237            | 1BF85 WM-186 SOLID LIB  |                                            |
| PHOSPHORUS       | 1BF85 WM-186 SOLID LIB  | 42900 RHH 2.4022E+00 wt%                   |
| PU238            | 1BF85 WM-186 SOLID LIB  | 13202 IDG 1.62E+05 +- 1.5E+04 d/s/g        |
| PU239            | 1BF85 WM-186 SOLID LIB  | 13202 IDG $2.71E+04 +- 2.6E+03 d/s/g$      |
| Palladium        |                         | 42900 RHH 1.74634E-02 wt%                  |
| Phosphate        | 1BF87 WM-186 SOLID NACO | 28203 NWJ 5.51802E+04 ug/g                 |
| Potassium        | 1BF85 WM-186 SOLID LIB  | 12800 SDN 1.63 WT%                         |
| Ruthenium        | 1BF85 WM-186 SOLID LIB  | 42900 RHH Not Detected: IDL= 0.001512195 w |
| Sb125            | IDIOS WE TOO DODID DID  | JJJJ Bon 2.37E.03 . 1.0E.04 pc/g           |
| Selenium         | 1BF85 WM-186 SOLID LIB  | 42900 RHH Not Detected: IDL= 0.002341463 w |
| Silicon          | 1BF85 WM-186 SOLID LIB  |                                            |
| Silver           | 1BF85 WM-186 SOLID LIB  |                                            |
| Sodium           | 1BF85 WM-186 SOLID LIB  |                                            |
| Strontium        | 1BF85 WM-186 SOLID LIB  |                                            |
| Sulfate          | 1BF86 WM-186 SOLID NAOH |                                            |
| Sulfur           | 1BF85 WM-186 SOLID LIB  |                                            |
| TCLP SAMPLE PREP |                         | 17998 BGP Done 6/12/01. Store at RAL stati |
| Thallium         | 1BF85 WM-186 SOLID LIB  |                                            |
| Tin              | 1BF85 WM-186 SOLID LIB  |                                            |
| Titanium         | 1BF85 WM-186 SOLID LIB  |                                            |
| Total Sr         | 1BF85 WM-186 SOLID LIB  | 23381 PAT 1.83E+05 +- 2.7E+04 D/S/G        |
| Tritium          | 1BF85 WM-186 SOLID LIB  |                                            |
| U234             | 1BF85 WM-186 SOLID LIB  |                                            |
| U235             | 1BF85 WM-186 SOLID LIB  |                                            |
| U236             | 1BF85 WM-186 SOLID LIB  | 13209 IDG 1.23E+01+-6.46E+00 D/S/G         |
| U238             | 1BF85 WM-186 SOLID LIB  | 13209 IDG 5.59E+00+-7.40E+00 D/S/G         |
| Uranium          | 1BF85 WM-186 SOLID LIB  |                                            |
| Vanadium         | 1BF85 WM-186 SOLID LIB  |                                            |
| Zinc             | 1BF85 WM-186 SOLID LIB  |                                            |
| Zirconium        | 1BF85 WM-186 SOLID LIB  | 42900 RHH 1.91732E+00 wt%                  |
| End of Report    | 64 results.             |                                            |



Date of Search: 2003-06-16 14:21:46.965 Run by: JEFF LONG \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Search Criteria: Start Log....:961008 15 End Log.....:961008 15 Log Approval.:ALL Logs Result Type..:All Entries Lab/Group....:ALL Groups Name Column..:Lab Sample ID Total # Logs Found...: 1 Total # Results Found: 9 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Log # Request Name Log Type Charge Num Log Approval Info L I d Lab Meth a Ana-# b lyst Analyte ARL Result x ID 961008-15 WL-103 522020702 961012 16:48 CLAYNE B GRIGG PLANT 5 6 7

\*\*\*\*\*\* END \*\*\*\*\*\*

8

9 6DC01

Date of Search: 2003-06-16 14:22:11.754 Run by: JEFF LONG \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Search Criteria: Start Log....:961214 1 End Log.....:961214 1 Log Approval.:ALL Logs Result Type..:All Entries Lab/Group....:ALL Groups Name Column..:Lab Sample ID Total # Logs Found...: 1 Total # Results Found: 12 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Log Type Charge Num Log Approval Info Request Name Log # I T. d Lab Meth a Ana-# b lyst Analyte ARL x ID Result 522020702 970415 21:54 ALAN W OLAVESON 961214-1 WL-103 PLANT 87802 7KFM MERCURY A.. Not Detected: MDL=0.009 uG/mL 1 6EA76 2 6EA76 17929 7SRT URANIUM PR A.. 2.0E+00 ml 3 6EA76 87100 7RLC ALUMINUM A.. 2.43E-03 +- 4.4E-04 MOLAR 24900 4DDJ URANIUM. A.. 2.2E-02 g/kg 4 6EA76 U234 A.. 7.0E-03 WEIGHT % U235 A.. 7.2E-01 WEIGHT %
U236 A.. 7.0E-03 WEIGHT %
U238 A.. 9.93E+01 WEIGHT %

87970 7RLC GROSS BETA A.. 5.0E+02 +- 1.1E+02 B/Min/ml 5 6EA76 47981 7RLC SPGR A.. 9.98734E-01 +- 2.6E-04 17920 7KFM URANIUM A.. 2.69E-02 +- 1.8E-03 G/L 6EA76 9.98734E-01 +- 2.6E-04 @ 25/4 6 7 6EA76 17920 7KFM URANIUM A.. 2.65E-02 +- 1.8E-03 G/L 8 6EA76

\*\*\*\*\*\*\* END \*\*\*\*\*\*\*

Date of Search: 2003-06-16 14:22:33.887 Run by: JEFF LONG \*\*\*\*\*\*\*\*\*\*\*\*\* Search Criteria: Start Log....:961008 16 End Log....:961008 16 Log Approval.:ALL Logs Result Type..:All Entries Lab/Group....:ALL Groups Name Column..:Lab Sample ID Total # Logs Found...: 1 Total # Results Found: 9 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Charge Num Log Approval Info Log # Request Name Log Type L Ι d Lab Meth a Anax ID # b lyst Analyte ARL Result 522020702 961223 15:11 JACQUIE S JANIBAG 961008-16 WL-104 PLANT 87092 7RAH FLUORIDE A.. 3.49E+01 +- 1.7E+00 ug/ml 1 6DC30 57171 7RAH CHLORIDE A.. < 1.25947E+01 ug/ml 6DC30 97168 7BCS SULFATE A.. < 9.03652E+00 uG/mL 6DC30 17012 7RAH ACID A.. titrated less than .5 ml
47981 7BCS SPGR A.. 9.99012E-01 +- 2.6E-04 @ 25/4
17920 7RAH URANIUM A.. 2.35E-02 +- 1.3E-03 G/L
87017 7RLC PH A.. 2.75E+00 +- 1.6E-01 pH
17920 7RAH URANIUM C.. Canceled Entry
17920 7RAH URANIUM A.. 2.23E-02 +- 1.6E-03 G/L 6DC30 5 6DC30 6 6DC30 6DC30 8 6DC30 6DC30 9

\*\*\*\*\*\*\* END \*\*\*\*\*\*\*

\*\*\*\*\*\*\* END \*\*\*\*\*\*

|     |           |                       | Log Search     |                                          |
|-----|-----------|-----------------------|----------------|------------------------------------------|
|     |           | arch: 2003-06-1       |                | Run by: JEFF LONG                        |
|     |           |                       | ******         | *******                                  |
| Sea | rch Crit  | ceria:<br>og:961214 : | )              |                                          |
|     |           | :961214 :             |                |                                          |
|     | _         | coval.:ALL Logs       | •              |                                          |
|     |           | Type:All Entr         | ies            |                                          |
|     |           | ıp:ALL Grou           |                |                                          |
|     | Name Co   | lumn:Lab Samp         | le ID          |                                          |
| TOF | al # T.o. | gs Found: 1           |                |                                          |
|     |           | sults Found: 12       |                |                                          |
| *** | ****      | *****                 | *****          | *******                                  |
| _   | н         |                       |                | C)                                       |
| Log | #         | Request Name          | Log Type<br>L  | Charge Num Log Approval Info             |
|     | Lab       | Met]                  | n a Ana-       |                                          |
| _   | ID        | #                     | b lyst Analyte | ARL Result                               |
|     |           |                       |                |                                          |
|     |           |                       |                |                                          |
| 961 | 214-2     | WL-104                | PLANT          | 522020702 970415 22:30 ALAN W OLAVESON   |
| 1   | 6EA78     |                       | 7KFM MERCURY   |                                          |
| 2   | 6EA78     | 87100                 | 7RLC ALUMINUM  | A 3.50E-03 +- 4.5E-04 MOLAR              |
| 3   | 6EA78     | 87970                 |                | A 1.20E+03 +- 1.9E+02 B/Min/ml           |
| 4   | 6EA78     | 24900                 | 4DDJ URANIUM.  | A 2.4E-02 g/kg                           |
|     |           |                       | U234<br>U235   | A 0.0E+00 WEIGHT %<br>A 7.0E-01 WEIGHT % |
|     |           |                       | U235           | A 4.0E-03 WEIGHT %                       |
|     |           |                       | U238           | A 9.93E+01 WEIGHT %                      |
| 5   | 6EA78     | 17929                 |                | A 2.0E+00 ml                             |
| 6   | 6EA78     | 47981                 | 7RLC SPGR      | A 9.98949E-01 +- 2.6E-04 @ 25/4          |
| 7   | 6EA78     | 17920                 | 7KFM URANIUM   |                                          |
| 8   | 6EA78     | 17920                 | 7KFM URANIUM   | A 2.43E-02 +- 1.7E-03 G/L                |
|     |           |                       |                |                                          |

\*\*\*\*\*\*\* END \*\*\*\*\*\*

Run by: JEFF LONG Date of Search: 2003-06-16 14:23:17.773 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Search Criteria: Start Log....:970916 9 End Log....:970916 9 Log Approval.:ALL Logs Result Type..:All Entries Lab/Group....:ALL Groups Name Column..:Lab Sample ID Total # Logs Found...: 1 Total # Results Found: 10 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Log # Request Name Log Type Charge Num Log Approval Info I L d Lab Meth a Anax ID # b lyst Analyte ARL Result 522020602 970929 17:30 ROBERTA A JORDAN 970916-9 WL-105:105 PLANT 87012 7SRT ACID A.. <.0241 Normal Acid 87017 7SRT PH A.. 2.404E+00 +- 5.6E-02 1 7HR36 7HR36 57171 7RAH CHLORIDE A.. < 4.11211E+00 ug/mL 3 7HR36 87092 7RAH FLUORIDE A.. 5.07E-04 +- 8.1E-05 molar 7HR36 5 17920 7KFM URANIUM A.. < 3.46607E-01 ug/mL 7HR36 17920 7KFM URANIUM A. < 3.46607E-01 ug/mL 87100 7BCS ALUMINUM A. < 6.72322E-04 MOLAR 97168 7BCS SULFATE A. < 4.06935E+00 ug/ml 87970 7KFM GROSS BETA A. 2.05E+03 +- 1.9E+02 B/Min/ml 87100 7BCS ALUMINUM A. < 4.74571E-04 MOLAR 6 7HR36 7HR36 8 7HR36 9 7HR36 10 7HR36



```
Log # Request Name Log Type Charge Num Log Approval Info
    I
d Lab
                                  L
                                                         Meth a Ana-
     x ID
                                                           # b lyst Analyte ARL
                                                                                                                                                  Result
930513-29 WM-100 13120-200-001930601 04:14 SPLMGT SPLMGT 75 CANCELLED 1 1 LOG C.. -- No sample received --
                                              7961 7RLC RADIO CHEM C.. Prep Completed 082193 07:33
53993 3DAO GAMMA SCAN C.. ** See Index 478 thru 481. **
23381 3BJS TOTAL SR A.. 5.95137+-.289466 UCI/ML
2110 2JSL SODIUM A.. =0.023 Molarity
2190 2JSL POTASSIUM A.. =0.0018 Molarity
77168 7BKH SULFATE A.. 6.05235E-03+-2.86055E-04 Molar
77074 7SRT NITRATE A.. 4.22397+-.646989 Molar
57171 7BET CHLORIDE C.. < 155.44 UG/ML
7972 7WDT UDS A.. * 3.68 MG/ML
47981 7WDT SP-GR A.. 1.21961+-7.80476E-04 @ 25/4
67015 7BET ACID A.. < 8.97114E-02 NACID
67093 7BGP FLUORIDE A.. 2.20899E-02+-1.89826E-03 MOLAR
7961 7RLC SPEC CHEM C.. Prep Completed 082193 07:33
67920 7BET URANIUM A.. 2.40951E-03+-6.96431E-04 G/L
7100 7SDN METALS-ICP C.. See Individual Elements Below
7101 7SDN ALUMINUM C.. > .190546 MOLAR
7103 7 CADMIUM C.. SEE472
7105 7SDN IRON A.. 1.81135E-02+-5.63841E-04 MOLAR
7110 7SDN ZIRCONIUM A.. 2.67232E-03+-5.75093E-04 MOLAR
7111 7SDN CALCIUM A.. 2.67232E-03+-5.75093E-04 MOLAR
57171 7BET CHLORIDE A.. 25.2599+-4.24004 UG/ML
7100 7SDN METALS-ICP C.. See Individual Elements Below
7101 7SDN METALS-ICP C.. See Individual Elements Below
7101 7SDN ALUMINUM A.. 2.67232E-03+-5.75093E-04 MOLAR
7110 7SDN METALS-ICP C.. See Individual Elements Below
7101 7SDN METALS-ICP C.. See Individual Elements Below
930820-5 WM-100AT
30 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1
43 1
44 1
45 1
46 1
47 1
48 1
49 1
50 1
330.2
                                                     7100 7SDN METALS-ICP C.. See Individual Elements Below
465 1
                                                     7101 7SDN ALUMINUM A.. 1.29549+-.361913 MOLAR
466 1
                                               7101 7SDN ALUMINUM A.. 1.29549+-.361913 MOLA

7100 7SDN METALS-ICP C.. SEE 472

7103 7SDN CADMIUM C.. < 9.50622E-04 MOLAR

53993 3DAO CO-60 A.. 2060+-228 D/S/ML

53993 3DAO CS-134 A.. 19400+-894 D/S/ML

53993 3DAO CS-137 A.. 514000+-17500 D/S/ML

53993 3DAO EU-154 A.. 3230+-383 D/S/ML
471 1
472 1
478 1
479 1
480 1
481 1
                                               7900 7WDT EPA-TOX C.. See Individual Elements Below 7903 7WDT CADMIUM C.. > 130.628 mg/L
485 1
486 1
                                               7903 7WD1 CADMIDM C... 2150.020 Mg/E

57171 7RLC CHLORIDE A.. 30.9039+-7.96776 UG/ML

2110 2 SODIUM C.. NOT REQUESTED

2190 2 POTASSIUM C.. NOT REQUESTED

7961 7WDT NA/K SPEC C.. Prep Completed 090393 18:57
493 1R
494 PLASTIC1R
495 PLASTIC1R
496 PLASTIC1R
                                                    7900 7WDT EPA-TOX C.. See Individual Elements Below 7903 7WDT CADMIUM A.. 100.222+-7.66378 mg/L
497 1
498 1
930820-13 WM-100
                                                                                                                         13120-200-001940217 08:29 SPLMGT SPLMGT
                              47981 7MLE SP-GR A.. 1.26416+-7.80474E-04 @ 25/4
47981 7MLE SP-GR A.. 1.24535+-7.80487E-04 @ 25/4
47981 7MLE SP-GR A.. 1.26386+-7.80474E-04 @ 25/4
375 1
376 2
377 3
```

| Log | #         | Request Name | Lo   | g Type     |     | Charge Num Log Approval Info    |
|-----|-----------|--------------|------|------------|-----|---------------------------------|
| Ĭ   |           |              | L    | 5 -1F-     |     | onarge nam bog hpprovar into    |
| đ   | Lab       | Meth         | a An | a-         |     |                                 |
| ×   | ID        | #            | b ly | st Analyte | ARL | Result                          |
|     |           |              |      |            |     |                                 |
| 378 |           | 67015        |      | ACID       | Α   | .120714+-3.74996E-02 NACID      |
| 379 |           | 67015        |      | ACID       | Α   |                                 |
| 380 |           | 67920        |      | URANIUM    | Α   |                                 |
| 381 |           | 7972         | 7RLC |            | Α   | * 2.18 MG/ML                    |
| 382 |           | 57171        | 7BET | CHLORIDE   | Α   |                                 |
| 383 |           | 77074        | 7SRT | NITRATE    | Α   | 6.40565+636018 Molar            |
| 384 |           | 67093        | 7MLE | FLUORIDE   | Α   | 2.22026E-02+-1.89713E-03 MOLAR  |
| 385 |           | 77168        | 7вкн | SULFATE    | Α   | 1.01392E-03+-3.09891E-04 Molar  |
| 386 |           | 7961         | 7MLE | RADIOCHEM  | С   | <u> </u>                        |
|     | PLASTIC 3 |              |      | SPECTCHEM  | С   | Prep Completed 082393 14:45     |
|     | PLASTIC 2 | 7961         |      | SPECTCHEM  | С   | Prep Completed 082393 14:46     |
| 389 |           | 83993        | 3DAO | GAMMA SCAN | С   | ** See Index 483 thru 484. **   |
| 390 |           | 23381        | 3BJS | TOTAL SR   | Α   | 13.1827+434105 UCI/ML           |
| 391 |           | 3205         | 3IDG | TRANS-UA   | Α   | 6002.79+-344.485 D/S/ML         |
| 392 |           | 23011        | 3JSJ | TRITIUM    | Α   | .297639+-4.64174E-02 D/SEC/ML   |
|     | PLASTIC 1 |              |      | EPA-TOX    | С., | See Individual Elements Below   |
|     | PLASTIC 3 |              | 7CBG | ARSENIC    |     | < 3.54948  mg/L                 |
| 395 | PLASTIC 3 | L 7902       |      | BARIUM     | Α   | < 4.57491 mg/L                  |
|     | PLASTIC 3 |              | 7CBG | CADMIUM    | Α   | 62.9984+-3.09222 mg/L           |
| 397 | PLASTIC 3 | 1 7904       | 7CBG | CHROMIUM   | Α   | 32.517+-2.81098 mg/L            |
| 398 | PLASTIC 1 | L 7905       |      | LEAD       | Α   | 40.7849+-3.38658 mg/L           |
| 399 | PLASTIC 1 | L 7906       | 7CBG | SELENIUM   | С   | < 3.12083 mg/L                  |
| 400 | PLASTIC 1 | L 7907       | 7CBG | SILVER     | C   | < 4.04898 mg/L                  |
| 401 | PLASTIC 1 | L 7908       | 7CBG | NICKEL     | Α   | 12.5588+-1.0438 mg/L            |
| 402 | PLASTIC 2 | 7900         | 7CBG | EPA-TOX    | С   | See Individual Elements Below   |
| 403 | PLASTIC 2 | 7901         | 7CBG | ARSENIC    | Α   | < 3.54948 mg/L                  |
| 404 | PLASTIC 2 | 7902         | 7CBG | BARIUM     | Α   | < 4.57491 mg/L                  |
| 405 | PLASTIC 2 | 7903         | 7CBG | CADMIUM    | Α   | 61.2782+-3.04655 mg/L           |
| 406 | PLASTIC 2 | 7904         | 7CBG | CHROMIUM   | Α   | 33.6403+-2.86527 mg/L           |
| 407 | PLASTIC 2 | 7905         | 7CBG | LEAD       | Α   | 44.3699+-3.53409 mg/L           |
|     | PLASTIC 2 |              | 7CBG | SELENIUM   | С   | < 3.12083  mg/L                 |
|     | PLASTIC 2 |              | 7CBG | SILVER     | С   | < 4.04898 mg/L                  |
|     | PLASTIC 2 |              | 7CBG | NICKEL     | Α   | 13.9321+-1.11811 mg/L           |
|     | PLASTIC 1 |              |      | MERCURY    | Α   | =1.7E+02 mg/1                   |
|     | PLASTIC 2 |              | 2LBZ | MERCURY    | Α   | =1.6E+02 mg/1                   |
|     | PLASTIC 1 |              | 2    | ARSENIC.   |     |                                 |
|     | PLASTIC 2 |              | 2    |            |     | SEE RAL DATA                    |
|     | PLASTIC 1 |              | 2    |            |     | SEE RAL DATA                    |
|     | PLASTIC 2 |              | 2    | SELENIUM.  |     | SEE RAL DATA                    |
|     | PLASTIC 1 |              |      | SODIUM     |     | =0.17 Molarity                  |
|     | PLASTIC 1 | - ·          |      |            |     | =0.021 Molarity                 |
| 419 |           | 67016        | 7KFM |            |     | < .5 pH                         |
|     | RAMP WM10 |              |      |            |     | NO Flash @ 60.0 deg C corrected |
|     | PLASTIC 1 |              |      |            |     | Prep Completed 082393 14:46     |
|     | VOA VIAL  | •            |      | GCMS-2SRC  |     |                                 |
|     | VOA VIAL  |              |      | GCMS-2SRC  |     |                                 |
|     | PLASTIC 1 |              |      |            |     | See Individual Elements Below   |
|     | PLASTIC 1 |              |      |            |     | > .190546 MOLAR                 |
| 426 | PLASTIC 1 | . 7102       | 7SDN | BORON      | Α   | < 3.75619E-03 MOLAR             |
|     |           |              |      |            |     |                                 |

```
Log #
                         Request Name
                                                             Log Type Charge Num Log Approval Info
   I
    d Lab
                                               Meth a Ana-
    x ID
                                                #
                                                           b lyst Analyte ARL
                                                                                                                          Result
                                              427 PLASTIC 1
                                        7105 7SDN IRON A.. .02076+-6.04381E-04 MOLAR
7110 7SDN ZIRCONIUM A.. < 1.56506E-03 MOLAR
7111 7SDN CALCIUM A.. 1.16336E-02+-9.42946E-04 MOLAR
47981 7MLE SP-GR A.. 1.2311+-7.80485E-04 @ 25/4
67016 7KFM PH A.. < .5 pH
7900 7SDN EPA-TOX C.. See Individual Elements Below
7901 7SDN ARSENIC C.. < 5.59712 mg/L
7906 7SDN SELENIUM C.. < 2.53942 mg/L
7907 7SDN SILVER A.. < 2.45596 mg/L
7900 7SDN EPA-TOX C.. See Individual Elements Below
7901 7SDN ARSENIC C.. < 5.59712 mg/L
7907 7SDN SILVER A.. < 2.45596 mg/L
7907 7SDN SELENIUM C.. < 5.59712 mg/L
7907 7SDN SELENIUM C.. < 5.59712 mg/L
7907 7SDN SELENIUM C.. < 2.53942 mg/L
7907 7SDN SELENIUM C.. < 2.53942 mg/L
7907 7SDN SILVER A.. < 2.45596 mg/L
7100 7SDN METALS-ICP C.. See Individual Elements Below
7101 7SDN ALUMINUM A.. 1.08878+-.362405 MOLAR
7100 7SDN METALS-ICP C.. See Individual Elements Below
 428 PLASTIC 1
                                                                                           A.. .02076+-6.04381E-04 MOLAR
 429 PLASTIC 1
 430 PLASTIC 1
 431 4
432 6
452 5
453 5
454 5
455 5
456 6
457 6
458 6
459 6
463 PLASTIC 1
464 PLASTIC 1
                                        7101 75DN ALUMINUM A.. 1.000/07-.502405 Molan

7100 75DN METALS-ICP C.. See Individual Elements Below

7103 75DN CADMIUM A.. < 9.50622E-04 MOLAR

83993 3DAO CS-134 A.. 20600+-1120 D/S/ML

83993 3DAO CS-137 A.. 838000+-31900 D/S/ML
467 PLASTIC 1
468 PLASTIC 1
483 5
484 5
                                        7100 7WDT METALS-ICP C.. See Individual Elements Below 7111 7WDT CALCIUM A.. 1.18246E-02+-9.5268E-04 MOLAR
487 PLASTIC1R
488 PLASTIC1R
                                        77074 7MLE NITRATE
489 3R
                                                                                             A.. 5.78416+-.618707 Molar
                                        7985 7CWL FLASHPOINT C.. Flashed @ 52.0 deg C corrected 7985 7CWL FLASHPOINT C.. Flashed @ 52.0 deg C corrected 7985 7CWL FLASHPOINT A.. NO Flash @ 60.0 deg C corrected 7961 7KFM SP CHEM C.. Prep Completed 090893 23:20
490 BEG KNOWN
491 END KNOWN
492 60C WM100
499 PLASTIC 1
                                     7961 7KFM SP CHEM C.. Prep Completed 090893 23:20
7961 7KFM SP CHEM C.. Prep Completed 090893 23:21
7961 7KFM SP CHEM C.. Prep Completed 090893 23:21
7900 7SDN EPA-TOX C.. See Individual Elements Below
7901 7SDN ARSENIC A.. < 3.89309 mg/L
7900 7SDN EPA-TOX C.. See Individual Elements Below
7901 7SDN ARSENIC A.. < 3.89309 mg/L
7900 7SDN EPA-TOX C.. See Individual Elements Below
7906 7SDN SELENIUM A.. < .991639 mg/L
7900 7SDN EPA-TOX C.. See Individual Elements Below
7906 7SDN SELENIUM A.. < .991639 mg/L
7900 7SDN SELENIUM A.. < .991639 mg/L
500 PLASTIC 1
501 PLASTIC 2
504 PLASTIC 1R
505 PLASTIC 1R
506 PLASTIC 2R
507 PLASTIC 2R
508 PLASTIC 1R
509 PLASTIC 1R
510 PLASTIC 2R
511 PLASTIC 2R
930820-16 WM-100
                                                                                                      13120-200-001940210 23:33 SPLMGT SPLMGT
331 1
                                          47981 7RLC SP-GR A.. .999071+-7.79144E-04 @ 25/4
332 3
                                           47981 7RLC SP-GR
                                                                                          A.. .999458+-7.79146E-04 @ 25/4
                                        67015 7BGP ACID A.. < 8.83383E-02 NACID 67015 7BGP ACID A.. < 8.97114E-02 NACID
333 2
334 3
335 2
                                        87920 7RLC URANIUM A.. < 4.22281E-04 G/L
336 4
                                          7972 7RLC UDS A.. NO VISIBLE SOLIDS
                                      7772 7REC ODS A.. NO VISIBLE SOLIDS
57171 7BET CHLORIDE A.. < 15.0301 UG/ML
77074 7SRT NITRATE A.. < 1.61E-05 Molar
67093 7BGP FLUORIDE C.. < 1.35096E-03 MOLAR
77168 7MLE SULFATE A < 1.04102E-06 Molar
337 2
338 3
339 2
340 3
                                         77168 7MLE SULFATE A.. < 1.04102E-06 Molar
```

```
Log #
                     Request Name Log Type Charge Num Log Approval Info
     I
d Lab
                                                                    Meth a Ana-
                                                 # b lyst Analyte ARL Result

7961 7RLC RADIO CHEM C.. Prep Completed 082193 04:48
7961 7RLC RADIO CHEM C.. Prep Completed 082193 04:48
7961 7RLC SPEC CHEM C.. Prep Completed 082193 04:48
7961 7RLC SPEC CHEM C.. Prep Completed 082193 04:49
53993 3DAO GAMMA SCAN C.. ** See Index 482. **
23381 3BJS TOTAL SR A.. 3.12763E-05+6-78419E-06 UCI/M
3205 3IDG TRANS-UA A.. < .137597 D/S/ML
23011 3JSJ TRITIUM A.. < .157442 D/SEC/ML
7900 7CEG EPA-TOX C.. See Individual Elements Below
7901 7CEG ARSENIC A.. < .67931 mg/L
7902 7CEG BARIUM A.. < .875559 mg/L
7903 7CEG CADMIUM A.. < .830681 mg/L
7904 7CEG CADMIUM A.. < .830681 mg/L
7905 7CEG LEAD A.. < .573449 mg/L
7907 7CEG SILVER A.. < .774906 mg/L
7908 7CEG NICKEL A.. < .597274 mg/L
7907 7CEG SILVER A.. < .774906 mg/L
2330 2 ARSENIC C.. SEE METHOD 7901
2340 2 SELENIUM C.. SEE METHOD 7906
2110 2JSL SODIUM A.. =7.0E-06 Molarity
2190 2JSL POTASSIUM A.. =1.8E-06 Molarity
67016 7KFM PH A.. 9.56302+-.035681 pH
7985 7SDN FLASHPOINT C.. Flashed @ 41.0 deg C corrected
7961 7RLC SPEC CHEM C.. Prep Completed 082193 04:49
9305 9HCJ GCMS-2SRC C.. NOT REQUIRED
7100 7SDN METALS-ICP C.. SEE Individual Elements Below
7101 7SDN ALUMINUM A.. < 6.56896E-03 MOLAR
7102 7SDN BORON A.. 3.96261E-03+-1.52717E-03 MOLAR
7103 7 CADMIUM C.. SEE 469
7105 7SDN IRON A.. < 2.211E-04 MOLAR
7111 7SDN CALCIUM A.. < 2.54008E-03 MOLAR
7110 7SDN METALS-ICP C.. SEE Individual Elements Below
7101 7SDN METALS-ICP C.. SEE Individual Elements Below
7103 7SDN CADMIUM A.. < 2.54008E-03 MOLAR
7110 7SDN METALS-ICP C.. SEE Individual Elements Below
7101 7SDN METALS-ICP C.. SEE Individual Elements Below
7103 7SDN CADMIUM A.. < 2.54008E-03 MOLAR
7110 7SDN METALS-ICP C.. SEE Individual Elements Below
7103 7SDN CADMIUM A.. < 9.50622E-04 MOLAR
7100 7SDN METALS-ICP C.. SEE Individual Elements Below
7103 7SDN CADMIUM A.. < 9.50622E-04 MOLAR
7100 7SDN METALS-ICP C.. SEE Individual Elements Below
7103 7SDN CADMIUM A.. < 9.50622E-04 MOLAR
7100 7SDN METALS-ICP C.. SEE Individual Elements Below
7103 7SDN CADMIUM A.. < 9.50622E-04 MOLAR
71
       x ID
                                                                                        b lyst Analyte ARL
                                                                                                                                                                                     Result
  341 5
  342 PLASTIC 1
  343 PLASTIC 2
  344 5
 345 5
 346 5
 347 5
 348 PLASTIC 1
 349 PLASTIC 1
 350 PLASTIC 1
 351 PLASTIC 1
 352 PLASTIC 1
 353 PLASTIC 1
 354 PLASTIC 1
 355 PLASTIC 1
 356 PLASTIC 1
 357 PLASTIC 2
 358 PLASTIC 2
359 PLASTIC 1
 360 PLASTIC 1
 361 PLASTIC 1
 362 5
362 5
363 KNOWN
 364 PLASTIC 1
 365 VOA VIAL 1
 366 VOA VIAL 2
 367 PLASTIC 1
 368 PLASTIC 1
 369 PLASTIC 1
 370 PLASTIC 1
 371 PLASTIC 1
 372 PLASTIC 1
 373 PLASTIC 1
 374 2
 434 5
                                                         67016 7KFM PH A.. 8.50498+-3.54009E-02 pH
7100 7SDN METALS-ICP C.. See Individual Elements Below
7103 7SDN CADMIUM A.. < 9.50622E-04 MOLAR
53993 3DAO CS-137 A.. 58.4+-3.39 D/S/ML
 435 6
469 PLASTIC 1
 470 PLASTIC 1
482 5
 502 6
                                                                7985 7SDN FLASHPOINT A.. NO Flash @ 60.0 deg C corrected
 930821-6
                                      WM-100
                                                                                                                                                        13120-200-001940302 15:36 SPLMGT SPLMGT
24 1
25 2
26 3
27 2
28 3
29 2
                                                                 47981 7MLE SP-GR A.. 1.22632+-7.80482E-04 @ 25/4
47981 7MLE SP-GR A.. 1.2212+-7.80478E-04 @ 25/4
                                                              47981 7MLE SP-GR A.. 1.22013+-7.80477E-04 @ 25/4
67015 7BET ACID A.. < 8.97114E-02 NACID
67015 7BET ACID A.. < 8.97114E-02 NACID
67920 7BET URANIUM A.. 3.66657E-03+-8.39782E-04 G/L
```

| Log<br>I |           | Request Name | Log Type<br>L               |     | Charge Num Log Approval Info    |
|----------|-----------|--------------|-----------------------------|-----|---------------------------------|
| đ        | Lab       | Meth         | a Ana-                      |     |                                 |
| x        |           | #            | b lyst Analyte              | ART | Result                          |
|          |           |              |                             |     | ·                               |
| 30       | 4         | 7972         | 7RLC UDS                    | Α   | * 5.07 MG/ML                    |
| 31       | 2         | 57171        | 7BET CHLORIDE               | С., | < 120.968 UG/ML                 |
| 32       | 3         | 77074        | 7SRT NITRATE                | Α   |                                 |
| 33       | 2         | 67093        | 7MLE FLUORIDE               | Α   |                                 |
| 34       | 3         | 77168        | 7BKH SULFATE                | Α   |                                 |
| 35       | 5         | 7961         | 7WDT RADIOCHEM              | С   |                                 |
| 36       | PLASTIC 1 | 7961         | 7MLE SPECTCHEM              | С   | <del>_</del>                    |
| 37       | PLASTIC 2 | 7961         | 7MLE SPECTCHEM              | С   |                                 |
| 38       | 5         | 73993        |                             |     | ** See Index 279 thru 281. **   |
| 39       | 5         | 23381        | 3BJS TOTAL SR               | Α   |                                 |
|          | 5         | 3205         | 3IDG TRANS-UA               | Α   |                                 |
| 41       | 5         | 23011        | 3JSJ TRITIUM                |     | < 157.599 D/SEC/ML              |
|          | PLASTIC 1 | 7900         | 7CBG EPA-TOX                |     | See Individual Elements Below   |
| 43       | PLASTIC 1 | 7901         | 7CBG ARSENIC                |     | < 3.54948 mg/L                  |
|          | PLASTIC 1 | 7902         | 7CBG BARIUM                 |     | < 4.57491 mg/L                  |
|          | PLASTIC 1 | 7903         | 7CBG CADMIUM                |     | 22.7578+-1.74276 mg/L           |
|          | PLASTIC 1 | 7904         | 7CBG CHROMIUM               | Α   | <del>-</del>                    |
|          | PLASTIC 1 | 7905         | 7CBG LEAD                   | Α   |                                 |
|          | PLASTIC 1 | 7906         | 7CBG SELENIUM               |     | < 3.12083 mg/L                  |
|          | PLASTIC 1 | 7907         | 7CBG SILVER                 |     | < 4.04898 mg/L                  |
|          | PLASTIC 1 | 7908         | 7CBG NICKEL                 |     | 4.84096+433302 mg/L             |
|          | PLASTIC 2 | 7900         | 7CBG EPA-TOX                |     | See Individual Elements Below   |
|          | PLASTIC 2 | 7901         | 7CBG ARSENIC                |     | < 3.54948 mg/L                  |
|          | PLASTIC 2 | 7902         | 7CBG BARIUM                 |     | < 4.57491 mg/L                  |
|          | PLASTIC 2 | 7903         | 7CBG CADMIUM                | Α   |                                 |
|          | PLASTIC 2 | 7904         | 7CBG CHROMIUM               |     | 8.02166+-1.09908 mg/L           |
|          | PLASTIC 2 |              | 7CBG LEAD                   | Α   |                                 |
|          | PLASTIC 2 | 7906         | 7CBG SELENIUM               |     | < 3.12083 mg/L                  |
|          | PLASTIC 2 | 7907         | 7CBG SILVER                 |     | < 4.04898 mg/L                  |
|          | PLASTIC 2 | 7908         | 7CBG NICKEL                 |     | < 4.21435 mg/L                  |
|          | PLASTIC 1 | 2809         | 2LBZ MERCURY                | Α   |                                 |
|          | PLASTIC 2 |              | 2LBZ MERCURY                | A   |                                 |
|          | PLASTIC 1 | 2330         | 2 ARSENIC.                  | c   |                                 |
|          | PLASTIC 2 |              | 2 ARSENIC.                  | c   |                                 |
|          | PLASTIC 1 |              | 2 SELENIUM.                 |     |                                 |
|          | PLASTIC 2 |              |                             |     | SEE RAL DATA                    |
|          | PLASTIC 1 |              |                             |     | =0.049 Molarity                 |
|          | PLASTIC 1 |              |                             |     | =0.0046 Molarity                |
|          | 5         |              |                             |     | 1.67766+-3.60744E-02 pH         |
|          | RAMP WM10 |              |                             |     | NO Flash @ 60.0 deg C corrected |
|          | PLASTIC 1 |              |                             |     | Prep Completed 082393 14:50     |
|          | VOA VIAL  |              |                             |     | SEE ATTACHED                    |
|          | VOA VIAL  |              | 9HCJ GCMS-2SRC              |     |                                 |
|          | PLASTIC 1 |              |                             |     | See Individual Elements Below   |
|          | PLASTIC 1 |              |                             |     | > .190546 MOLAR                 |
|          | PLASTIC 1 |              |                             |     | < 3.75619E-03 MOLAR             |
|          | PLASTIC 1 |              | 7 CADMIUM                   |     |                                 |
|          | PLASTIC 1 |              |                             |     | 2.02119E-02+-5.96183E-04 MOLAR  |
|          | PLASTIC 1 |              | 7SDN IRON<br>7SDN ZIRCONIUM | A   |                                 |

```
Log #
           Request Name
                             Log Type Charge Num Log Approval Info
 I
  d Lab
                      Meth a Ana-
  x ID
                           b lyst Analyte ARL
                                                          Result
79 PLASTIC 1
                           7SDN CALCIUM A.. 3.42787E-03+-6.14036E-04 MOLAR
                     7111
80 4
                    47981
                           7MLE SP-GR
                                           A.. 1.177+-7.80374E-04 @ 25/4
138 3
                    57171 7BET CHLORIDE
                                          A.. 53.9264+-8.5855 UG/ML
244 6
                    67016 7KFM PH
                                           A.. 1.69967+-3.60655E-02 pH
249 PLASTIC 2
                     7961 7MLE SPECTCHEM C.. Prep Completed 082393 14:51
251 60C WM100
                     7985 7CWL FLASHPOINT A.. NO Flash @ 60.0 deg C corrected
252 END KNOWN
                     7985 7CWL FLASHPOINT A.. Flashed @ 60.0 deg C corrected
256 5
                     7900 7SDN EPA-TOX
                                         C.. See Individual Elements Below
257 5
                     7901 7SDN ARSENIC
                                           C.. < 5.59712 \text{ mg/L}
258 5
                     7906 7SDN SELENIUM C.. < 2.53942 mg/L
259 5
                     7907 7SDN SILVER A.. < 2.45596 mg/L
260 5
                     7908 7SDN NICKEL
                                          A.. 5.05519+-.488375 mg/L
261 6
                     7900 7SDN EPA-TOX C.. See Individual Elements Below
262 6
                     7901 7SDN ARSENIC C.. < 5.59712 mg/L
263 6
                     7906 7SDN SELENIUM C.. < 2.53942 mg/L
264 6
                     7907 7SDN SILVER
                                           A... < 2.45596 \text{ mg/L}
265 6
                     7908 7SDN NICKEL
                                           A.. 6.17468+-.591991 mg/L
                     7100 7SDN METALS-ICP C.. See Individual Elements Below
271 PLASTIC 1
272 PLASTIC 1
                     7101 7SDN ALUMINUM A.. 1.04358+-.362522 MOLAR
273 PLASTIC 1
                    7100 7SDN METALS-ICP C.. See Individual Elements Below
274 PLASTIC 1
                    7103 7SDN CADMIUM A.. < 9.50622E-04 MOLAR
                                           A.. 4750+-1310 D/S/ML
279 5
                    73993 3DAO SB-125
280 5
                    73993 3DAO CS-134
                                           A.. 13300+-793 D/S/ML
281 5
                   73993 3DAO CS-137
                                           A.. 415000+-16100 D/S/ML
                   7961 7KFM SP CHEM C.. Prep Completed 090993 20:49
283 PLASTIC 1
                     7961 7KFM SP CHEM C.. Prep Completed 090993 20:49
284 PLASTIC 2
                     7900 7SDN EPA-TOX C.. See Individual Elements Below
293 PLASTIC 1R
                     7901 7SDN ARSENIC A.. < 3.89309 mg/L
7900 7SDN EPA-TOX C.. See Individual Elements Below
294 PLASTIC 1R
295 PLASTIC 2R
                     7901 7SDN ARSENIC A.. < 3.89309 mg/L
296 PLASTIC 2R
297 PLASTIC 1R
                     7900 7SDN EPA-TOX
                                           C.. See Individual Elements Below
298 PLASTIC 1R
                     7906 7SDN SELENIUM A.. < .991639 mg/L
299 PLASTIC 2R
                     7900
                           7SDN EPA-TOX
                                           C.. See Individual Elements Below
300 PLASTIC 2R
                     7906 7SDN SELENIUM A.. < .991639 mg/L
930821-7
           WM-100
                                               13120-200-001940210 23:16 SPLMGT SPLMGT
                                           A.. 1.20464+-7.80453E-04 @ 25/4
A.. 1.20465+-7.80453E-04 @ 25/4
A.. 1.20457+-7.80453E-04 @ 25/4
81 1
                    47981
                           7MLE SP-GR
82 2
                    47981
                           7MLE SP-GR
83 3
                    47981
                           7MLE SP-GR
                                           A.. < 8.97114E-02 NACID
A.. < 8.97114E-02 NACID
A.. < 1.16045E-03 G/L
84 2
                    67015
                           7BET ACID
85 3
                    67015
                           7BET ACID
86 2
                    67920
                           7BET URANIUM
87 4
                                           A.. NO VISIBLE SOLIDS
                     7972
                           7AWO UDS
88 2
                    57171
                           7BET CHLORIDE
                                           A.. < 15.0301 UG/ML
89 3
                                           A.. < 1.61E-05 Molar
                    77074
                           7SRT NITRATE
                                           A.. < 1.33105E-03 MOLAR
90 2
                    67093
                           7MLE FLUORIDE
91 3
                                           A.. < 1.45209E-06 Molar
                    77168 7MLE SULFATE
                   7961 7WDT RADIOCHEM C.. Prep Completed 082393 11:24 7961 7WDT SPEC-CHEM C.. Prep Completed 082393 11:25
92 5
93 PLASTIC 1
```

| Log | #        | Request | Name | Log   | g Type     |     | Charge Num Log Approval Info      |
|-----|----------|---------|------|-------|------------|-----|-----------------------------------|
| I   |          |         |      | L     |            |     |                                   |
| đ   | Lab      |         | Meth | a Ana | a-         |     |                                   |
| x   | ID       |         | #    | b lys | st Analyte | ARL | Result                            |
|     | 1.1010   |         |      |       |            |     |                                   |
| 94  | PLASTIC  | 2       | 7961 | 7     | SPEC PREP  | С   | NOT REQUESTED                     |
| 95  | 5        | 7       | 3993 | 3DAO  | GAMMA SCAN | С., | ** See Index 282. **              |
| 96  | 5        | 2       | 3381 | 3BJS  | TOTAL SR   | Α   | << 5.01646E-06+-3.56361E-06 UCI/M |
| 97  | 5        |         | 3205 | 3IDG  | TRANS-UA   | Α   | < .137597 D/S/ML                  |
| 98  | 5        | 2       | 3011 | 3JSJ  | TRITIUM    | Α   | < 5.6679 D/SEC/ML                 |
| 99  | PLASTIC  | 1       | 7900 | 7CBG  | EPA-TOX    | С   | See Individual Elements Below     |
| 100 | PLASTIC  | 1       | 7901 | 7CBG  | ARSENIC    | Α   | < .67931 mg/L                     |
| 101 | PLASTIC  | 1       | 7902 | 7CBG  | BARIUM     | Α   | < .875559 mg/L                    |
| 102 | PLASTIC  | 1       | 7903 | 7CBG  | CADMIUM    | Α   | < .863441 mg/L                    |
| 103 | PLASTIC  | 1       | 7904 | 7CBG  | CHROMIUM   | Α   | < .830681 mg/L                    |
| 104 | PLASTIC  | 1       | 7905 | 7CBG  | LEAD       | Α   | < .573449 mg/L                    |
| 105 | PLASTIC  | 1       | 7906 | 7CBG  | SELENIUM   | Α   | < .597274 mg/L                    |
| 106 | PLASTIC  | 1       | 7907 | 7CBG  | SILVER     | Α   | < .774906 mg/L                    |
| 107 | PLASTIC  | 1       | 7908 | 7CBG  | NICKEL     | Α   | < .806555 mg/L                    |
| 108 | PLASTIC  | 2       | 7900 | 7     | EPA-TOX    | С   | NOT REQUESTED                     |
| 109 | PLASTIC  | 2       | 7901 | 7     | ARSENIC    | С   | NOT REQUESTED                     |
| 110 | PLASTIC  | 2       | 7902 | 7     | BARIUM     | С   | NOT REQUESTED                     |
| 111 | PLASTIC  | 2       | 7903 | 7     | CADMIUM    | С   | NOT REQUESTED                     |
| 112 | PLASTIC  | 2       | 7904 | 7     | CHROMIUM   | С   | NOT REQUESTED                     |
| 113 | PLASTIC  | 2       | 7905 | 7     | LEAD       | С   | NOT REQUESTED                     |
| 114 | PLASTIC  | 2       | 7906 | 7     | SELENIUM   | С   | NOT REQUESTED                     |
| 115 | PLASTIC  | 2       | 7907 | 7     | SILVER     | С   | NOT REQUESTED                     |
| 116 | PLASTIC  | 2       | 7908 | 7     | NICKEL     | С   | NOT REQUESTED                     |
| 117 | PLASTIC  | 1       | 2809 | 2LBZ  | MERCURY    | Α   | =Not Detected:DL= 0.0045 mg/l     |
| 118 | PLASTIC  | 2       | 2809 | 2     | MERCURY    | С   | NOT REQUESTED                     |
| 119 | PLASTIC  | 1       | 2330 | 2     | ARSENIC.   | С   | SEE METHOD 7901                   |
| 120 | PLASTIC  | 2       | 2330 | 2     | ARSENIC.   | С   | NOT REQUESTED                     |
| 121 | PLASTIC  | 1       | 2340 | 2     | SELENIUM.  | С   | SEE METHOD 7906                   |
| 122 | PLASTIC  | 2       | 2340 | 2     | SELENIUM.  | С   | NOT REQUESTED                     |
| 123 | PLASTIC  | 1       | 2110 | 2JSL  | SODIUM     | Α   | =7.3E-05 Molarity                 |
| 124 | PLASTIC  | 1       | 2190 | 2JSL  | POTASSIUM  | Α   | =4.5E-06 Molarity                 |
| 125 | 5        | 6       | 7016 | 7KFM  | PH         | Α   |                                   |
| 126 | 6        |         | 7985 | 7SDN  | FLASHPOINT | Α   | NO Flash @ 60.0 deg C corrected   |
| 127 | PLASTIC  | 1       | 7961 | 7WDT  | SPEC-CHEM  | С., | Prep Completed 082393 11:26       |
| 128 | VOA VIAL | . 1     | 9305 |       |            |     | SEE LOG 082016 INDEX 365          |
| 129 | VOA VIAL |         | 9305 | 9HCJ  | GCMS-2SRC  | С   | SEE LOG 082016 INDEX 365          |
| 130 | PLASTIC  | 1       | 7100 | 7SDN  | METALS-ICP | С   | See Individual Elements Below     |
|     | PLASTIC  |         | 7101 | 7SDN  | ALUMINUM   | Α   | < 6.56896E-03 MOLAR               |
| 132 | PLASTIC  | 1       | 7102 | 7SDN  | BORON      | Α   | < 3.75619E-03 MOLAR               |
|     | PLASTIC  |         | 7103 | 7     | CADMIUM    | С   | NOT REQUESTED                     |
|     | PLASTIC  |         | 7105 | 7SDN  |            |     | < 2.211E-04 MOLAR                 |
| 135 | PLASTIC  |         | 7110 |       |            |     | < 1.56506E-03 MOLAR               |
|     | PLASTIC  |         | 7111 |       |            |     | < 2.54008E-03 MOLAR               |
| 137 | 4        |         | 7981 |       |            |     | 1.20458+-7.80453E-04 @ 25/4       |
| 250 |          |         | 7961 |       |            |     | Prep Completed 082393 11:26       |
| 282 |          |         | 3993 |       |            |     | 14.4+-1.85 D/S/ML                 |
| 292 | KNOWN    |         | 7985 |       |            |     | Flashed @ 41.0 deg C corrected    |
|     |          |         |      |       |            |     |                                   |

```
Log # Request Name Log Type Charge Num Log Approval Info
   I
    d Lab
                          Meth a Ana-
   x ID
                           # b lyst Analyte ARL
                                                                    Result
 930822-3
                WM-100
                        13120-200-001940302 15:22 SPI
47981 7MLE SP-GR C. 1.44039+-7.80554E-04 @ 25/4
47981 7MLE SP-GR C. 1.44165+-7.80566E-04 @ 25/4
47981 7MLE SP-GR C. 1.43988+-7.8055E-04 @ 25/4
67015 7MLE ACID A. .116755+-.037468 NACID
67015 7MLE ACID A. .107615+-3.73951E-02 NACID
                                                         13120-200-001940302 15:22 SPLMGT SPLMGT
 930822-3
25 1
26 2
27 3
28 2
29 3
30 2
31 4
32 2
33 3
34 2
                        67920 7BET URANIUM A.. 9.49411E-03+-1.31493E-03 G/L
7972 7RLC UDS C.. * 1.25 MG/ML
                        57171 7MLE CHLORIDE A.. 198.82+-42.284 UG/ML
```

```
Log # Request Name
                                                                                               Log Type Charge Num Log Approval Info
      I
        d Lab
                                                                       Meth a Ana-
       x ID
                                                                           #
                                                                                            b lyst Analyte ARL
                                                                                                                                                                                                Result
73 VOA VIAL 2 9305 9HCJ GCMS-2SRC C.. SAMPLES BATCHED SINGLE ANALYSIS
74 PLASTIC 1 7100 7RAH METALS-ICP C.. See Individual Elements Below
75 PLASTIC 1 7101 7RAH ALUMINUM C.. < 6.60854E-03 MOLAR
76 PLASTIC 1 7102 7RAH BORON C.. < 3.77882E-03 MOLAR
77 PLASTIC 1 7103 7 CADMIUM C.. NOT REQUESTED
78 PLASTIC 1 7105 7RAH IRON C.. < 2.22432E-04 MOLAR
79 PLASTIC 1 7110 7RAH ZIRCONIUM C.. < 1.57449E-03 MOLAR
80 PLASTIC 1 7111 7RAH CALCIUM C.. < 2.55539E-03 MOLAR
81 4 47981 7MLE SP-GR C.. 1.44216+-7.8057E-04.6.2574
                                                     784 CALCIUM C.. < 2.55539E-03 MOLAR
7981 7MLE SP-GR C.. 1.44216+-7.8057E-04 @ 25/4
7961 7MLE SPECTCHEM C.. Prep Completed 082393 14:53
7985 7CWL FLASHPOINT A.. Flashed @ 53.0 deg C corrected
7985 7CWL FLASHPOINT A.. NO Flash @ 60.0 deg C corrected
7985 7CWL FLASHPOINT A.. NO Flash @ 60.0 deg C corrected
7100 7GDD METALS-ICP C.. See Individual Elements Below
7101 7GDD ALUMINUM A.. 1.41894+-3.90244E-02 MOLAR
7981 7GDD SP-GR A.. 1.22883+-7.80484E-04 @ 25/4
7981 7GDD SP-GR A.. 1.22682+-7.80483E-04 @ 25/4
 81 4
 163 PLASTIC 2
 164 BEG KNOWN
165 RAMP 100
166 60C 100
 175 PLASTIC 2
176 PLASTIC 2
179 20
180 6
                                                               47981 7GDD SP-GR A. 1.22682+-7.80483E-04 @ 25/4
47981 7GDD SP-GR A. 1.24472+-7.80487E-04 @ 25/4
47981 7GDD SP-GR A. 1.24662+-7.80486E-04 @ 25/4
181 11
                                                    47981 7GDD SP-GR A.. 1.24662+-7.80486E-04 @ 25/4
7100 7WDT METALS-ICP C.. See Individual Elements Below
7105 7WDT IRON A.. 5.12682E-03+-3.06266E-04 MOLAR
77074 7MLE NITRATE A.. 6.20227+-.484159 Molar
7900 7VJJ EPA-TOX C.. See Individual Elements Below
7907 7VJJ SILVER A.. < 2.10773 mg/L
7900 7VJJ EPA-TOX C.. See Individual Elements Below
7907 7VJJ SILVER A.. < 2.10773 mg/L
7907 7VJJ SILVER A.. < 2.10773 mg/L
7908 7MLE SULFATE A.. 2.84473E-03+-2.36248E-04 Molar
63993 3DAO CS-134 A.. 12600+-714 D/S/ML
63993 3DAO CS-137 A.. 677000+-21000 D/S/ML
7961 7MLE AS/SE C.. Prep Completed 090993 04:05
7961 7MLE AS/SE C.. Prep Completed 090993 04:05
7961 7MLE AS/SE C.. Prep Completed 090993 04:06
7900 7SDN EPA-TOX C.. See Individual Elements Below
7901 7SDN ARSENIC A.. < 3.89309 mg/L
7900 7SDN EPA-TOX C.. See Individual Elements Below
7901 7SDN ARSENIC A.. < 3.89309 mg/L
7900 7SDN EPA-TOX C.. See Individual Elements Below
7901 7SDN SELENIUM A.. < .991639 mg/L
7900 7SDN EPA-TOX C.. See Individual Elements Below
7906 7SDN SELENIUM A.. < .991639 mg/L
7900 7SDN EPA-TOX C.. See Individual Elements Below
7906 7SDN SELENIUM A.. < .991639 mg/L
7900 7SDN EPA-TOX C.. See Individual Elements Below
7906 7SDN SELENIUM C.. < .991639 mg/L
7900 7CBG METALS-ICP C.. See Individual Elements Below
7906 7SDN SELENIUM C.. < .991639 mg/L
7100 7CBG METALS-ICP C.. See Individual Elements Below
7906 7SDN SELENIUM C.. < .991639 mg/L
7100 7CBG METALS-ICP C.. See Individual Elements Below
7101 7CBG ALUMINUM C.. > .956797 MOLAR
183 PLASTIC1R
                                                                  7100 7WDT METALS-ICP C.. See Individual Elements Below
184 PLASTIC1R
185 3R
186 #11
187 #11
188 #20
189 #20
190 3R
191 5
192 5
198 PLASTIC 1
199 PLASTIC 2
207 PLASTIC 1R
208 PLASTIC 1R
209 PLASTIC 2R
210 PLASTIC 2R
211 PLASTIC 1R
212 PLASTIC 1R
213 PLASTIC 2R
214 PLASTIC 2R
215 PLASTIC 1R
216 PLASTIC 1R
217 1R
218 1R
                                                                  7102 7CBG BORON C.. < 4.07588E-02 MOLAR
7105 7CBG IRON C.. 2.37342E-02+-1.54434
219 1R
220 1R
                                                                                                                                                C.. 2.37342E-02+-1.54434E-03 MOLAR
                                                          7110 7CBG IRON C.. 2.3/342E-02+-1.34434E-03 MOLAR
7111 7CBG CALCIUM C.. < 8.16728E-03 MOLAR
7111 7CBG CALCIUM C.. < 1.27546E-02 MOLAR
7100 7CBG METALS-ICP C.. See Individual Elements Below
7101 7CBG ALUMINUM C.. > .039455 MOLAR
221 1R
222 1R
223 1R
224 1R
```

```
Log #
              Request Name Log Type
                                                        Charge Num Log Approval Info
   I
   d Lab
                           Meth a Ana-
x ID
                                   b lyst Analyte ARL
                                                                     Result
 930822-4
            WM-100
                                                          13120-200-001940210 23:01 SPLMGT SPLMGT
                         13120-200-001940210 23:01 SPI
47981 7BKH SP-GR A. .998247+-7.79139E-04 @ 25/4
47981 7BKH SP-GR A. .99821+-7.79138E-04 @ 25/4
47981 7BKH SP-GR A. .998321+-7.79139E-04 @ 25/4
67015 7MLE ACID A. < 8.97114E-02 NACID
67015 7MLE ACID A. < 8.97114E-02 NACID
67920 7BET URANIUM A. < 1.16045E-03 G/L
7972 7RLC UDS A. NO VISIBLE SOLIDS
57171 7MLE CHLORIDE A. < 15.0301 UG/ML
82 1
83 2
84 3
 85 2
 86 3
 87 2
 89 2
                         77074 7SRT NITRATE A.. 5.44794E-05+-9.6136E-06 Molar
                         67093 7MLE FLUORIDE A.. < 1.33105E-03 MOLAR
                         77168 7BKH SULFATE A.. 1.85622E-06+-4.93205E-07 Molar
92 3
                         7961 7WDT RADIOCHEM C.. Prep Completed 082393 11:27
93 5
                         7961 7WDT SPEC-CHEM C.. Prep Completed 082393 11:28
94 PLASTIC 1
95 PLASTIC 2
                    7961 7WDT SPEC-CHEM C.. Prep Completed 082393 11:28
```

| Log<br>I | #        | Reques   | t Name | Lo:  | g Type     |     | Charge Num Log Approval Info    |
|----------|----------|----------|--------|------|------------|-----|---------------------------------|
| đ        | Lab      |          | Meth   | a An | a <b>-</b> |     |                                 |
| x        |          |          | #      |      | st Analyte | ARL | Result                          |
| 96       | 5        |          | 63993  | 3DAO | GAMMA SCAN | C   | ** See Index 193. **            |
| 97       | 5        |          | 23381  |      | TOTAL SR   |     | << 1765.77+-619.312 D/S/ML      |
| 98       | 5        |          | 3205   | 3IDG | TRANS-UA   |     | < .137597 D/S/ML                |
| 99       | 5        |          | 23011  | 3JSJ | TRITIUM    |     | < 5.6679 D/SEC/ML               |
| 100      | PLASTIC  | 1        | 7900   | 7CBG | EPA-TOX    |     | See Individual Elements Below   |
| 101      | PLASTIC  | 1        | 7901   | 7CBG | ARSENIC    |     | < .67931 mg/L                   |
| 102      | PLASTIC  | 1        | 7902   | 7CBG | BARIUM     |     | < .875559 mg/L                  |
| 103      | PLASTIC  | 1        | 7903   | 7CBG | CADMIUM    |     | < .863441 mg/L                  |
| 104      | PLASTIC  | 1        | 7904   |      | CHROMIUM   |     | < .830681 mg/L                  |
| 105      | PLASTIC  | 1        | 7905   | 7CBG | LEAD       |     | < .573449 mg/L                  |
|          | PLASTIC  |          | 7906   | 7CBG | SELENIUM   | Α   | .849554+309505 mg/L             |
| 107      | PLASTIC  | 1        | 7907   | 7CBG | SILVER     | Α   | < .774906 mg/L                  |
| 108      | PLASTIC  | 1        | 7908   | 7CBG | NICKEL     | Α   | < .806555 mg/L                  |
| 109      | PLASTIC  | 2        | 7900   | 7    | EPA-TOX    | С., | NOT REQUESTED                   |
|          | PLASTIC  |          | 7901   | 7    | ARSENIC    | С   | NOT REQUESTED                   |
| 111      | PLASTIC  | 2        | 7902   | 7    | BARIUM     | С   | NOT REQUESTED                   |
| 112      | PLASTIC  | 2        | 7903   | 7    | CADMIUM    | С   | NOT REQUESTED                   |
| 113      | PLASTIC  | 2        | 7904   | 7    | CHROMIUM   | С., | NOT REQUESTED                   |
| 114      | PLASTIC  | 2        | 7905   | 7    | LEAD       | С   | NOT REQUESTED                   |
| 115      | PLASTIC  | 2        | 7906   | 7    | SELENIUM   | С., | NOT REQUESTED                   |
| 116      | PLASTIC  | 2        | 7907   | 7    | SILVER     | С   | NOT REQUESTED                   |
| 117      | PLASTIC  | 2        | 7908   | 7    | NICKEL     | С., | NOT REQUESTED                   |
|          | PLASTIC  |          | 2809   | 2LBZ | MERCURY    | Α   | =Not Detected:DL= 0.0045 mg/l   |
| 119      | PLASTIC  | 2        | 2809   | 2LBZ | MERCURY    | С   | = Insufficient sample           |
| 120      | PLASTIC  | 1        | 2330   | 2    | ARSENIC.   | С., | SEE METHOD 7901                 |
| 121      | PLASTIC  | 2        | 2330   | 2    | ARSENIC.   | С., |                                 |
| 122      | PLASTIC  | 1        | 2340   | 2    | SELENIUM.  | С., | SEE METHOD 7906                 |
|          | PLASTIC  |          | 2340   | 2    | SELENIUM.  | С   | SEE METHOD 7906                 |
| 124      | PLASTIC  | 1        | 2110   | 2JSL | SODIUM     | Α   | =6.7E-05 Molarity               |
|          | PLASTIC  | 1        | 2190   |      | POTASSIUM  | Α   | <b>_</b>                        |
| 126      |          |          | 67016  | 7KFM | PH         | Α   | <b>-</b>                        |
| 127      |          |          | 7016   | 7    | PH         | С., |                                 |
|          | PLASTIC  |          | 7961   |      | SPEC-CHEM  |     |                                 |
|          | VOA VIAL |          | 9305   |      | GCMS-2SRC  | С   |                                 |
|          | VOA VIAL |          | 9305   |      | GCMS-2SRC  | C   |                                 |
|          | PLASTIC  |          | 7100   |      |            |     | See Individual Elements Below   |
|          | PLASTIC  |          | 7101   |      | ALUMINUM   |     | < 6.56896E-03 MOLAR             |
|          | PLASTIC  |          | 7102   |      | BORON      | Α   |                                 |
|          | PLASTIC  |          |        |      |            |     | NOT REQUESTED                   |
|          | PLASTIC  |          | 7105   |      |            |     | < 2.211E-04 MOLAR               |
|          | PLASTIC  |          | 7110   |      |            |     | < 1.56506E-03 MOLAR             |
|          | PLASTIC  | 1 .      | 7111   |      | CALCIUM    |     | < 2.54008E-03 MOLAR             |
| 138      |          | •        | 47981  |      | SP-GR      |     | .99835+-7.79139E-04 @ 25/4      |
|          | PLASTIC  | <b>Z</b> | 7961   |      |            |     | Prep Completed 082393 11:29     |
|          | KNOWN    |          | 7985   |      |            |     | Flashed @ 41.0 deg C corrected  |
| 168      |          |          | 7985   |      |            |     | NO Flash @ 60.0 deg C corrected |
| 193      | כ        |          | 63993  | 3DAO | CS-137     | Α   | .792+0595 D/S/ML                |

| Log    | #         | Request Name | Log Type        | Charge Num Log Approval Info            |
|--------|-----------|--------------|-----------------|-----------------------------------------|
| I<br>a | T - 1-    | <b>36</b> 13 | L               |                                         |
|        | Lab<br>ID |              | a Ana-          |                                         |
| x      | TD        | #            | b lyst Analyte  | ARL Result                              |
| 140    |           | 7961         | 7MLE RADIOCHEM  | C Prep Completed 082393 21:34           |
| 141    | 1         | 63993        | 3DAO GAMMA SCAN | A ** See Index 194 thru 197. **         |
| 142    | 1         | 23381        | 3BJS TOTAL SR   | A 3.91922+106201 UCI/ML                 |
| 143    | 1.        | 2110         | 2JSL SODIUM     | A =0.048 Molarity                       |
| 144    | 1         | 2190         | 2JSL POTASSIUM  | A =0.0050 Molarity                      |
| 145    | 1         | 77168        | 7BKH SULFATE    | A 7.53216E-04+-1.6743E-04 Molar         |
| 146    | 1         | 77074        | 7SRT NITRATE    | A 6.74799+614459 Molar                  |
| 147    | 1         | 57171        | 7MLE CHLORIDE   | A 70.1416+-16.2677 UG/ML                |
| 148    | 1         | 7972         | 7RLC UDS        | A * 11.2667 MG/ML                       |
| 149    | 1         | 47981        | 7WDT SP-GR      | A 1.21087+-7.80464E-04 @ 25/4           |
| 150    | 1         | 67015        | 7MLE ACID       | A < 8.97114E-02 NACID                   |
| 151    | 1         | 67093        | 7MLE FLUORIDE   | A < 6.65439E-03 MOLAR                   |
| 152    | 1         | 7961         | 7MLE SPECTCHEM  |                                         |
| 153    | 1         | 67920        | 7MLE URANIUM    | A 4.20262E-03+-8.93985E-04 G/L          |
| 154    | 1         | 7100         | 7SDN METALS-ICP | C See Individual Elements Below         |
| 155    | 1         | 7101         | 7SDN ALUMINUM   | C > .190546 MOLAR                       |
| 156    | 1         | 7102         | 7SDN BORON      | A < 3.75619E-03 MOLAR                   |
| 157    | 1         | 7103         | 7 CADMIUM       | C NOT REQUESTED                         |
| 158    | 1         | 7105         | 7SDN IRON       | A 6.55824E-03+-3.42343E-04 MOLAR        |
| 159    |           | 7110         | 7SDN ZIRCONIUM  |                                         |
| 160    | 1         | 7111         | 7SDN CALCIUM    | A < 2.54008E-03 MOLAR                   |
| 173    |           | 7100         | 7RAH METALS-ICP | C See Individual Elements Below         |
| 174    | 1         | 7101         | 7RAH ALUMINUM   | A 1.39981+366096 MOLAR                  |
| 177    | 1         | 7900         | 7WDT EPA-TOX    | C See Individual Elements Below         |
| 178    | 1         | 7903         | 7WDT CADMIUM    | A 11.9089+-1.07906 mg/L                 |
| 194    |           | 63993        | 3DAO CO-60      | A 129+-44.1 D/S/ML                      |
| 195    | 1         | 63993        | 3DAO CS-134     | A 10400+-376 D/S/ML                     |
| 196    | 1         | 63993        | 3DAO CS-137     | A 309000+-9770 D/S/ML                   |
| 197    | 1         | 63993        | 3DAO EU-154     | A 662+-89.7 D/S/ML                      |
|        |           |              |                 |                                         |
| 9309   | 01-23     | WM-100AT     |                 | 13120-200-001940204 13:14 SPLMGT SPLMGT |
| 263    | 1         | 7961         | 7MLE SPECTROCH  |                                         |
| 264    | 1         | 33993        | 3DAO GAMMA SCAN | C ** See Index 294 thru 295. **         |
| 265    | 1         | 23381        | 3JSJ TOTAL SR   | A 4.25367E-03+-1.63083E-04 UCI/M        |
| 266    | 1         | 2110         | 2JSL SODIUM     | A =0.050 Molarity                       |
| 267    | 1         | 2190         | 2JSL POTASSIUM  | A =5.4E-03 Molarity                     |
| 268    |           | 77168        |                 | A 7.8067E-04+-8.24152E-05 Molar         |
| 269    | 1         | 77074        | 7MLE NITRATE    | A 4.48163+645531 Molar                  |
| 270    |           | 57171        | 7MLE CHLORIDE   | C < 60.8519 UG/ML                       |
| 271    |           | 7972         | 7MLE UDS        | A * 2.33333 MG/ML                       |
| 272    |           | 47981        | 7KFM SP-GR      | A 1.24505+-7.80487E-04 @ 25/4           |
| 273    |           | 67015        | 7MLE ACID       | A < 8.97114E-02 NACID                   |
| 274    |           | 67093        | 7MLE FLUORIDE   | A 7.14322E-03+-3.61877E-04 MOLAR        |
| 275    |           | 7961         |                 | C Prep Completed 090293 13:29           |
| 276    |           | 67920        | 7MLE URANIUM    | A 3.59186E-03+-8.31949E-04 G/L          |
| 277 1  |           | 7100         |                 | C See Individual Elements Below         |
| 278    |           | 7101         |                 | C > .191694 MOLAR                       |
| 279    | L         | 7102         | 7WDT BORON      | A < 3.77882E-03 MOLAR                   |

```
Log #
                           Request Name Log Type
                                                                                                  Charge Num Log Approval Info
    I
     d Lab
                                                 Meth a Ana-
     x ID
                                                                b lyst Analyte ARL
                                                                                                                                 Result
                                          7103 7WDT CADMIUM C.. < 9.5635E-04 MOLAR
7105 7WDT IRON A.. 2.38671E-02+-6.51053E-04 MOLAR
 280 1
 281 1
                                            7110 7WDT ZIRCONIUM A. < 1.57449E-03 MOLAR
7111 7WDT CALCIUM A. 4.29423E-03+-6.58732E-04 MOLAR
7961 7MLE RADIOCHEM C. Prep Completed 090293 13:29
7100 7WDT METALS-ICP C. See Individual Elements Below
7101 7WDT ALUMINUM A. 1.91275+-.040828 MOLAR
 282 1
 283 1
 284 1
 285 1
 286 1
                                         7701 7WD1 ABONINGS A.. 2.32.5.44 UG/ML
7900 7WDT EPA-TOX C.. See Individual Elements Below
7903 7WDT CADMIUM A.. 24.9983+-1.75358 mg/L
 287 1R
288 1
289 1
                                       57171 7KFM CHLORIDE A. 45.3354+-8.37305 UG/ML
7100 7WDT METALS-ICP C. See Individual Elements Below
7101 7WDT ALUMINUM A. 1.41061+-.147991 MOLAR
290 2R
291 PLASTIC1R
292 PLASTIC1R
294 1
                                            33993 3DAO CS-134 A.. 14700+-656 D/S/ML
295 1
                                            33993 3DAO CS-137
                                                                                                A.. 438000+-13800 D/S/ML
930903-19 WM-100AT
                                                                                                             13120-200-001930922 15:02 SPLMGT SPLMGT
728 1 7961 7BET RADIO CHEM C.. Prep Completed 090493 19:29
729 1
                                               63993 3DAO GAMMA SCAN C.. ** See Index 820 thru 823.
730 1
                                             23381 3BJS TOTAL SR A.. 4.08916+-.102223 UCI/ML
731 1
                                             2110 2JSL SODIUM A.. =0.049 Molarity
2190 2JSL POTASSIUM A.. =6.0E-03 Molarity
732 1
733 1
                                           77168 7BET SULFATE A.. 4.9744E-04+-7.58426E-05 Molar
77074 7BET NITRATE A.. 3.94383+-.23135 Molar
57171 7RLC CHLORIDE A.. 23.156+-4.18063 UG/ML
734 1
734 -
735 1
736 1
                                        77074 7BET NITRATE A.. 3.94383+-.23135 Molar
57171 7RLC CHLORIDE A.. 23.156+-4.18063 UG/ML
7972 7RAH UDS A.. * 1.68 MG/ML
47981 7RAH SP-GR A.. 1.23005+-7.80485E-04 @ 25/4
67015 7BGP ACID A.. < .136135 NACID
67093 7BGP FLUORIDE A.. < 7.96535E-03 MOLAR
7961 7BET SPECT CHEM C.. Prep Completed 090493 19:30
67920 7RLC URANIUM A.. 1.04237E-02+-1.37579E-03 G/L
7100 7SDN METALS-ICP C.. See Individual Elements Below
7101 7SDN ALUMINUM C.. > .190546 MOLAR
7102 7SDN BORON A.. < 4.84314E-03 MOLAR
7103 7 CADMIUM C.. SEE INDEX 809
7105 7SDN IRON A.. 1.84785E-02+-6.4824E-04 MOLAR
7110 7SDN ZIRCONIUM A.. < 1.39699E-03 MOLAR
7111 7SDN CALCIUM A.. 4.1136E-03+-6.3767E-04 MOLAR
47981 7RAH SP-GR A.. 1.22971+-7.80485E-04 @ 25/4
47981 7RAH SP-GR A.. 1.22971+-7.80484E-04 @ 25/4
47981 7RAH SP-GR A.. 1.22997+-7.80484E-04 @ 25/4
7100 7SDN METALS-ICP C.. See Individual Elements Below
7101 7SDN ALUMINUM A.. 1.6911+-7.25564E-02 MOLAR
7100 7SDN METALS-ICP C.. See Individual Elements Below
7101 7SDN ALUMINUM A.. 1.6911+-7.25564E-02 MOLAR
7100 7SDN METALS-ICP C.. See Individual Elements Below
7101 7SDN CADMIUM A.. < 1.30499E-03 MOLAR
63993 3DAO CO-60 A.. 311+-54.5 D/S/ML
63993 3DAO CS-134 A.. 12100+-442 D/S/ML
63993 3DAO CS-137 A.. 371000+-10500 D/S/ML
737 1
738 1
739 1
740 1
741 1
742 1
743 1
744 1
745 1
746 1
747 1
748 1
791 2
792 3
793 4
804 1
805 1
808 1
809 1
820 1
821 1
822 1
```

| Log #<br>I             | Request Name  | Log Type<br>L                    | 1   | Charge Num Log Approval Info                             |
|------------------------|---------------|----------------------------------|-----|----------------------------------------------------------|
| d Lab                  | Meth          | a Ana-                           |     |                                                          |
| x ID                   | #             |                                  | ARL | Result                                                   |
|                        |               |                                  |     |                                                          |
| 823 1                  | 63993         | 3DAO EU-154                      | Α   | 768+-109 D/S/ML                                          |
| 930903-20              | WM-100AT      |                                  |     | 13120-200-001930922 15:17 SPLMGT SPLMGT                  |
| 749 1                  | 7961          | 7BET RADIO CHEM                  | С   | Prep Completed 090493 19:35                              |
| 750 1                  | 73993         |                                  |     | ** See Index 824 thru 827. **                            |
| 751 1                  | 23381         | 3BJS TOTAL SR                    |     | 4.25436+104309 UCI/ML                                    |
| 752 1                  | 2110          | 2JSL SODIUM                      | Α   | =0.051 Molarity                                          |
| 753 1                  | 2190          | 2JSL POTASSIUM                   | Α   | =6.0E-03 Molarity                                        |
| 754 1                  | 77168         | 7BET SULFATE                     |     | 4.35997E-04+-7.22972E-05 Molar                           |
| 755 1                  | 77074         | 7BET NITRATE                     | Α   | 3.9671+23124 Molar                                       |
| 756 1                  | 57171         | 7RLC CHLORIDE                    |     | 17.0564+-4.02563 UG/ML                                   |
| 757 1                  | 7972          | 7RAH UDS                         |     | * 1.19 MG/ML                                             |
| 758 1                  | 47981         | 7RAH SP-GR                       |     | 1.22274+-7.8048E-04 @ 25/4                               |
| 759 1                  | 67015         | 7BGP ACID                        |     | < .136135 NACID                                          |
| 760 1                  | 67093         | 7BGP FLUORIDE                    |     | < 7.96535E-03 MOLAR                                      |
| 761 1                  | 7961          |                                  |     | Prep Completed 090493 19:30                              |
| 762 1                  | 67920         | 7RLC URANIUM                     |     | 3.78881E-03+-8.52444E-04 G/L                             |
| 763 1                  | 7100          |                                  |     | See Individual Elements Below                            |
| 764 1                  | 7101          | 7SDN ALUMINUM                    |     | > .190546 MOLAR                                          |
| 765 1                  | 7102          | 7SDN BORON                       |     | < 4.84314E-03 MOLAR                                      |
| 766 1                  | 7103          | 7 CADMIUM                        | С   |                                                          |
| 767 1                  | 7105          | 7SDN IRON                        | Α   |                                                          |
| 768 1                  | 7110          |                                  |     | < 1.39699E-03 MOLAR                                      |
| 769 1<br>79 <b>4</b> 2 | 7111          | 7SDN CALCIUM                     |     | 4.17561E-03+-6.40325E-04 MOLAR                           |
| 794 2<br>795 3         | 47981         | 7RAH SP-GR                       |     | 1.23732+-7.80487E-04 @ 25/4                              |
| 796 4                  | 47981         | 7RAH SP-GR                       | A   | ·                                                        |
| 806 1                  | 47981<br>7100 | 7RAH SP-GR                       | A   | · · · · · · · · · · · · · · · · · · ·                    |
| 807 1                  | 7100          | 7SDN METALS-ICP<br>7SDN ALUMINUM | A   | See Individual Elements Below 1.33428+-6.51375E-02 MOLAR |
| 810 1                  | 7101          |                                  |     | See Individual Elements Below                            |
| 811 1                  | 7103          | 7SDN METALS-ICP<br>7SDN CADMIUM  |     | < 1.30499E-03 MOLAR                                      |
| 824 1                  | 73993         | 3DAO CO-60                       | A   | ·                                                        |
| 825 1                  | 73993         |                                  |     | 14600+-508 D/S/ML                                        |
| 826 1                  | 73993         | 3DAO CS-134<br>3DAO CS-137       |     | 486000+-15100 D/S/ML                                     |
| 827 1                  | 73993         | 3DAO EU-154                      |     | 1170+-115 D/S/ML                                         |
| -                      |               | 22.10 20 201                     |     | 22,0, 240 2,0,112                                        |
| 930903-21              | WM-100AT      |                                  |     | 13120-200-001930922 15:16 SPLMGT SPLMGT                  |
| 770 1                  | 7961          | 7BET RADIO CHEM                  | С   | Prep Completed 090493 19:36                              |
| 771 1                  | 83993         |                                  |     | ** See Index 828 thru 831. **                            |
| 772 1                  | 23381         | 3BJS TOTAL SR                    | Α   |                                                          |
| 773 1                  | 2110          | 2JSL SODIUM                      | Α   | <u>.</u>                                                 |
| 774 1                  | 2190          | 2JSL POTASSIUM                   |     | =5.9E-03 Molarity                                        |
| 775 1                  | 77168         | 7BET SULFATE                     |     | NO3 SPL CTS HIGHER THAN C.S. CT                          |
| 776 1                  | 77074         | 7BET NITRATE                     | Α   | 4.4177+229134 Molar                                      |
| 777 1                  | 57171         | 7RLC CHLORIDE                    |     | 24.0692+-4.20335 UG/ML                                   |
| 778 1                  | 7972          | 7RLC UDS                         | Α   | * 1.55789 MG/ML                                          |
| 779 1                  | 47981         | 7RAH SP-GR                       | Α   | · · · · · · · · · · · · · · · · · · ·                    |
| 780 1                  | 67015         |                                  |     | < .136135 NACID                                          |
| 781 1                  | 67093         | 7BGP FLUORIDE                    | С   | < 7.96535E-03 MOLAR                                      |

| Log | #   | Request Name | Log Type<br>L   | Charge Num Log Approval Info     |
|-----|-----|--------------|-----------------|----------------------------------|
| đ   | Lab | Meth         | a Ana-          |                                  |
| x   | ID  | #            | b lyst Analyte  | ADI Damile                       |
|     |     | π            | b Tyst Analyte  | ARL Result                       |
| 782 | 1   | 7961         | 7BET SPECT CHEM | C Prep Completed 090493 19:31    |
| 783 | 1   | 67920        | 7RLC URANIUM    | A 3.59557E-03+-8.3234E-04 G/L    |
| 784 | 1   | 7100         | 7SDN METALS-ICP | C See Individual Elements Below  |
| 785 | 1   | 7101         | 7SDN ALUMINUM   | C > .190546 MOLAR                |
| 786 | 1   | 7102         | 7SDN BORON      | A < 4.84314E-03 MOLAR            |
| 787 | 1   | 7103         | 7 CADMIUM       | C SEE INDEX 813                  |
| 788 | 1   | 7105         | 7SDN IRON       | A018899+-6.55724E-04 MOLAR       |
| 789 |     | 7110         | 7SDN ZIRCONIUM  | A < 1.39699E-03 MOLAR            |
| 790 | 1   | 7111         | 7SDN CALCIUM    | A 4.33933E-03+-6.47285E-04 MOLAR |
| 797 | 2   | 47981        | 7RAH SP-GR      | A 1.23281+-7.80486E-04 @ 25/4    |
| 798 | 3   | 47981        | 7RAH SP-GR      | A 1.22992+-7.80485E-04 @ 25/4    |
| 799 | 4   | 47981        | 7RAH SP-GR      | A 1.22116+-7.80478E-04 @ 25/4    |
| 800 | 1   | 67093        | 7BGP FLUORIDE   | A 9.76166E-03+-1.30172E-03 MOLAR |
| 801 | 2   | 77168        | 7BET SULFATE    | A 8.04588E-04+-1.07187E-04 Molar |
| 802 | 1   | 7100         | 7SDN METALS-ICP | C See Individual Elements Below  |
| 803 | 1   | 7101         | 7SDN ALUMINUM   | A 1.4426+-6.74725E-02 MOLAR      |
| 812 | 1   | 7100         | 7SDN METALS-ICP | C See Individual Elements Below  |
| 813 | 1   | 7103         | 7SDN CADMIUM    | A < 1.30499E-03 MOLAR            |
| 828 | 1   | 83993        | 3DAO CO-60      | A 470+-64.8 D/S/ML               |
| 829 | 1   | 83993        | 3DAO CS-134     | A 14000+-504 D/S/ML              |
| 830 | 1   | 83993        | 3DAO CS-137     | A 438000+-14300 D/S/ML           |
| 831 | 1   | 83993        | 3DAO EU-154     | A 1190+-140 D/S/ML               |
|     |     |              |                 |                                  |

\*\*\*\*\*\*\* END \*\*\*\*\*\*

```
Date of Search: 2003-06-09 16:27:03.545
                                                  Run by: JEFF LONG
**************************
Search Criteria:
   Start Log....:930101 1
   End Log.....:931231 14
   Log Approval .: ALL Logs
   Result Type ... : All Entries
   Lab/Group....:ALL Groups
   Name Column..:Lab Sample ID
    Request Name..:*WM-102*
Total # Logs Found...: 6
Total # Results Found: 432
**********
Log #
            Request Name Log Type
                                          Charge Num
                                                         Log Approval Info
  I
  d Lab
                     Meth a Ana-
  x ID
                     # b lyst Analyte ARL
                                                     Result
930505-14 WM-102:CH
                                            13120-200-001940209 23:08 SPLMGT SPLMGT
                                      A.. 1.17066+-6.89039E-04 @ 25/4
508 1
                   47981 7MLE SP-GR
509 2
                   47981 7MLE SP-GR
                                       A.. 1.17051+-6.8904E-04 @ 25/4
510 3
                   47981 7MLE SP-GR
                                       A.. 1.17048+-6.8904E-04 @ 25/4
511 4
                  47981 7MLE SP-GR
                                       A.. 1.17053+-6.8904E-04 @ 25/4
                  67015 7MLE ACID A.. < .229527 NACID
67015 7MLE ACID A.. < .229527 NACID
512 2
513 3
                  67920 7BGP URANIUM A.. < 4.25198E-03 G/L
514 2
                   7972 7SDN UDS A.. * 352.041 UG/ML
515 4
516 2
                  57171 7MLE CHLORIDE A.. < 36.3961 UG/ML
517 3
                  77074 7SLI NITRATE A.. 2.70904+-.178567 Molar
518 2
                  67093 7AWO FLUORIDE A.. 90.8023+-12.1744 UG/ML
519 3
                  77168 7SLI SULFATE C.. < 2.76176E-02 Molar
520 5
                   7961 7MLE RADIOCHEM C.. Prep Completed 050693 05:26
521 PLASTIC 1
                   7961 7MLE SPEC CHEM C.. Prep Completed 050693 05:27
522 PLASTIC 2
                   7961 7MLE SPEC CHEM C.. Prep Completed 050693 05:28
                  33993 3DAO GAMMA SCAN C.. ** See Index 812 thru 814.
523 5
524 5
                 23381 3BJS TOTAL SR A.. 37094.9+-1409.7 D/S/ML
525 5
                  3998 3 TRANS-UA C.. SEE INDEX 738 AND 739
526 5
                 23011 3JSJ TRITIUM A.. < 16.3201 D/SEC/ML
527 PLASTIC 1
                7100 7SDN METALS-ICP C.. See Individual Elements Below
528 PLASTIC 1
                   7101 7SDN ALUMINUM C.. > .186818 MOLAR
                  7102 7SDN BORON A.. < 3.68268E-03 MOLAR
7105 7SDN IRON A.. 2.88252E-02+-7.08747E-04 MOLAR
529 PLASTIC 1
530 PLASTIC 1
531 PLASTIC 1
                  7110 7SDN ZIRCONIUM A.. < 1.53443E-03 MOLAR
                 7111 7SDN CALCIUM A.. < 2.49037E-03 MOLAR
7900 7RAH EPA-TOX C.. See Individual Elements Below
7901 7RAH ARSENIC C.. < 29.4377 mg/L
7902 7RAH BARIUM A.. < 32.6799 mg/L
532 PLASTIC 1
533 PLASTIC 1
534 PLASTIC 1
535 PLASTIC 1
               7903 7RAH CADMIUM C.. < 42.3012 mg/L
```

536 PLASTIC 1

| Log<br>I | #        | Request | Name  | Log   | g Type     |     | Charge Num Log Approval Info            |
|----------|----------|---------|-------|-------|------------|-----|-----------------------------------------|
| đ        | Lab      |         | Meth  | a Ana | a-         |     |                                         |
| x        | ID       |         |       |       | st Analyte | ARL | Result                                  |
|          | PLASTIC  |         | 7904  |       | CHROMIUM   |     | < 30.983 mg/L                           |
|          | PLASTIC  |         | 7905  |       | LEAD       |     | < 43.9272  mg/L                         |
|          | PLASTIC  |         | 7906  |       | SELENIUM   |     | 49.1119+-14.5269 mg/L                   |
|          | PLASTIC  |         | 7907  |       | SILVER     |     | < 26.5997 mg/L                          |
|          | PLASTIC  |         | 7908  |       | NICKEL     |     | < 47.2862 mg/L                          |
|          | PLASTIC  |         | 7900  | 7RAH  | EPA-TOX    |     | See Individual Elements Below           |
|          | PLASTIC  |         | 7901  | 7RAH  | ARSENIC    |     | < 29.4377 mg/L                          |
|          | PLASTIC  |         | 7902  |       | BARIUM     |     | < 32.6799 mg/L                          |
|          | PLASTIC  |         | 7903  |       | CADMIUM    |     | < 42.3012 mg/L                          |
|          | PLASTIC  |         | 7904  |       | CHROMIUM   |     | < 30.983 mg/L                           |
|          | PLASTIC  |         | 7905  | 7RAH  | LEAD       |     | < 43.9272 mg/L                          |
|          | PLASTIC  |         | 7906  |       | SELENIUM   |     | 37.0847+-13.0129 mg/L                   |
|          | PLASTIC  |         | 7907  |       | SILVER     |     | < 26.5997 mg/L                          |
|          | PLASTIC  |         | 7908  | 7RAH  | NICKEL     | Α   | < 47.2862  mg/L                         |
|          | PLASTIC  |         | 2809  |       | MERCURY    | Α   | =Not Detected:DL= 0.075 mg/l            |
|          | PLASTIC  |         | 2809  | 2LBZ  | MERCURY    | Α   |                                         |
|          | PLASTIC  |         | 2330  | 2     | ARSENIC.   |     | SEE RAL DATA                            |
|          | PLASTIC  |         | 2330  | 2     | ARSENIC.   |     | SEE RAL DATA                            |
|          | PLASTIC  |         | 2340  | 2     | SELENIUM.  | С., | SEE RAL DATA<br>SEE RAL DATA            |
|          | PLASTIC  |         | 2340  | 2     | SELENIUM.  | С   | SEE RAL DATA                            |
|          | PLASTIC  |         | 2119  | 2JSL  | SODIUM     | Α   | =1.0E-02 Molarity                       |
|          | PLASTIC  | 1       | 2199  | 2JSL  | POTASSIUM  | Α   | =8.2E-03 Molarity                       |
| 559      |          |         | 57016 | 7AWO  | PH         | Α   | < .5 pH                                 |
|          | PLASTIC  | 1       | 7961  |       |            |     | Prep Completed 050693 05:29             |
|          | 5 RAMP   |         |       | 7CWL  | FLASHPOINT | С   | NO Flash @ 60.0 deg C corrected         |
|          | BEG KNW  |         | 7985  | 7CWL  | FLASHPOINT | С   | Flashed @ 60.0 deg C corrected          |
|          | VOA VIAL |         | 9304  |       | GCMS-2TRAP |     | · · · · · · · · · · · · · · · · · · ·   |
|          | VOA VIAL | . 2     | 9304  |       |            | Α   | SEE ATTACHED                            |
| 738      |          |         | 3202  |       | PU-238     | Α   |                                         |
| 739      |          |         | 3203  |       | PU-239     |     | < 74.2257 D/S/ML                        |
| 751      |          |         | 7900  |       |            |     | See Individual Elements Below           |
| 752      |          |         | 7903  |       | CADMIUM    |     | 9.49254 + -1.37944  mg/L                |
| 753      |          |         | 7904  |       | CHROMIUM   |     | 9.35827+-1.83895 mg/L                   |
| 754      |          |         | 7905  |       | LEAD       |     | < 4.13354  mg/L                         |
| 755      |          |         | 7907  |       | SILVER     |     | < 2.50302 mg/L                          |
| 756      |          |         | 7900  |       |            |     | See Individual Elements Below           |
| 757      |          |         | 7903  |       | CADMIUM    |     | 30.5871+-2.73251 mg/L                   |
| 758      |          |         | 7904  |       | CHROMIUM   |     | 32.1589+-3.17676 mg/L                   |
| 759      |          |         | 7905  |       | LEAD       |     | < 4.13354 mg/L                          |
| 760      |          | _       | 7907  |       | SILVER     |     | < 2.50302 mg/L                          |
| 795      |          |         |       |       | SULFATE    |     | 1.27844E-03+-8.11336E-05 Molar          |
| 812      |          |         |       |       | RU-106     |     | 9250+-1050 D/S/ML                       |
| 813      |          |         |       |       | CS-134     |     | 35800+-1360 D/S/ML                      |
| 814      |          |         |       |       | CS-137     | Α   | • • • • • • • • • • • • • • • • • • • • |
|          | PLASTIC  |         |       |       |            |     | See Individual Elements Below           |
|          | PLASTIC  | Т       | 7101  | _     | ALUMINUM   | A   |                                         |
|          | 5 RAMP   |         | 7985  | 7     | FLASHPOINT |     |                                         |
|          | 60 CHK   |         |       |       |            |     | NO Flash @ 60.0 deg C corrected         |
| 845      | PLASTIC  | Τ       | 7900  | /WDT  | EPA-TOX    | С   | See Individual Elements Below           |
|          |          |         |       |       |            |     |                                         |

```
Log #
              Request Name
                            Log Type
                                               Charge Num Log Approval Info
  I
                             Τ.
  d Lab
                       Meth a Ana-
  x ID
                             b lyst Analyte ARL
                                                           Result
846 PLASTIC 1
                      7903
                             7WDT CADMIUM
                                              C.. 45.479+-2.39422 mg/L
847 PLASTIC 1
                      7904
                             7WDT CHROMIUM
                                              C.. 45.9642+-3.9403 mg/L
                   7904 /WDT CHROMIUM C.. 45.5042+-3.5403 mg/L
7900 7 EPA-TOX C.. NOT REQUESTED
7900 7WDT EPA-TOX C.. See Individual Elements Below
7906 7WDT SELENIUM C.. < 2.56205 mg/L
7900 7WDT EPA-TOX C.. See Individual Elements Below
7906 7WDT SELENIUM C.. < 2.56205 mg/L
7906 7WDT SELENIUM C.. < 2.56205 mg/L
7907 7RAH AS/SE PREP C.. Prep Completed 091093 10:19
7908 7RAH SPECTROCHE C.. Prep Completed 091093 10:19
848 PLASTIC 1
867 PLASTIC 1
                                             C.. See Individual Elements Below
868 PLASTIC 1
869 PLASTIC 2
                                             C.. See Individual Elements Below
870 PLASTIC 2
876 PLASTIC 1
877 PLASTIC 2
883 PLASTIC 1R
                     7900 7JMK EPA-TOX
                                           C.. See Individual Elements Below
884 PLASTIC 1R
                     7901 7JMK ARSENIC
                                             A... < 3.89309 \text{ mg/L}
885 PLASTIC 2R
                     7900 7JMK EPA-TOX
                                             C.. See Individual Elements Below
886 PLASTIC 2R
                     7901 7JMK ARSENIC
                                           A.. < 3.89309 mg/L
887 PLASTIC 1R
                     7900 7JMK EPA-TOX
                                             C.. See Individual Elements Below
888 PLASTIC 1R
                     7906 7JMK SELENIUM A.. < .991639 mg/L
889 PLASTIC 2R
                     7900 7JMK EPA-TOX
                                             C.. See Individual Elements Below
                      7906 7JMK SELENIUM A.. < .991639 mg/L
890 PLASTIC 2R
                      7900 7SDN EPA-TOX
911 PLASTIC 1R
                                             C.. See Individual Elements Below
912 PLASTIC 1R
                      7903 7SDN CADMIUM
                                             A.. 31.3152+-1.52779 mg/L
913 PLASTIC 1R
                      7904 7SDN CHROMIUM A.. 30.1857+-3.00239 mg/L
916 SPIKE
                      9304 9HCJ GCMS-2TRAP A.. SEE ATTACHED
930505-15 WM-102:CH
                                                  13120-200-001940209 22:32 SPLMGT SPLMGT
                     47981 7MLE SP-GR
                                             A.. 1.16163+-6.89136E-04 @ 25/4
566 2
                     47981
                            7MLE SP-GR
                                             A.. 1.17057+-6.89039E-04 @ 25/4
567 3
                     47981
                            7MLE SP-GR
                                             A.. 1.17056+-6.89039E-04 @ 25/4
                            7MLE SP-GR
568 4
                                            A.. 1.17052+-6.8904E-04 @ 25/4
                     47981
569 2
                    67015 7MLE ACID
                                            A.. < .229527 NACID
570 3
                    67015 7MLE ACID
                                            A.. < .229527 NACID
571 2
                   67920 7BGP URANIUM A.. < 4.25198E-03 G/L
                                            A.. * 1755.32 UG/ML
572 4
                     7972 7SDN UDS
573 2
                    57171 7MLE CHLORIDE A.. < 36.3961 UG/ML
                                             A.. 2.77898+-.178497 Molar
574 3
                    77074 7SLI NITRATE
575 2
                   67093 7AWO FLUORIDE A.. 86.2272+-11.9815 UG/ML
576 3
                    77168 7SLI SULFATE
                                             C.. < 2.76176E-02 Molar
577 5
                     7961 7MLE RADID CHEM C.. Prep Completed 050693 05:29
                     7961 7MLE RADID CHEM C.. Prep Completed 050693 05:30
578 PLASTIC 1
                     7961 7MLE RADID CHEM C.. Prep Completed 050693 05:30
579 PLASTIC 2
                    33993 3DAO GAMMA SCAN C.. ** See Index 815 thru 816.
580 5
581 5
                   23381 3BJS TOTAL SR A.. 37352.3+-1414.36 D/S/ML
582 5
                     3998 3
                                  TRANS-UA C.. SEE INDEX 740 AND 741
                   23011
583 5
                            3JSJ TRITIUM
                                            A.. < 16.3201 D/SEC/ML
                    7100
584 PLASTIC 1
                            7SDN METALS-ICP C.. See Individual Elements Below
585 PLASTIC 1
                     7101
                            7SDN ALUMINUM C.. > .189789 MOLAR
586 PLASTIC 1
                     7102 7SDN BORON
                                         A.. < 3.74125E-03 MOLAR
587 PLASTIC 1
                     7105
                            7SDN IRON
                                            A.. 3.31979E-02+-7.68484E-04 MOLAR
588 PLASTIC 1
                    7110
                            7SDN ZIRCONIUM A.. < 1.55883E-03 MOLAR
589 PLASTIC 1
                    7111
                            7SDN CALCIUM A.. < 2.52998E-03 MOLAR
                    7900
590 PLASTIC 1
                            7RAH EPA-TOX
                                             C.. See Individual Elements Below
```

| Log<br>I | #                 | Request | Name         | Lo.  | g Type     |     | Charge Num Log Approval Info             |
|----------|-------------------|---------|--------------|------|------------|-----|------------------------------------------|
| đ        | Lab               |         | Meth         |      | a-         |     |                                          |
| <b>x</b> | ID                |         | #            |      | st Analyte | ARL | Result                                   |
|          | PLASTIC           | _       | 7901         | 7RAH | ARSENIC    | С   | < 29.4377 mg/L                           |
|          | PLASTIC           |         | 7902         | 7RAH | BARIUM     | Α   | < 32.6799 mg/L                           |
|          | PLASTIC           |         | 7903         |      | CADMIUM    |     | < 42.3012 mg/L                           |
|          | PLASTIC           |         | 7904         | 7RAH | CHROMIUM   | С., | < 30.983 mg/L                            |
|          | PLASTIC           |         | 7905         | 7RAH | LEAD       | С   | <u> </u>                                 |
|          | PLASTIC           |         | 7906         |      | SELENIUM   |     | < 24.4469 mg/L                           |
|          | PLASTIC           |         | 7907         | 7RAH | SILVER     |     | < 26.5997 mg/L                           |
|          | PLASTIC           | _       | 7908         |      | NICKEL     |     | < 47.2862 mg/L                           |
|          | PLASTIC           |         | 7900         |      | EPA-TOX    |     | See Individual Elements Below            |
|          | PLASTIC           |         | 7901         |      | ARSENIC    |     | < 29.4377 mg/L                           |
|          | PLASTIC           |         | 7902         |      | BARIUM     | Α   |                                          |
|          | PLASTIC           |         | 7903         |      | CADMIUM    |     | < 42.3012 mg/L                           |
|          | PLASTIC           |         | 7904         |      | CHROMIUM   |     | < 30.983 mg/L                            |
|          | PLASTIC           |         | 7905         |      | LEAD       |     | < 43.9272 mg/L                           |
|          | PLASTIC           |         | 7906         |      | SELENIUM   |     | 32.7313+-12.4197 mg/L                    |
|          | PLASTIC           |         | 7907         |      |            | С   |                                          |
|          | PLASTIC           |         | 7908         |      | NICKEL     |     | < 47.2862 mg/L                           |
|          | PLASTIC           |         | 2809         |      | MERCURY    | Α   |                                          |
|          | PLASTIC           |         | 2809         |      | MERCURY    | Α   |                                          |
|          | PLASTIC           |         | 2330         | 2    | ARSENIC.   | C   |                                          |
|          | PLASTIC           |         | 2330         | 2    | ARSENIC.   | C   | SEE RAL DATA<br>SEE RAL DATA             |
|          | PLASTIC           |         | 2340         | 2    | SELENIUM.  |     |                                          |
|          | PLASTIC           |         | 2340         | 2    | SELENIUM.  |     | SEE RAL DATA                             |
|          | PLASTIC           |         | 2119         |      | SODIUM     | Α   | <del>-</del>                             |
| 616      | PLASTIC           |         | 2199         |      | POTASSIUM  |     | <del>-</del>                             |
|          |                   |         | 7016         | 7AWO |            |     | < .5 pH                                  |
|          | PLASTIC<br>5 RAMP | 1       | 7961         | /MLE | RADID CHEM | C   | Prep Completed 050693 05:30              |
|          | END KNOW          | NT      | 7985<br>7985 |      |            |     | NO Flash @ 60.0 deg C corrected          |
|          | VOA VIAL          |         |              |      |            |     | Flashed @ 60.0 deg C corrected           |
|          | VOA VIAL          |         | 9304<br>9304 |      | GCMS-2TRAP |     |                                          |
| 740      |                   | 2       | 3202         |      | PU-238     | A   |                                          |
| 741      |                   |         | 3202         |      | PU-239     |     | 2878.94+-101.325 D/S/ML < 74.2257 D/S/ML |
| 761      |                   |         | 7900         |      | EPA-TOX    |     | See Individual Elements Below            |
| 762      |                   |         | 7903         |      | CADMIUM    | A   |                                          |
| 763      |                   |         | 7904         |      | CHROMIUM   | Α   | 3.                                       |
| 764      |                   |         | 7905         |      | LEAD       |     | < 4.13354 mg/L                           |
| 765      |                   |         | 7907         |      | SILVER     | A   |                                          |
| 766      |                   |         | 7900         |      | EPA-TOX    |     | See Individual Elements Below            |
| 767      |                   |         | 7903         |      | CADMIUM    |     | 21.9886+-2.27864 mg/L                    |
| 768      |                   |         | 7904         |      | CHROMIUM   |     | 21.7697+-2.64986 mg/L                    |
| 769      |                   |         | 7905         |      | LEAD       |     | < 4.13354 mg/L                           |
| 770      |                   |         | 7907         |      | SILVER     | A   | <b>5</b> .                               |
| 796      |                   | 7       | 7168         |      | SULFATE    |     | 1.35747E-03+-8.25489E-05 Molar           |
| 815      |                   |         | 3993         |      | CS-134     |     | 41900+-1820 D/S/ML                       |
| 816      |                   |         |              |      | CS-137     |     | 559000+-24900 D/S/ML                     |
|          | PLASTIC :         |         | 7100         |      |            |     | See Individual Elements Below            |
|          | PLASTIC :         |         | 7101         |      | ALUMINUM   | Α   |                                          |
|          | 60 CHK            |         | 7985         |      |            |     | NO Flash @ 60.0 deg C corrected          |
|          |                   |         |              |      |            |     | -                                        |

```
Log #
                                       Request Name Log Type
                                                                                                                                      Charge Num Log Approval Info
     I
        d Lab
                                                                    Meth a Ana-
        x ID
                                                                                         b lyst Analyte ARL
                                                                                                                                                                                      Result

      849 VOA VIAL
      7900 7WDT EPA-TOX
      C... See Individual Elements Below

      850 VOA VIAL
      7903 7WDT CADMIUM
      C... 11.9906+-1.07472 mg/L

      851 VOA VIAL
      7904 7WDT CHROMIUM
      C... 5.93173+-1.14071 mg/L

      852 VOA VIAL
      7906 7WDT SELENIUM
      C... < 2.56205 mg/L</td>

      853 VOA VIAL
      7900 7WDT EPA-TOX
      C.. See Individual Elements Below

      854 VOA VIAL
      7906 7WDT SELENIUM
      C... < 2.56205 mg/L</td>

      878 PLASTIC 1
      7961 7KFM SP CHEM
      C... Prep Completed 090993 20:49

      879 PLASTIC 1
      7961 7KFM SP CHEM
      C... Prep Completed 090993 20:50

      880 PLASTIC 2
      7961 7KFM SP CHEM
      C... Prep Completed 090993 20:50

      891 PLASTIC 1R
      7900 7JMK EPA-TOX
      C.. See Individual Elements Below

      892 PLASTIC 1R
      7901 7JMK ARSENIC
      A.. < 3.89309 mg/L</td>

      893 PLASTIC 2R
      7901 7JMK ARSENIC
      A.. < 3.89309 mg/L</td>

      894 PLASTIC 1R
      7900 7JMK EPA-TOX
      C.. See Individual Elements Below

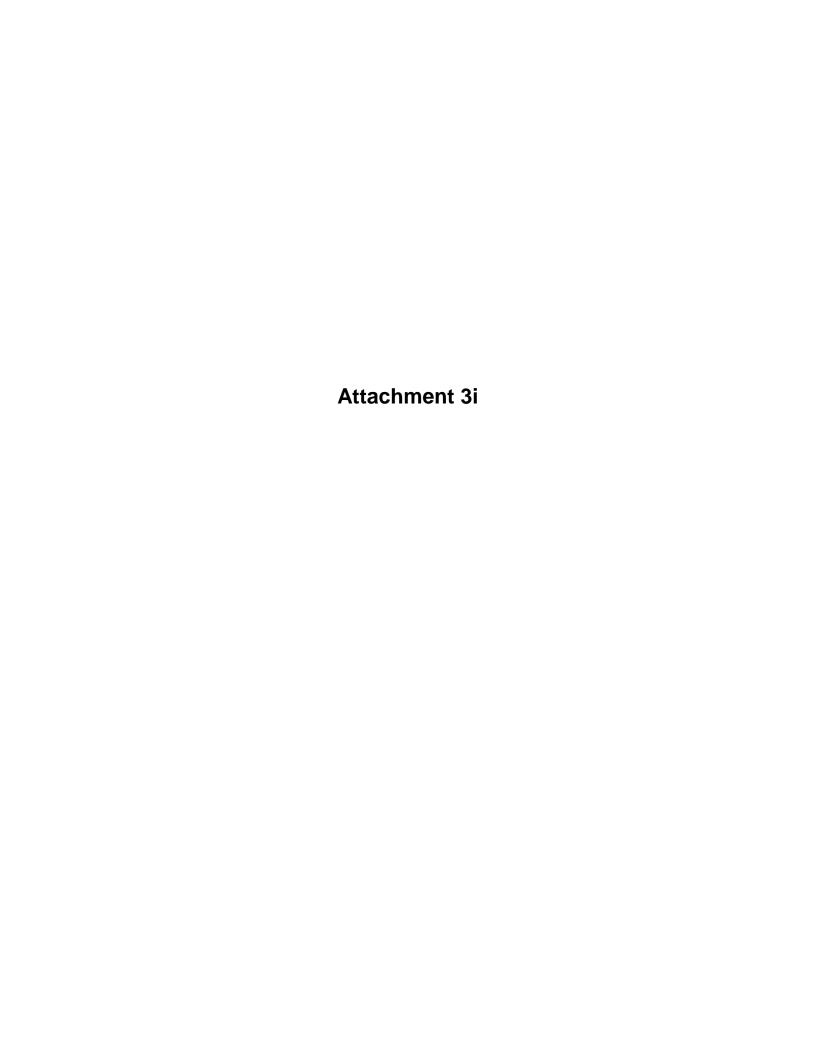
      896 PLASTIC 1R
      7900 7JMK SELENIUM
      A.. < 3.89309 mg/L</td>

      897 PLASTIC 2R
      7906 7JMK SELENIUM
      A.. < 991639 mg/L</td>

      898 PLASTIC 2R
      7906 7JMK SELENIUM
      A.. < .991639 mg/L</td>

      898 PLASTIC 2R
      7906 7JMK SELENIUM
  849 VOA VIAL 7900
                                                                                        7WDT EPA-TOX
                                                                                                                                             C.. See Individual Elements Below
                                                                   9304 9HCJ GCMS-2TRAP A.. SEE ATTACHED
  917 SPIKE
  930505-16 WM-102:CH
                                                                                                                                                        13120-200-001940221 10:25 SPLMGT SPLMGT
                                                                47981 7MLE SP-GR A. 1.16789+-6.89067E-04 @ 25/4
47981 7MLE SP-GR A. 1.17065+-6.89039E-04 @ 25/4
47981 7MLE SP-GR A. 1.17053+-6.8904E-04 @ 25/4
47981 7MLE SP-GR A. 1.17055+-6.8904E-04 @ 25/4
  622 1
  623 2
  624 3
  625 4
 626 2
                                                               67015 7MLE ACID A.. < .229527 NACID
67015 7MLE ACID A.. < .229527 NACID
 627 3
                                                               67015 7MLE ACID
 628 2
                                                             67920 7BGP URANIUM A.. < 4.25198E-03 G/L
                                                                 7972 7SDN UDS A.. * 8855.55 UG/ML
57171 7MLE CHLORIDE A.. < 36.3961 UG/ML
 629 4
 630 2
                                                                 77074
 631 3
                                                                                       7SLI NITRATE A.. 2.69894+-.178578 Molar
                                                             77074 75H NITRATE A. 2.098947-176378 MOTAL
67093 7AWO FLUORIDE A. 58.2337+-10.7303 UG/ML
77168 7SLI SULFATE A. 2.88159E-02+-9.03836E-03 Molar
7961 7MLE RADIO CHEM C. Prep Completed 050693 05:30
7961 7MLE SPEC CHEM C. Prep Completed 050693 05:31
7961 7MLE SPEC CHEM C. Prep Completed 050693 05:33
33993 3DAO GAMMA SCAN C. ** See Index 817 thru 821.
 632 2
 633 3
 634 5
 635 PLASTIC 1
 636 PLASTIC 2
                                                    7961 /MLE SPEC CHEAR C.. 122
33993 3DAO GAMMA SCAN C.. ** See Index 817 thru 821.
23381 3BJS TOTAL SR A.. 37270.1+-1412.87 D/S/ML
3998 3 TRANS-UA C.. SEE INDEX 742 AND 743
23011 3JSJ TRITIUM A.. < 16.3201 D/SEC/ML
7100 7SDN METALS-ICP C.. See Individual Elements Below
7101 7SDN ALUMINUM C.. < 8.65524E-03 MOLAR
7102 7SDN BORON A.. < 3.68268E-03 MOLAR
7105 7SDN IRON A.. < 2.16774E-04 MOLAR
 637 5
 638 5
 639 5
 640 5
 641 PLASTIC 1
 642 PLASTIC 1
 643 PLASTIC 1
 644 PLASTIC 1
```

| Log<br>I | #        | Request | . Name       | Lo.  | g Type              |     | Charge Num Log Approval Info                 |
|----------|----------|---------|--------------|------|---------------------|-----|----------------------------------------------|
| đ        | Lab      |         | Meth         | a An | a-                  |     |                                              |
| х        | ID       |         | #            | b ly | st Analyte          | ARL | Result                                       |
| 645      | PLASTIC  | 1       | 7110         | 7SDN | ZIRCONIUM           | Α   | < 1.53443E-03 MOLAR                          |
| 646      | PLASTIC  | 1       | 7111         | 7SDN | CALCIUM             | Α   | < 2.49037E-03 MOLAR                          |
| 647      | PLASTIC  | 1       | 7900         | 7RAH | EPA-TOX             | С   | See Individual Elements Below                |
|          | PLASTIC  |         | 7901         | 7RAH | ARSENIC             | С   | < 29.4377 mg/L                               |
| 649      | PLASTIC  | 1       | 7902         | 7RAH | BARIUM              | С., | < 32.6799 mg/L                               |
| 650      | PLASTIC  | 1       | 7903         | 7RAH | CADMIUM             |     | < 42.3012 mg/L                               |
|          | PLASTIC  |         | 7904         | 7RAH | CHROMIUM            |     | < 30.983 mg/L                                |
|          | PLASTIC  |         | 7905         | 7RAH | LEAD                |     | < 43.9272 mg/L                               |
| 653      | PLASTIC  | 1       | 7906         | 7RAH | SELENIUM            | С   | 29.0911+-11.9012 mg/L                        |
|          | PLASTIC  |         | 7907         | 7RAH | SILVER              | С   | < 26.5997 mg/L                               |
|          | PLASTIC  | 1       | 7908         | 7RAH | NICKEL              |     | < 47.2862 mg/L                               |
| 656      |          |         | 7900         |      | EPA-TOX             | С., | See Individual Elements Below                |
| 657      |          |         | 7901         | 7WDT | ARSENIC             | Α   | < 2.77008 mg/L                               |
| 658      |          |         | 7902         |      | BARIUM              |     | < 3.07517 mg/L                               |
| 659      |          |         | 7903         | 7WDT | CADMIUM             | Α   | 29.6708+-2.68771 mg/L                        |
| 660      |          |         | 7904         | 7WDT | CHROMIUM            | Α   | 32.1341+-3.17561  mg/L                       |
| 661      |          |         | 7905         |      | LEAD                |     | < 4.13354 mg/L                               |
| 662      |          |         | 7906         | 7wdr | SELENIUM            |     | < 2.30045 mg/L                               |
| 663      |          |         | 7907         |      | SILVER              |     | < 2.50302 mg/L                               |
| 664      |          |         | 7908         |      | NICKEL              | Α   | 5.5652+375134 mg/L                           |
|          | PLASTIC  |         | 2809         |      | MERCURY             | Α   |                                              |
|          | PLASTIC  |         | 2809         | 2LBZ | MERCURY             | Α   | •                                            |
|          | PLASTIC  |         | 2330         | 2    | ARSENIC.            | С., |                                              |
|          | PLASTIC  |         | 2330         | 2    | ARSENIC.            | С   |                                              |
|          | PLASTIC  |         | 2340         | 2    | SELENIUM.           |     | SEE RAL DATA                                 |
|          | PLASTIC  |         | 2340         | 2    | SELENIUM.           | С., | SEE RAL DATA                                 |
|          | PLASTIC  |         | 2119         |      | SODIUM              |     | =9.5E-03 Molarity                            |
|          | PLASTIC  | 1       | 2199         |      | POTASSIUM           | Α   | <u>-</u>                                     |
| 673      |          |         | 67016        | 7SDN |                     |     | < .5 pH                                      |
|          | PLASTIC  | 1       | 7961         |      |                     |     | Prep Completed 050693 05:33                  |
|          | 5 RAMP   | <b></b> |              |      |                     |     | NO Flash @ 60.0 deg C corrected              |
|          | BEG KNOW |         | 7985         |      |                     |     | Flashed @ 60.0 deg C corrected               |
|          | VOA VIAL |         | 9304         |      | GCMS-2TRAP          |     |                                              |
| 742      | VOA VIAL | ı 4     | 9304         |      | GCMS-2TRAP          |     |                                              |
| 743      |          |         | 3202<br>3203 |      | PU-238<br>PU-239    | A   | • •                                          |
| 771      |          |         |              |      |                     |     | < 74.2257 D/S/ML                             |
| 772      |          |         | 7900         |      | EPA-TOX             |     | See Individual Elements Below                |
| 773      |          |         | 7903<br>7904 |      | CADMIUM<br>CHROMIUM |     | 29.201+-2.66446 mg/L<br>30.9679+-3.1207 mg/L |
| 774      |          |         | 7904         |      | LEAD                |     | < 4.13354 mg/L                               |
| 775      |          |         | 7905         |      | SILVER              |     | < 4.13354 mg/L<br>< 2.50302 mg/L             |
| 817      |          |         | 33993        |      | CO-60               |     | 412+-48.8 D/S/ML                             |
| 818      |          |         | 33993        |      | RU-106              | A   |                                              |
| 819      |          |         | 33993        |      | SB-125              | A   |                                              |
| 820      |          |         | 33993        |      | CS-134              |     | 43200+-1830 D/S/ML                           |
| 821      |          |         | 33993        |      | CS-137              |     | 744000+-43300 D/S/ML                         |
| 822      |          |         | 7900         |      | EPA-TOX             |     | See Individual Elements Below                |
| 823      |          |         | 7906         |      | SELENIUM            |     | < 1.14893 mg/L                               |
| 824      |          |         | 7900         |      | EPA-TOX             |     | See Individual Elements Below                |
|          |          |         | • •          |      |                     |     |                                              |


```
Log #
              Request Name
                               Log Type
                                             Charge Num Log Approval Info
  I
   d Lab
                        Meth a Ana-
   x ID
                              b lyst Analyte ARL
                         #
                                                               Result
 825 5
                        7906
                              7WDT SELENIUM C.. 3.70214+-.832765 mg/L
 843 60 CHK
                        7985
                              7CWL FLASHPOINT A.. NO Flash @ 60.0 deg C corrected
 844 END KNOWN
                        7985 7CWL FLASHPOINT C.. Flashed @ 60.0 deg C corrected
 855 PLASTIC 1
                      7100 7CBG METALS-ICP C.. See Individual Elements Below
                      7101 7CBG ALUMINUM A.. .618728+-3.79931E-02 MOLAR
 856 PLASTIC 1
                      7900 7VJJ EPA-TOX
 857 PLASTIC 1
                                               C.. See Individual Elements Below
 858 PLASTIC 1
                      7901 7VJJ ARSENIC
                                               C... < 6.93498 \text{ mg/L}
                    67093 7BKH FLUORIDE A.. 79.1488+-6.80393 UG/ML 7100 7CBG METALS-ICP C.. See Individual Elements Below
 860 PLASTIC 1
 861 PLASTIC 1
                      7105 7CBG IRON A.. 2.15423E-02+-2.18548E-03 MOLAR
                     7900 7WDT EPA-TOX
 862 PLASTIC 1
                                               C.. See Individual Elements Below
 863 PLASTIC 1
                      7906 7WDT SELENIUM C.. < 2.56205 mg/L
                   7900 7WDT EPA-TOX C.. See Individual Elements Below
7906 7WDT SELENIUM C.. < 2.56205 mg/L
77168 7MLE SULFATE A.. 2.00196E-03+-1.87812E-04 Molar
7900 7VJJ EPA-TOX C.. See Individual Elements Below
 864 PLASTIC 2
 865 PLASTIC 2
866 3
 915 PLASTIC 1R
                      7908 7SDN NICKEL
                                              C.. 6.98209+-2.56196 mg/L
 918 SPIKE
                      9304 9HCJ GCMS-2TRAP A.. SEE ATTACHED
 930505-17 WM-102:CH
                                                    13120-200-001940209 20:29 SPLMGT SPLMGT
                      7981 7 SP-GR
7981 7 SP-GR
67015 7MLE ACID
7920 7 URANIUM
 679 1
                                             C.. *(CANCELLED BY REQUESTOR)*
                                   SP-GR
                                  SP-GR
 680 2
                                               C.. *(CANCELLED BY REQUESTOR) *
 681 2
                                               A.. < .229527 NACID
                                             C.. *(CANCELLED BY REQUESTOR)*
 682 2
                                   URANIUM
 683 4
                       7972
                              7
                                   UDS
                                               C.. *(CANCELLED BY REQUESTOR) *
 684 2
                      57171
                              7MLE CHLORIDE A.. < 7.24282 UG/ML
                       7074 7
 685 3
                                               C.. *(CANCELLED BY REQUESTOR)*
                                   NITRATE
 686 2
                              7
                       7093
                                   FLUORIDE
                                               C.. *(CANCELLED BY REQUESTOR)*
                     7168 7 SULFATE C.. *(CANCELLED BY REQUESTOR)*
7961 7MLE RADIO CHEM C.. Prep Completed 050693 04:07
7961 7MLE SPEC CHEM C.. Prep Completed 050693 04:08
33993 3DAO GAMMA SCAN A.. ** No Nuclides Identified.
 687 3
 688 5
 689 PLASTIC 1
 690 5
                     23381 3BJS TOTAL SR A.. << 3.74185+-4.81351 D/S/ML
691 5
                      3998 3 TRANS-UA
692 5
                                               C.. *(CANCELLED BY REQUESTOR) *
                      3011 3
                                   TRITIUM C.. * (CANCELLED BY REQUESTOR) *
693 5
                    7100 7
                                   METALS-ICP C.. *(CANCELLED BY REQUESTOR)*
 694 PLASTIC 1
```

```
Log # Request Name Log Type Charge Num Log Approval Info
   Ι
   d Lab
                           Meth a Ana-
x ID
                                b lyst Analyte ARL
                            #
                                                                      Result
 930513-14 WM-102ET ????
                                                         35200-400-001951205 10:23 JEAN M CASTEEL
                           3281 3 NI-63 C. Entry Cancelled 3431 3 TECHNETIUM C. Entry Cancelled
 110 1
111 1
                          24900 4TEL URANIUM A.. * 6.54354E-03 G/KG
112 1
                    24900 4TEL URANIUM A. 6.54354E-U3 G/KG
24901 4TEL U-234 A. DATA NOT AVALIABLE
24902 4TEL U-235 A. DATA NOT AVALIABLE
24903 4TEL U-236 A. DATA NOT AVALIABLE
24904 4TEL U-238 A. DATA NOT AVALIABLE
24905 4TEL U FOR ACC. A. * 6.54354E-03 G/KG
17929 7BGP URAN. PREP C. 071993 09:26 TEL 071993 13:29
113 1
116 1
117 1
118 1
119 1
                       43204 3IDG NP-237 A.. < 137.824 D/S/ML
```

| Log        | #     | Reques  | t Name | Lo<br>L     | g Type     | (    | Charge Num I   | Log Approval Info                |            |
|------------|-------|---------|--------|-------------|------------|------|----------------|----------------------------------|------------|
| đ          | Lab   |         | Meth   | a An        | a-         |      |                |                                  |            |
| x          | ID    |         | #      |             | st Analyte | ART. | Resu           | 1 <b>1</b> +                     |            |
|            |       |         |        |             |            |      | Repu           |                                  |            |
| 120        | 1     |         | 3202   | 3IDG        | PU-238     | Α    | 3952.09+-326.  | 425 D/S/ML                       | _          |
| 121        | 1     |         | 3203   | 3IDG        | PU-239     | Α    | < 688.675 D/S  | S/ML                             |            |
| 122        | 1     |         | 3200   | 3           | PU-240     |      | Entry Cancelle |                                  |            |
| 123        | 1     |         | 3200   | 3           | PU-241     |      | Entry Cancelle |                                  |            |
| 124        | 1     |         | 3200   | 3           | PU-242     |      | Entry Cancelle |                                  |            |
| 125        | 1     |         | 3201   | 3IDG        | AM-241     |      | < 97.3643 D/S  |                                  |            |
| 126        | 1     |         | 3201   | 3IDG        | CM-244     | Α    | < 9.73E+1 D    |                                  |            |
| 127        | 1     |         | 7961   |             | RADIO CHEM |      |                | ed 062793 10:36                  |            |
| 475        | 4     |         | 2110   |             | SODIUM     | Α    |                |                                  |            |
| 476        | 4     |         | 2190   |             | POTASSIUM  | Α    |                | <del>-</del>                     |            |
| 477        | 4     |         | 7961   |             | SP CHEM    | С    |                | ed 071693 23:04                  |            |
| 478        | 4     |         | 7100   |             |            |      |                | Elements Below                   |            |
| 479        | 4     |         | 7101   |             | ALUMINUM   | c    |                |                                  |            |
| 480        |       |         | 7102   |             | BORON      | Α    |                |                                  |            |
| 481        |       |         | 7105   |             | IRON       | Α    |                | 884E-04 MOLAR                    |            |
| 482        |       |         | 7110   |             | ZIRCONIUM  | Α    |                |                                  |            |
| 483        |       |         | 7111   |             | CALCIUM    | Α    |                |                                  |            |
| 484        |       |         | 67093  |             | FLUORIDE   | Α    |                |                                  |            |
| 485        |       |         | 7900   |             | EPA-TOX    |      |                | Elements Below                   |            |
| 486        |       |         | 7903   |             | CADMIUM    | A    |                |                                  |            |
| 487        |       |         | 77168  |             | SULFATE    | Α    |                | 9.66199E-05 Mola                 | _          |
| 488        |       |         | 77074  |             | NITRATE    | Α    |                | 486E-02 Molar                    | <b>-</b>   |
| 489        |       |         | 57171  |             | CHLORIDE   |      | < 30.1508 UG/  |                                  |            |
| 490        |       |         | 7972   | 7BGP        |            |      | * 15 ÜG/ML     | ML                               |            |
| 491        |       |         | 7980   |             | SP-GR      | A    |                | 017E-03 @ 25/4                   |            |
| 492        |       |         | 7980   |             | SP-GR      | A    |                | 017E-03 @ 25/4                   |            |
| 493        |       |         | 67015  |             | ACID       |      |                | •                                |            |
| 494        |       |         | 33993  |             |            | A    | ** See Index   | 108E-02 NACID                    | **         |
| 495        |       |         | 13382  | 3 DAO       | SR-89      | C    |                |                                  | ^ ^        |
| 496        |       |         | 13382  | 3           | SR-90      | C    | WRONG METHOD   |                                  |            |
| 497        |       |         | 7961   |             | SPEC CHEM  | c    | WRONG METHOD   |                                  |            |
| 498        |       |         | 7100   |             |            |      |                | d 071693 08:31<br>Elements Below |            |
| 499        |       |         | 7100   |             |            |      |                |                                  |            |
| 500        |       |         | 67920  |             | ALUMINUM   | A    |                | 973E-02 MOLAR                    |            |
| 501        |       |         |        |             | URANIUM    | A    |                | 7.88716E-04 G/L                  |            |
| 502        |       |         | 33993  |             | CS-134     | A    |                |                                  |            |
|            |       |         | 33993  |             | CS-137     | A    | 577000+-23000  |                                  |            |
| 503<br>504 |       |         | 23381  |             | TOTAL SR   | A    | 1.02623+149    |                                  |            |
| 304        | T     |         | 3993   | 3           | GAMMA SCAN | С.,  | ALREADY DONE   |                                  |            |
|            |       |         |        |             |            |      |                |                                  |            |
| 9307       | 12-12 | WM-102: |        |             |            |      | 13120-200-0019 | 31128 02:58 SPLMO                | т сртмат   |
| 243        |       | 2021    | 47981  | <b>78ET</b> | SP-GR      | Α    |                |                                  | or Diffici |
| 244        | _     |         | 47981  |             | SP-GR      | A    |                | 495E-04 @ 25/4                   |            |
| 245        |       |         | 67015  |             | ACID       | A    |                | 967E-02 NACID                    |            |
| 246        |       |         | 7972   | 7KFM        |            |      | NO VISIBLE S   |                                  |            |
| 247        |       |         | 57171  |             | CHLORIDE   |      |                |                                  |            |
| 247        |       |         | 77074  |             | NITRATE    | A    |                | 523 UG/ML<br>568E-02 Molar       |            |
| 249        |       |         |        |             | FLUORIDE   | A    |                |                                  |            |
| 250        |       |         | 67093  |             |            | A    |                |                                  | _          |
| Z30 .      | J     |         | 77168  | /KFM        | SULFATE    | Α    | 1.5/332E-U3+-  | 9.69884E-05 Molar                | -          |

| Log<br>I | #       | Reques | t Name | Log<br>L | g Type     | (   | Charge Num Log Approval Info   |
|----------|---------|--------|--------|----------|------------|-----|--------------------------------|
| đ        | Lab     |        | Meth   | a Ana    | <b>a~</b>  |     |                                |
| x        | ID      |        | #      | b lys    | st Analyte | ARL | Result                         |
| 251      | 5       |        | 7961   | 7KFM     | RADIO CHEM | С   | Prep Completed 071693 23:06    |
| 252      | 5       |        | 33993  |          |            |     | ** See Index 308 thru 310. **  |
| 253      |         |        | 33381  | 3KLJ     | TOTAL SR   | Α   | << 1.17428+-1.17347 UCI/ML     |
| 254      | PLASTIC | 1      | 7100   | 7SDN     | METALS-ICP | С   | See Individual Elements Below  |
| 255      | PLASTIC | 1      | 7101   | 7SDN     | ALUMINUM   | С   | > .190546 MOLAR                |
| 256      | PLASTIC | 1      | 7102   | 7SDN     | BORON      | Α   | < 3.75619E-03 MOLAR            |
| 257      | PLASTIC | 1      | 7105   | 7SDN     | IRON       | Α   | 3.36632E-02+-7.75552E-04 MOLAR |
| 258      | PLASTIC | 1      | 7110   | 7SDN     | ZIRCONIUM  | Α   | < 1.56506E-03 MOLAR            |
| 259      | PLASTIC | 1      | 7111   | 7SDN     | CALCIUM    | Α   | < 2.54008E-03 MOLAR            |
|          | PLASTIC |        | 7900   | 7SDN     | EPA-TOX    | С., | See Individual Elements Below  |
|          | PLASTIC |        | 7903   | 7SDN     | CADMIUM    | Α   | 28.4015+-1.8716 mg/L           |
|          | PLASTIC |        | 7900   | 7SDN     | EPA-TOX    | С   | See Individual Elements Below  |
| 263      | PLASTIC | 2      | 7903   | 7SDN     | CADMIUM    | Α   | 27.4401+-1.83477 mg/L          |
|          | PLASTIC |        | 2110   | 2JSL     | SODIUM     | Α   | =1.2E-02 Molarity              |
| 265      | PLASTIC | 1      | 2190   | 2JSL     | POTASSIUM  | Α   | =9.3E-03 Molarity              |
|          | PLASTIC | _      | 7961   | 7KFM     | SP CHEM M  | С   | Prep Completed 071693 23:06    |
| 305      | PLASTIC | 1      | 7100   | 7SDN     | METALS-ICP | С   | See Individual Elements Below  |
| 306      | PLASTIC | 1      | 7101   | 7SDN     | ALUMINUM   | Α   | .912501+-3.90068E-02 MOLAR     |
| 307      | 1       |        | 7961   | 7CBG     | SPEC CHEM  | С   | Prep Completed 071693 08:32    |
| 308      | _       |        | 33993  | 3DAO     | RU-106     | Α   | 11900+-4280 D/S/ML             |
| 309      | 5       |        | 33993  | 3DAO     | CS-134     | Α   | 35800+-1750 D/S/ML             |
| 310      |         |        | 33993  | 3DAO     | CS-137     | Α   | 633000+-23400 D/S/ML           |
| 313      | 5       |        | 23381  | 3KLJ     | TOTAL SR   | Α   | 41826.1+-1479.44 D/S/ML        |

\*\*\*\*\*\*\*\* END \*\*\*\*\*\*



### **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0 Page 24 of 42

# <u>CPP-601 Deep Tanks – VES-WG-100, VES-WG-101, VES-WH-100, & VES-WH-101</u>

Metals, Anions, and Miscellaneous

| Metals, Anions, and Miscellaneous |       |                  |                     |     |                     |     |                         |     |                         |     |
|-----------------------------------|-------|------------------|---------------------|-----|---------------------|-----|-------------------------|-----|-------------------------|-----|
| Analyte                           | Units | Method<br>Number | Sample Le<br>981109 |     | Sample Le<br>990119 |     | Sample Log #<br>9902162 |     | Sample Log #<br>9904133 |     |
|                                   |       |                  | Results             | LQF | Results             | LQF | Results                 | LQF | Results                 | LQF |
| pН                                |       | EPA150.1         | 0.88                |     | 0.71                | В   | 0.6                     | В   | 0.7                     | В   |
| Acidity                           | N     | AC7012           |                     |     |                     |     |                         |     |                         |     |
| Aluminum                          | μg/L  | SW6010B          | 1.02E+05            |     | 6.09E+04            | E   | 5.39E+04                |     | 1.81E+05                |     |
| Antimony                          | μg/L  | SW6010B          |                     |     | 1.04E+02            | В   | 4.00E+01                | ΒN  | 5.52E+01                | В   |
| Arsenic                           | µg/L  | SW6010B          | 1.66E+01            | U   | 2.52E+01            | U   | 2.37E+01                | U   | 2.37E+01                | U   |
| Barium                            | µg/L  | SW6010B          | 1.09E+02            |     | 1.32E+02            |     | 1.34E+02                |     | 1.23E+02                |     |
| Beryllium                         | μg/L  | SW6010B          | < 1E00              |     | 2.3E00              |     | 2.3E00                  |     | 2.7E00                  |     |
| Boron                             | μg/L  | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Cadmium                           | μg/L  | SW6010B          | 7.34E+02            |     | 1.48E+02            |     | 1.02E+02                |     | 3.85E+02                |     |
| Calcium                           | µg/L  | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Chloride                          | μg/L  | AC7171           | 1.06E+05            |     |                     |     | 1.26E+05                | В   | 8.37E+04                |     |
| Chromium                          | μg/L  | SW6010B          | 1.89E+03            |     | 8.60E+02            |     | 1.94E+03                |     | 1.04E+03                |     |
| Cobalt                            | µg/L  | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Copper                            | μg/L  | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Fluoride                          | μg/L  | AC7093           | 4.63E+04            | В   | 2.55E+04            | U   | 2.60E+04                |     | 2.69E+04                | В   |
| Iron                              | μg/L  | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Lead                              | μg/L  | SW6010B          | 9.48E+02            |     | 8.15E+02            |     | 3.35E+02                |     | 3.79E+02                |     |
| Manganese                         | μg/L  | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Mercury                           | μg/L  | SW7470A          | 2.69E+03            |     | 1.44E+03            |     | 2.06E+03                | N   | 5.62E+03                |     |
| Nickel                            | μg/L  | SW6010B          | 8.52E+02            |     | 3.64E+02            |     | 8.17E+02                |     | 7.48E+02                |     |
| Nitrate                           | μg/L  | AC7074           |                     |     |                     |     |                         |     |                         |     |
| Phosphorus                        | μg/L  | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Potassium                         | μg/L  | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Selenium                          | μg/L  | SW6010B          | 2.00E+01            |     | 1.66E+01            | U   | 2.67E+01                | U   | 2.67E+01                | U   |
| Silver                            | μg/L  | SW6010B          | 5.42E+01            |     | 6.4E00              | U   | 2.14E+01                | В   | 2.76E+01                | В   |
| Sodium                            | μg/L  | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Sulfur                            | μg/L  | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Thallium                          | μg/L  | SW6010B          |                     |     | 2.34E+01            | U   | 2.84E+01                | U   | 2.84E+01                | U   |
| Uranium                           | μg/L  | AC7920           | 4.97E+02            |     |                     |     | 3.09E+02                |     | 1.89E+02                | U   |
| Vanadium                          | μg/L  | SW6010B          |                     |     | 8.4E00              | В   | 1.07E+01                | В   | 1.42E+01                | В   |
| Zinc                              | μg/L  | SW6010B          |                     |     | 4.62E+03            |     | 2.20E+03                |     | 1.04E+03                |     |
| Zirconium                         | μg/L  | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| UDS                               | µg/L  | AC7972           | 1.00E+05            |     | 3.00E+05            |     | 4.04E+04                | В   | 4.57E+04                |     |
| TIC                               | μg/Ł  | AC8060           |                     |     |                     |     | 4.66E+04                | U   | 1.16E+04                | U   |
| TOC                               | µg/L  | SW9060           | 2.36E+05            | В   | 1.25E+05            |     | 8.76E+04                | В   | 1.36E+05                |     |

### **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0 Page 25 of 42

# CPP-601 Deep Tanks - VES-WG-100, VES-WG-101, VES-WH-100, & VES-WH-101 (con't.)

Metals, Anions, and Miscellaneous (con't.)

| Analyte    | Units        | Method<br>Number | Sample Lo<br>990421 |     | Sample Lo<br>990610 |     | Sample Log #<br>9907081 |     | Sample Log #<br>9908101 |     |
|------------|--------------|------------------|---------------------|-----|---------------------|-----|-------------------------|-----|-------------------------|-----|
|            |              |                  | Results             | LQF | Results             | LQF | Results                 | LQF | Results                 | LQF |
| pН         |              | EPA150.1         | 0.7                 | U   |                     |     |                         |     |                         |     |
| Acidity    | N            | AC7012           |                     |     | 3.0E00              | N   | 3.5E-01                 | В   | 2.87E-01                | В   |
| Aluminum   | μg/L         | SW6010B          | 5.08E+05            |     | 8.74E+04            |     | 6.06E+04                |     | 2.02E+05                |     |
| Antimony   | μg/L         | SW6010B          | 9.28E+01            | В   | 4.90E+01            | В   | 1.49E+01                | В   | 6.34E+01                | В   |
| Arsenic    | μg/L         | SW6010B          | 2.37E+01            | В   | 1.48E+01            | U   | 2.18E+01                | В   | 5.96E+01                | В   |
| Barium     | μg/L         | SW6010B          | 7.00E+01            |     | 9.92E+01            |     | 9.65E+01                |     | 7.04E+01                |     |
| Beryllium  | μg/L         | SW6010B          | 4.2E00              |     | 4.9E00              |     | 1.1E00                  |     | 2.8E00                  |     |
| Boron      | μg/L         | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Cadmium    | μg/L         | SW6010B          | 2.96E+02            |     | 1.16E+02            |     | 1.86E+02                |     | 1.94E+02                |     |
| Calcium    | μg/L         | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Chloride   | μg/L         | AC7171           |                     |     |                     |     | ,                       |     |                         |     |
| Chromium   | µg/L         | SW6010B          | 6.75E+02            | N   | 1.28E+03            |     | 5.72E+02                |     | 5.71E+02                |     |
| Cobalt     | μg/L         | SW6010B          | 3.55E+01            |     |                     |     | 4.18E+01                |     | 6.55E+01                |     |
| Copper     | μg/L         | SW6010B          | 4.62E+02            |     |                     |     | 1.07E+03                |     | 8.04E+02                |     |
| Fluoride   | µg/L         | AC7093           | 2.56E+04            | U   | 1.32E+04            | В   | 1.87E+04                | В   | 1.82E+04                | В   |
| Iron       | μg/L         | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Lead       | µg/L         | SW6010B          | 4.90E+02            |     | 3.03E+02            |     | 2.67E+02                |     | 4.42E+02                |     |
| Manganese  | μg/L         | SW6010B          | 1.53E+03            |     |                     |     | 6.72E+02                |     | 1.10E+03                |     |
| Mercury    | μg/L         | SW7470A          | 6.97E+03            |     | 2.73E+03            |     | 1.22E+03                |     | 4.33E+03                | Е   |
| Nickel     | μg/L         | SW6010B          | 4.09E+02            | N   | 5.39E+02            | E   | 3.66E+02                |     | 4.72E+02                |     |
| Nitrate    | μg/L         | AC7074           |                     |     |                     |     |                         |     |                         |     |
| Phosphorus | μg/L         | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Potassium  | μg/L         | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Selenium   | μg/L         | SW6010B          | 2.17E+01            | U   | 2.17E+01            | U   | 2.17E+01                | U   | 2.17E+01                | U   |
| Silver     | µg/L         | SW6010B          | 3.23E+01            | В   | 1.24E+02            | N   | 2.29E+01                | В   | 1.76E+01                | В   |
| Sodium     | μg/L         | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Sulfur     | μg/L         | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| Thallium   | μg/L         | SW6010B          | 2.24E+01            | U   | 2.24E+01            | U   | 2.24E+01                | U   | 2.24E+01                | U   |
| Uranium    | μg/ <b>L</b> | AC7920           | 1.89E+02            | U   |                     |     |                         |     | 1.94E+02                |     |
| Vanadium   | μg/L         | SW6010B          | 6.6E00              | В   | 1.33E+01            | В   | 7.6E00                  | В   | 4.3E00                  | В   |
| Zinc       | μg/L         | SW6010B          | 1.48E+03            |     | 1.62E+03            |     | 9.48E+02                |     | 1.67E+03                |     |
| Zirconium  | μg/L         | SW6010B          |                     |     |                     |     |                         |     |                         |     |
| UDS        | μg/L         | AC7972           |                     |     |                     |     |                         |     | 2.7E+03                 | UE  |
| TIC        | μg/L         | AC8060           | 2.23E+04            | U   |                     |     |                         |     | 1.80E+04                | U   |
| TOC        | μg/L         | SW9060           | 9.88E+04            | В   |                     |     |                         |     | 1.50E+05                |     |

### **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0 Page 26 of 42

## <u>CPP-601 Deep Tanks – VES-WG-100, VES-WG-101, VES-WH-100, & VES-WH-101 (con't.)</u>

| Metals, Anions, and Miscellaneous (con't.) |       |                  |                     |     |                    |     |                         |     |                         |     |
|--------------------------------------------|-------|------------------|---------------------|-----|--------------------|-----|-------------------------|-----|-------------------------|-----|
| Analyte                                    | Units | Method<br>Number | Sample Lo<br>991101 |     | Sample L<br>991122 |     | Sample Log #<br>9911301 |     | Sample Log #<br>9912131 |     |
| ***************************************    |       |                  | Results             | LQF | Results            | LQF | Results                 | LQF | Results                 | LQF |
| pН                                         |       | EPA150.1         |                     |     |                    |     |                         |     |                         |     |
| Acidity                                    | N     | AC7012           | 5.1E-01             | U   | 5.0E-01            | В   | 3.0E-01                 | В   | 5.0E-01                 | В   |
| Aluminum                                   | μg/L  | SW6010B          | 6.19E+04            |     | 2.21E+04           |     | 2.06E+05                |     | 2.34E+04                |     |
| Antimony                                   | μg/L  | SW6010B          | 6.34E+01            |     | 3.9E00             | U   | 2.05E+01                | ΒN  | 2.04E+01                | ΒN  |
| Arsenic                                    | μg/L  | SW6010B          | 5.34E+01            |     | 3.9E00             | U   | 4.2E00                  | U   | 1.28E+01                | В   |
| Barium                                     | µg/L  | SW6010B          | 1.32E+02            |     | 4.10E+02           |     | 2.19E+02                |     | 9.01E+01                |     |
| Beryllium                                  | µg/L  | SW6010B          | 2.41E+01            |     | 4.3E00             |     | 3.1E00                  |     | 9.0E00                  | В   |
| Boron                                      | µg/L  | SW6010B          |                     |     |                    |     |                         |     |                         |     |
| Cadmium                                    | μg/L  | SW6010B          | 9.46E+01            |     | 6.56E+01           |     | 9.01E+01                |     | 4.01E+01                |     |
| Calcium                                    | µg/L  | SW6010B          |                     |     |                    |     |                         |     |                         |     |
| Chloride                                   | µg/L  | AC7171           |                     |     |                    |     |                         |     |                         |     |
| Chromium                                   | μg/L  | SW6010B          | 8.22E+02            |     | 9.62E+02           |     | 5.14E+02                |     | 5.55E+02                |     |
| Cobalt                                     | μg/L  | SW6010B          | 7.74E+01            |     | 5.19E+01           |     | 3.71E+01                |     | 3.53E+01                |     |
| Copper                                     | μg/L  | SW6010B          | 8.59E+02            | N   | 1.12E+03           |     | 3.96E+02                |     | 5.34E+02                |     |
| Fluoride                                   | μg/L  | AC7093           | 1.98E+04            | В   | 1.68E+04           | В   | 2.17E+04                | В   | 1.56E+04                | В   |
| Iron                                       | μg/L  | SW6010B          |                     |     |                    |     |                         |     |                         |     |
| Lead                                       | μg/L  | SW6010B          | 2.76E+03            |     | 6.82E+02           |     | 1.99E+02                |     | 9.83E+02                |     |
| Manganese                                  | μg/L  | SW6010B          | 8.33E+02            |     | 3.76E+02           |     | 8.99E+02                |     | 3.75E+02                |     |
| Mercury                                    | μg/L  | SW7470A          | 1.34E+03            |     | 7.08E+02           |     | 1.70E+03                |     | 5.57E+02                |     |
| Nickel                                     | µg/L  | SW6010B          | 5.29E+02            |     | 5.90E+02           |     | 3.62E+02                |     | 3.54E+02                |     |
| Nitrate                                    | μg/L  | AC7074           |                     |     |                    |     |                         |     |                         |     |
| Phosphorus                                 | μg/L  | SW6010B          |                     |     |                    |     |                         |     |                         |     |
| Potassium                                  | μg/L  | SW6010B          |                     |     |                    |     |                         |     |                         |     |
| Selenium                                   | μg/L  | SW6010B          | 1.23E+01            | В   | 3.7E00             | U   | 3.2E00                  | U   | 7.0E00                  | В   |
| Silver                                     | µg/L  | SW6010B          | 6.61E+01            | N   | 4.11E+02           |     | 2.40E+01                |     | 1.61E+01                | В   |
| Sodium                                     | μg/L  | SW6010B          |                     |     |                    |     |                         |     |                         |     |
| Sulfur                                     | μg/L  | SW6010B          |                     |     |                    |     |                         |     |                         |     |
| Thallium                                   | µg/L  | SW6010B          | 2.39E+01            | В   | 4.5E00             | U   | 6.8E00                  | В   | 4.6E00                  | U   |
| Uranium                                    | μg/L  | AC7920           | 4.05E+02            |     | 2.03E+02           |     | 1.70E+02                |     | 2.94E+02                |     |
| Vanadium                                   | μg/L  | SW6010B          | 2.34E+01            | В   | 9.6E00             | В   | 2.1E00                  | U   | 1.23E+01                | В   |
| Zinc                                       | μg/L  | SW6010B          | 1.59E+03            | E   | 6.79E+02           |     | 9.42E+02                |     | 6.56E+02                |     |
| Zirconium                                  | μg/L  | SW6010B          |                     |     |                    |     |                         |     |                         |     |
| UDS                                        | μg/L  | AC7972           |                     |     |                    |     |                         |     |                         |     |
| TIC                                        | μg/L  | AC8060           | 4.79E+03            | В   | 3.5E+03            | U   | 2.76E+04                | U   | 1.38E+04                | U   |
| TOC                                        | μg/L  | SW9060           | 1.14E+05            |     | 4.34E+04           |     | 1.87E+05                |     | 6.64E+04                |     |

## **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0 Page 27 of 42

### <u>CPP-601 Deep Tanks – VES-WG-100, VES-WG-101, VES-WH-100, & VES-WH-101 (con't.)</u>

Metals, Anions, and Miscellaneous (con't.)

| Analyte    | Units        | Method<br>Number | Sample Lo<br>000110 |     | Sample Lo |     | Sample L<br>000214 |     | Sample Log #<br>0003202 |     |
|------------|--------------|------------------|---------------------|-----|-----------|-----|--------------------|-----|-------------------------|-----|
|            |              |                  | Results             | LQF | Results   | LQF | Results            | LQF | Results                 | LQF |
| pН         |              | EPA150.1         |                     |     |           |     |                    |     |                         |     |
| Acidity    | N            | AC7012           | 6.0E-01             |     | 3.0E-01   | В   | 7.0E-01            |     | 4.0E-01                 | В   |
| Aluminum   | μg/L         | SW6010B          | 2.28E+04            |     | 6.64E+04  |     | 4.83E+04           |     | 1.41E+05                |     |
| Antimony   | μg/L         | SW6010B          | 1.79E+01            | В   | 2.58E+01  | В   | 1.17E+01           | ΒN  | 1.91E+01                | ΒN  |
| Arsenic    | μg/L         | SW6010B          | 1.28E+01            | В   | 4.6E00    | В   | 5.8E00             | В   | 5.8E00                  | В   |
| Barium     | μg/L         | SW6010B          | 2.23E+02            | E   | 1.03E+02  | E   | 2.65E+02           |     | 6.85E+02                |     |
| Beryllium  | μg/L         | SW6010B          | 7.8E00              |     | 3.4E00    |     | 9.1E00             |     | 2.8E00                  |     |
| Boron      | μg/L         | SW6010B          |                     |     |           |     |                    |     |                         |     |
| Cadmium    | μg/L         | SW6010B          | 4.66E+01            |     | 4.15E+01  |     | 4.20E+01           |     | 1.97E+02                |     |
| Calcium    | μg/L         | SW6010B          |                     |     |           |     |                    |     |                         |     |
| Chloride   | µg/L         | AC7171           |                     |     |           |     |                    |     |                         |     |
| Chromium   | μg/L         | SW6010B          | 7.03E+02            | N   | 4.31E+02  |     | 8.75E+02           |     | 1.01E+03                |     |
| Cobalt     | μg/L         | SW6010B          | 4.28E+01            |     | 1.81E+02  |     | 8.89E+01           |     | 7.33E+01                |     |
| Copper     | μg/L         | SW6010B          | 6.88E+02            | N   | 2.90E+02  |     | 4.31E+02           |     | 1.13E+03                |     |
| Fluoride   | μg/L         | AC7093           | 1.53E+04            | В   | 1.52E+04  |     | 1.74E+04           | В   | 2.85E+04                | В   |
| Iron       | μg/L         | SW6010B          |                     |     |           |     |                    |     |                         |     |
| Lead       | μg/L         | SW6010B          | 8.65E+02            |     | 1.34E+02  |     | 6.52E+02           |     | 6.30E+02                |     |
| Manganese  | μg/L         | SW6010B          | 3.71E+02            |     | 4.19E+02  |     | 5.68E+02           |     | 1.62E+03                |     |
| Mercury    | μg/L         | SW7470A          | 7.59E+02            |     | 9.29E+02  |     | 2.51E+02           |     | 3.07E+03                | E   |
| Nickel     | μg/L         | SW6010B          | 4.70E+02            | N   | 2.97E+02  |     | 5.81E+02           |     | 7.83E+02                |     |
| Nitrate    | μg/L         | AC7074           |                     |     |           |     |                    |     |                         |     |
| Phosphorus | µg/L         | SW6010B          |                     |     |           |     |                    |     |                         |     |
| Potassium  | μg/L         | SW6010B          |                     |     |           |     |                    |     |                         |     |
| Selenium   | μg/L         | SW6010B          | 4.5E00              | В   | 3.2E00    | U   | 3.7E00             | U   | 3.7E00                  | U   |
| Silver     | μg/ <b>L</b> | SW6010B          | 4.2E00              | В   | 7.2E00    | В   | 4.01E+01           |     | 1.39E+01                |     |
| Sodium     | μg/L         | SW6010B          |                     |     |           |     |                    |     |                         |     |
| Sulfur     | μg/L         | SW6010B          |                     |     |           |     |                    |     |                         |     |
| Thallium   | μg/L         | SW6010B          | 1.16E+01            | В   | 1.10E+01  | В   | 4.5E00             | U   | 4.5E00                  | U   |
| Uranium    | μg/L         | AC7920           | 2.87E+02            |     | 1.40E+02  | U   | 1.88E+02           |     | 2.10E+02                |     |
| Vanadium   | μg/L         | SW6010B          | 1.07E+01            |     | 5.2E00    | В   | 1.28E+01           | В   | 5.5E00                  | В   |
| Zinc       | µg/L         | SW6010B          | 6.32E+02            |     | 6.29E+02  | Е   | 1.21E+03           |     | 9.42E+03                |     |
| Zirconium  | μg/L         | SW6010B          |                     |     |           |     |                    |     |                         |     |
| UDS        | µg/Ł         | AC7972           |                     |     |           |     | 5.75E+04           |     | 1.90E+05                |     |
| TIC        | µg/L         | AC8060           | 9.40E+03            | U   | 2.81E+04  | U   | 1.41E+04           | U   | 2.81E+04                | UE  |
| тос        | μg/L         | SW9060           | 5.39E+04            |     | 8.15E+04  |     | 9.57E+04           |     | 2.65E+05                |     |

EDF-Rev. No. 2506 Page 28 of 42

#### <u>CPP-601 Deep Tanks – VES-WG-100, VES-WG-101, VES-WH-100, & VES-WH-101 (con't.)</u>

Volatile Organic Compounds and Semi-volatile Organic Compounds

| Analyte                         | Units        | Method<br>Number | Sample L<br>981109 |     | Sample L<br>990119 |     | Sample L<br>99021 |     | Sample Log #<br>9904133 |     |
|---------------------------------|--------------|------------------|--------------------|-----|--------------------|-----|-------------------|-----|-------------------------|-----|
|                                 |              |                  | Results            | LQF | Results            | LQF | Results           | LQF | Results                 | LQF |
| Semi-Volatile O                 | rganic C     | ompounds         |                    |     |                    |     |                   |     |                         |     |
| 2,4-Dinitrophenol               | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U   | 2.5E+01           | U   | 3.2E+01                 | м   |
| 2,4-Dinitrotoluene              | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U   | 2.5E+01           | U   | 2.5E+01                 | U   |
| 2,6-Dinitrotoluene              | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U   | 2.5E+01           | U   | 2.5E+01                 | υ   |
| 4-Nitrophenol                   | µg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U   | 2.5E+01           | U   | 2.5E+01                 | U   |
| 4,6-Dinitro-2-<br>methylphenol  | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U   | 2.5E+01           | U   | 2.5E+01                 | U M |
| Bis-(2-ethylhexyl)<br>phthalate | μg/L         | SW8270C          | 1.5E+02            | D   | 2.5E+01            | U   | 3.05E+02          | D   | 7.0E+01                 |     |
| Butylbenzyl phthalate           | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U   | 2.5E+01           | U   | 2.5E+01                 | υ   |
| Diethylphthalate                | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U   | 2.5E+01           | U   | 2.5E+01                 | UM  |
| Di-n-octyl phthalate            | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U   | 2.5E+01           | U   | 2.5E+01                 | U   |
| Nitrobenzene                    | μg/ <b>L</b> | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U   | 2.5E+01           | บ   | 2.5E+01                 | U M |
| n-<br>Nitrosodimethylamine      | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U   | 2.5E+01           | υ   | 2.5E+01                 | U M |
| Pyridine                        | μg/L         | SW8270C          | 3E+01              |     | 2.5E+01            | U   | 2.5E+01           | U   | 2.5E+01                 | U   |
| Tri-n-butyl phosphate           | μg/L         | SW8270C          | 1.3E+04            | D   | 7.1E+03            | D   | 2.5E+01           | U   | 2.5E+01                 | UM  |
| Volatile Organic                | Compo        | unds             |                    |     |                    |     |                   |     |                         |     |
| 1,1-Dichloroethane              | µg/L         | SW8260A          | 2.0E00             | U   | 2.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | U   |
| 1,1,1-Trichloroethane           | μg/L         | SW8260A          | 2.0E00             | U   | 2.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | U   |
| 2-Butanone                      | μg/L         | SW8260A          | 4.0E00             | U   | 4.0E00             | U   | 4.2E00            |     | 1.0E+01                 | υ   |
| 2-Hexanone                      | µg/L         | SW8260A          | 3.0E00             | U   | 3.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | UM  |
| 4-Methyl-2-pentanone            | µg/L         | SW8260A          | 7.8E00             | J   | 4.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | บ   |
| Acetone                         | μg/L         | SW8260A          | 1.6E+02            |     | 3.9E+01            |     | 1.0E+01           | U   | 2.6E+02                 | E   |
| Benzene                         | μg/L         | SW8260A          | 2.0E00             | U   | 2.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | υм  |
| Bromodichloromethane            | μg/L         | SW8260A          | 2.0E00             | U   | 2.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | U   |
| Bromoform                       | µg/L         | SW8260A          | 3.0E00             | U   | 3.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | U   |
| Bromomethane                    | μg/L         | SW8260A          | 2.0E00             | U   | 2.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | U   |
| Carbon disulfide                | μg/L         | SW8260A          | 2.0E00             | υ   | 2.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | U   |
| Carbon tetrachloride            | μg/L         | SW8260A          | 2.0E00             | U   | 2.0E00             | U   | 1.3E00            | J   | 1.0E+01                 | U   |
| Chloroform                      | µg/L         | SW8260A          | 2.0E00             | U   | 2.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | U   |
| Chloromethane                   | µg/L         | SW8260A          | 3.0E00             | U   | 3.0E00             | U   | 2.0E00            | U   | 1.0E+01                 | υ   |
| Dibromochloromethane            | µg/L         | SW8260A          | 2.0E00             | U   | 2.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | U   |
| Dichloromethane                 | µg/L         | SW8260A          | 2.0E00             | IJ  | 2.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | UM  |
| Styrene                         | µg/L         | SW8260A          | 3.0E00             | U   | 3.0E00             | U   | 1.0E00            | U   | 1.0E+01                 | UN  |
| Trichlorofluoromethane          | μg/L         | SW8260A          |                    |     |                    |     |                   |     | 1.0E+01                 | U   |

Tentatively Identified Organic Compounds

| no. Ided / total conc. | µa/L | 21 / 1.87E+03 |
|------------------------|------|---------------|
| no. Idea / total conc. | µg/L | <br>          |

EDF- 2506 Rev. No. 0 Page 29 of 42

#### <u>CPP-601 Deep Tanks – VES-WG-100, VES-WG-101, VES-WH-100, & VES-WH-101 (con't.)</u>

Volatile Organic Compounds and Semi-volatile Organic Compounds (con't.)

| Analyte                         | Units        | Method<br>Number                      | Sample I<br>99042 |            | Sample L<br>99061 |     | Sample L<br>99070 |     | Sample L<br>99081 |     |
|---------------------------------|--------------|---------------------------------------|-------------------|------------|-------------------|-----|-------------------|-----|-------------------|-----|
|                                 |              | · · · · · · · · · · · · · · · · · · · | Results           | LQF        | Results           | LQF | Results           | LQF | Results           | LQI |
| Semi-Volatile Or                | ganic C      | ompounds                              |                   |            |                   |     |                   |     |                   |     |
| 2,4-Dinitrophenol               | µg/L         | SW8270C                               | 2E+01             | UM         | 2E+01             | UM  | 2.5E+01           | UM  | 2.5E+01           | UN  |
| 2,4-Dinitrotoluene              | μ <b>g/L</b> | SW8270C                               | 2E+01             | U          | 2E+01             | U   | 2.5E+01           | U   | 2.5E+01           | U   |
| 2,6-Dinitrotoluene              | μg/L         | SW8270C                               | 2E+01             | U          | 2E+01             | U   | 2.5E+01           | U   | 2.5E+01           | U   |
| 1-Nitrophenol                   | μg/L         | SW8270C                               | 2E+01             | UM         | 2E+01             | U   | 2.5E+01           | U   | 2.5E+01           | U   |
| 1,6-Dinitro-2-<br>nethylphenol  | µg/L         | SW8270C                               | 2E+01             | υм         | 2E+01             | U M | 2.5E+01           | U   | 2.5E+01           | UN  |
| 3is-(2-ethylhexyl)<br>ohthalate | µg/L         | SW8270C                               | 2E+01             | U          | 6.8E+01           |     | 5E+02             | D   | 3.0E+02           | D   |
| Butylbenzyl phthalate           | μg/L         | SW8270C                               | 2E+01             | U          | 2E+01             | U   | 2.5E+01           | U   | 2.5E+01           | U   |
| Diethylphthalate                | μg/L         | SW8270C                               | 2E+01             | U <b>M</b> | 2E+01             | U   | 2.5E+01           | U   | 2.5E+01           | UN  |
| Di-n-octyl phthalate            | μg/L         | SW8270C                               | 2E+01             | U          | 2E+01             | U   | 2.5E+01           | U   | 2.5E+01           | U   |
| Nitrobenzene                    | μg/L         | SW8270C                               | 2E+01             | UM         | 2E+01             | UM  | 2.5E+01           | UM  | 2.5E+01           | U   |
| n-<br>Nitrosodimethylamine      | μg/L         | SW8270C                               | 2E+01             | U          | 2E+01             | U   | 2.5E+01           | UM  | 2.5E+01           | υ   |
| yridine 2                       | μg/L         | SW8270C                               | 2E+01             | U          | 2E+01             | U   | 2.5E+01           | U   | 1.6E+03           | D   |
| ri-n-butyl phosphate            | μg/L         | SW8270C                               | 1.5E+02           | М          | 2E+01             | U   | 9.6E+03           | D   | 1.4E+04           | DI  |
| /olatile Organic                | Compo        | unds ·                                |                   |            |                   |     |                   |     |                   |     |
| ,1-Dichloroethane               | μg/L         | SW8260A                               | 1E+01             | U          | 1E+01             | U   | 1E+01             | UM  | 1E+01             | U   |
| ,1,1-Trichloroethane            | μg/L         | SW8260A                               | 1E+01             | U          | 1E+01             | U   | 1E+01             | U   | 1E+01             | U   |
| 2-Butanone                      | μg/L         | SW8260A                               | 1E+01             | U          | 1E+01             | U   | 1E+01             | U   | 1E+01             | U   |
| -Hexanone                       | μg/L         | SW8260A                               | 1E+01             | UM         | 1E+01             | UM  | 1E+01             | UM  | 1E+01             | U   |
| -Methyl-2-pentanone             | µg/L         | SW8260A                               | 1.2E+01           |            | 1E+01             | U   | 1E+01             | U   | 1E+01             | U   |
| Acetone                         | μg/L         | SW8260A                               | 1E+03             | E          | 1E+01             | UM  | 1E+01             | UM  | 5.5E+02           | E   |
| Benzene                         | μg/L         | SW8260A                               | 1E+01             | UM         | 1E+01             | UM  | 1E+01             | UM  | 1E+01             | UN  |
| Bromodichloromethane            | μg/L         | SW8260A                               | 1E+01             | U          | 1E+01             | U   | 1E+01             | U   | 1E+01             | U   |
| Bromoform                       | μg/L         | SW8260A                               | 1E+01             | U          | 1E+01             | UM  | 1E+01             | U   | 1E+01             | U   |
| Bromomethane                    | μg/L         | SW8260A                               | 1E+01             | U          | 4E00              | JBM | 2E00              | JBM | 3E00              | JB  |
| Carbon disulfide                | μg/L         | SW8260A                               | 1E+01             | U          | 1E+01             | U   | 1E+01             | U   | 1E+01             | υ   |
| Carbon tetrachloride            | μg/L         | SW8260A                               | 1E+01             | U          | 1E+01             | U   | 1E+01             | U   | 1E+01             | υ   |
| Chloroform                      | μg/L         | SW8260A                               | 1E+01             | U          | 1E+01             | U   | 1E+01             | U   | 1E+01             | U   |
| Chloromethane                   | μg/L         | SW8260A                               | 1E+01             | U          | 1E+01             | υz  | 1E+01             | U   | 1E+01             | U   |
| Dibromochloromethane            | μg/L         | SW8260A                               | 1E+01             | U          | 1E+01             | U   | 1E+01             | U   | 1E+01             | U   |
| Dichloromethane                 | μg/L         | SW8260A                               | 1E+01             | U M        | 1E+01             | U   | 1E+01             | UM  | 1E+01             | U   |
| Styrene                         | μg/L         | SW8260A                               | 1E+01             | U M        | 1E+01             | U   | 1E+01             | UM  | 1E+01             | U   |
| Trichlorofluoromethane          | μg/L         | SW8260A                               | 1E+01             | U          | 1E+01             | U   | 1E+01             | U   | 1E+01             | U   |

no. Ided / total conc. µg/L 9 / 3.28E+02 15 / 8.13E+02 22 / 1.47E+03 7 / 6.26E+02

EDF- 2506 Rev. No. 0 Page 30 of 42

#### <u>CPP-601 Deep Tanks – VES-WG-100, VES-WG-101, VES-WH-100, & VES-WH-101 (con't.)</u>

Volatile Organic Compounds and Semi-volatile Organic Compounds (con't.)

| Analyte                         | Units        | Method<br>Number | Sample L<br>99110 |     | Sample L<br>991122 |     | Sample L<br>99113 |     | Sample Log #<br>9912131 |     |
|---------------------------------|--------------|------------------|-------------------|-----|--------------------|-----|-------------------|-----|-------------------------|-----|
|                                 |              |                  | Results           | LQF | Results            | LQF | Results           | LQF | Results                 | LQI |
| Semi-Volatile Or                | ganic C      | ompounds         |                   |     |                    |     |                   |     |                         |     |
| 2,4-Dinitrophenol               | μg/L         | SW8270C          | 4E+01             | UM  | 4E+01              | UM  | 4E+01             | UM  | 6E+01                   | UN  |
| 2,4-Dinitrotoluene              | μg/ <b>L</b> | SW8270C          | 4E+01             | U   | 2E+01              | U   | 2E+01             | U   | 2E+01                   | U   |
| 2,6-Dinitrotoluene              | μg/L         | SW8270C          | 4E+01             | U   | 2E+01              | U   | 2E+01             | U   | 2E+01                   | U   |
| 4-Nitrophenol                   | μg/L         | SW8270C          | 4E+01             | υм  | 4E+01              | U   | 4E+01             | U   | 6E+01                   | U   |
| 4,6-Dinitro-2-<br>nethylphenol  | μg/L         | SW8270C          | 4E+01             | U   | 4E+01              | UM  | 4E+01             | U M | 6E+01                   | U   |
| 3is-(2-ethylhexyl)<br>ohthalate | μg/L         | SW8270C          | 4.9E+01           | М   | 1.2E+02            |     | 5E+01             |     | 2E+01                   | U   |
| Butylbenzyl phthalate           | μg/L         | SW8270C          | 2.9E+01           | JM  | 2E+01              | U   | 2.4E+01           |     | 2E+01                   | U   |
| Diethylphthalate                | μg/L         | SW8270C          | 4E+01             | U   | 2E+01              | UM  | 2E+01             | υM  | 2E+01                   | UN  |
| Di-n-octyl phthalate            | μg/L         | SW8270C          | 4E+01             | UM  | 2E+01              | υ   | 2E+01             | U   | 2E+01                   | U   |
| Nitrobenzene                    | µg/L         | SW8270C          | 4E+01             | U   | 2E+01              | U   | 2E+01             | U   | 2E+01                   | UM  |
| n-<br>Nitrosodimethylamine      | μg/ <b>L</b> | SW8270C          | 4E+01             | U   | 2E+01              | U   | 2E+01             | U   | 2E+01                   | UN  |
| Pyridine                        | µg/L         | SW8270C          | 4E+01             | U   | 2E+01              | U   | 1.3E+02           |     | 2E+01                   | U   |
| ri-n-butyl phosphate            | μg/L         | SW8270C          | 8.8E+01           | D   | 2E+01              | UМ  | 2E+01             | U M | 6E+01                   | UN  |
| Volatile Organic                | Compo        | unds             |                   |     |                    |     |                   |     |                         |     |
| 1,1-Dichloroethane              | μg/L         | SW8260A          | 1E+01             | U   | 1.0E00             | U   | 1.0E00            | U   | 1E+01                   | U   |
| 1,1,1-Trichloroethane           | μg/L         | SW8260A          | 1E+01             | U   | 1.0E00             | U   | 1.0E00            | U   | 1E+01                   | U   |
| 2-Butanone                      | μg/L         | SW8260A          | 1E+01             | U   | 2.0E00             | U   | 2.0E00            | υ   | 1E+01                   | UN  |
| 2-Hexanone                      | µg/L         | SW8260A          | 1E+01             | U   | 2.0E00             | U   | 2.0E00            | U   | 1E+01                   | UN  |
| 1-Methyl-2-pentanone            | μ <b>g/L</b> | SW8260A          | 1E+01             | U   | 2.0E00             | U   | 2.0E00            | U   | 1E+01                   | UN  |
| Acetone                         | μg/L         | SW8260A          | 2.6E+02           | E   | 1.3E+02            | В   | 2.2E00            | вјм | 8.48E+02                | ΕN  |
| Benzene                         | μg/L         | SW8260A          | 4E00              | JBM | 1.0E00             | υM  | 1.0E00            | U   | 1E+01                   | UN  |
| Bromodichloromethane            | μ <b>g/L</b> | SW8260A          | 1E+01             | U   | 1.0E00             | U   | 1.0E00            | U   | 1E+01                   | U   |
| Bromoform                       | μg/L         | SW8260A          | 1E+01             | U   | 2.0E00             | U   | 2.0E00            | U   | 1E+01                   | U   |
| Bromomethane                    | μg/L         | SW8260A          | 1E+01             | U   | 2.0E00             | U   | 2.0E00            | U   | 1E+01                   | U   |
| Carbon disulfide                | μg/L         | SW8260A          | 1E+01             | U   | 1.0E00             | U   | 1.0E00            | U   | 1E+01                   | U   |
| Carbon tetrachloride            | µg/L         | SW8260A          | 1E+01             | U   | 2.0E00             | U   | 2.0E00            | U   | 1E+01                   | υ   |
| Chloroform                      | µg/L         | SW8260A          | 1E+01             | U   | 1.0E00             | U   | 1.0E00            | UΖ  | 1E+01                   | U   |
| Chloromethane                   | µg/L         | SW8260A          | 1E+01             | U   | 2.0E00             | U   | 2.0E00            | U   | 1E+01                   | UN  |
| Dibromochloromethane            | μg/L         | SW8260A          | 1E+01             | U   | 1.0E00             | U   | 1.0E00            | U   | 1E+01                   | U   |
| Dichloromethane                 | μg/L         | SW8260A          | 1E+01             | UM  | 1.0E00             | U M | 1.0E00            | UM  | 1E+01                   | UN  |
| Styrene                         | μg/L         | SW8260A          | 1E+01             | UM  | 1.0E00             | υм  | 1.0E00            | UM  | 1E+01                   | U   |
|                                 |              | SW8260A          | 1E+01             | U   | 1.0E00             | U   | 1.0E00            | U   | 1E+01                   | υ   |

no, Ided / total conc. μg/L 21/2.36E+03 27/1.37E+04 17/9.18E+02 8/1.20E+02

EDF- 2506 Rev. No. 0

#### CPP-601 Deep Tanks - VES-WG-100, VES-WG-101, VES-WH-100, & VES-WH-101 (con't.)

Volatile Organic Compounds and Semi-volatile Organic Compounds (con't.)

| Analyte                         | Units        | Method<br>Number | Sample L<br>00011 |     | Sample L<br>000111 |     | Sample L<br>00021 |          | Sample L<br>000320 |          |
|---------------------------------|--------------|------------------|-------------------|-----|--------------------|-----|-------------------|----------|--------------------|----------|
|                                 |              |                  | Results           | LQF | Results            | LQF | Results           | LQF      | Results            | LQ       |
| Semi-Volatile Org               | ganic C      | ompounds         |                   |     |                    |     |                   |          |                    |          |
| 2,4-Dinitrophenol               | μg/L         | SW8270C          | 4E+01             | UM  | 4E+01              | UM  | 4E+01             | U M      | 3.6E+01            | JM       |
| 2,4-Dinitrotoluene              | μg/L         | SW8270C          | 4E+01             | U   | 4E+01              | U   | 4E+01             | U        | 4E+01              | U        |
| 2,6-Dinitrotoluene              | μg/L         | SW8270C          | 4E+01             | U   | 4E+01              | U   | 4E+01             | U        | 4E+01              | U        |
| 4-Nitrophenol                   | μg/L         | SW8270C          | 4E+01             | U   | 4E+01              | U   | 4E+01             | UM       | 4E+01              | U I<br>Z |
| 4,6-Dinitro-2-<br>methylphenol  | μ <b>g/L</b> | SW8270C          | 4E+01             | UM  | 4E+01              | UM  | 4E+01             | UM       | 4E+01              | U I<br>Z |
| Bis-(2-ethylhexyl)<br>phthalate | μg/L         | SW8270C          | 3.2E+01           | J   | 5.6E+01            |     | 2.9E+01           | J M      | 4.4E+01            | м        |
| Butylbenzyl phthalate           | µg/L         | SW8270C          | 7E00              | J   | 1.5E+01            | J   | 4E+01             | U        | 4.1E+02            | D        |
| Diethylphthalate                | μg/L         | SW8270C          | 4E00              | J   | 3E00               | J   | 4E+01             | U        | 8E00               | JZ       |
| Di-n-octyl phthalate            | μg/L         | SW8270C          | 4E+01             | U   | 4E+01              | U   | 4E+01             | UM       | 4E+01              | U N<br>Z |
| Nitrobenzene                    | µg/L         | SW8270C          | 4E+01             | U   | 4E+01              | U   | 4E+01             | U        | 4E+01              | U Z      |
| n-<br>Nitrosodimethylamine      | μg/L         | SW8270C          | 4E+01             | U   | 4E+01              | U   | 4E+01             | U        | 4E+01              | U:       |
| Pyridine                        | μ <b>g/L</b> | SW8270C          | 4E+01             | U   | 4E+01              | U   | 4E+01             | υ        | 7.2E+02            | D        |
| Fri-n-butyl phosphate           | μg/L         | SW8270C          | 8.5E+02           | D   | 8.7E+02            | D   | 1.4E+02           |          | 1.4E+03            | ΕD       |
| Volatile Organic                | Compo        | unds             |                   |     |                    |     |                   |          |                    |          |
| 1,1-Dichloroethane              | μg/L         | SW8260A          | 1E00              | U   | 1E00               | U   | 1E+01             | U        | 1E+01              | U        |
| 1,1,1-Trichloroethane           | μg/L         | SW8260A          | 1E00              | U   | 1E00               | U   | 1E+01             | U        | 1E+01              | υ        |
| 2-Butanone                      | μg/L         | SW8260A          | 2E00              | UM  | 2E00               | UM  | 1E+01             | UM       | 1E+01              | U        |
| 2-Hexanone                      | μg/L         | SW8260A          | 2E00              | UM  | 2E00               | UM  | 1E+01             | UM       | 1E+01              | U        |
| 4-Methyl-2-pentanone            | μg/L         | SW8260A          | 2E00              | UM  | 7E00               | JM  | 1E+01             | U        | 1E+01              | U        |
| Acetone                         | μg/L         | SW8260A          | 1.6E+02           | ВМ  | 2.5E+02            | E M | 1E+01             | U B<br>M | 3.8E+02            | E E<br>M |
| Benzene                         | μ <b>g/L</b> | SW8260A          | 1E00              | UM  | 1E00               | UM  | 1E+01             | UM       | 1E+01              | UN       |
| Bromodichloromethane            | μ <b>g/L</b> | SW8260A          | 1E00              | U   | 1E00               | U   | 1E+01             | U        | 1E+01              | U        |
| Bromoform                       | μg/L         | SW8260A          | 2E00              | U   | 2E00               | U   | 1E+01             | U        | 1E+01              | U        |
| Bromomethane                    | µg/L         | SW8260A          | 2E00              | U   | 2E00               | U   | 1E+01             | U        | 1E+01              | U        |
| Carbon disulfide                | µg/L         | SW8260A          | 1E00              | υ   | 1E00               | U   | 1E+01             | U        | 1E+01              | U        |
| Carbon tetrachloride            | μ <b>g/L</b> | SW8260A          | 2E00              | U   | 2E00               | U   | 1E+01             | U        | 1E+01              | u        |
| Chloroform                      | µg/L         | SW8260A          | 1E00              | U   | 1E00               | U   | 1E+01             | U        | 1E+01              | U        |
| Chloromethane                   | µg/L         | SW8260A          | 2E00              | υM  | 2E00               | UM  | 1E+01             | U        | 1E+01              | UI       |
| Dibromochloromethane            | µg/L         | SW8260A          | 1E00              | U   | 1E00               | U   | 1E+01             | U        | 1E+01              | U        |
| Dichloromethane                 | μg/L         | SW8260A          | 1E00              | UM  | 1E00               | UM  | 2E00              | JBM      | 1E+01              | U        |
| Styrene                         | μg/L         | SW8260A          | 1E00              | UM  | 1E00               | UM  | 1E+01             | UM       | 1E+01              | UI       |
|                                 |              | SW8260A          | 1E00              | υ   | 1E00               | U   | 1E+01             | U.       | 1E+01              | u        |

14 / 5.88E+02

no. Ided / total conc. μg/L

22 / 6.54E+02

19 / 1.35E+03

21 / 8.09E+03



431.02 02/26/2002 Rev. 10

#### **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0 Page 34 of 42

#### PEWE Condensate Tanks - WL-106, WL-107, & WL-163

Metals, Anions, and Miscellaneous

| Analyte    | Units | Method<br>Number | Sample L<br>990324 |     | Sample Le<br>990327 |     | Sample L<br>990428 |     | Sample L<br>991115 |     |
|------------|-------|------------------|--------------------|-----|---------------------|-----|--------------------|-----|--------------------|-----|
|            |       |                  | Results            | LQF | Results             | LQF | Results            | LQF | Results            | LQF |
| pН         |       | EPA150.1         | 1.43               | В   | 1.43                | В   | 0.75               | В   |                    |     |
| Acidity    | N     | AC7012           |                    |     |                     |     |                    |     | 4.4E-01            |     |
| Aluminum   | µg/L  | SW6010B          | 2.41E+04           |     | 2.53E+04            |     | 3.67E+04           |     | 3.86E+04           |     |
| Antimony   | µg/L  | SW6010B          | 2.2E+01            | U   | 2.2E+01             | U   | 1.4E+01            | U   | 4.2E00             | U   |
| Arsenic    | μg/L  | SW6010B          | 2.37E+01           | U   | 2.37E+01            | U   | 1.48E+01           |     | 4.2E00             | U   |
| Barium     | μg/L  | SW6010B          | 1.3E00             | U   | 1.5E00              | В   | 4.1E00             | В   | 1.47E+01           |     |
| Beryllium  | µg/L  | SW6010B          | 2.0E-01            | U   | 2.0E-01             | U   | 1.0E-01            | В   | 2.0E-01            | В   |
| Boron      | µg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Cadmium    | µg/L  | SW6010B          | 2.1E00             | U   | 2.1E00              | U   | 1.3E00             | U   | 5.0E-01            | U   |
| Calcium    | μg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Chloride   | μg/L  | AC7171           |                    |     |                     |     |                    |     |                    |     |
| Chromium   | μg/L  | SW6010B          | 2.62E+01           |     | 2.15E+01            | В   | 3E00               | U   | 5.70E+01           |     |
| Cobalt     | μg/L  | SW6010B          | 2.2E00             | U   | 2.2E00              | U   | 2.7E00             | U   |                    |     |
| Copper     | μg/L  | SW6010B          | 4.4E00             | U   | 6.4E00              | В   | 7.7E00             | В   | 5.17E+01           |     |
| Fluoride   | μg/L  | AC7093           | 1.73E+03           |     | 1.24E+03            | В   | 2.55E+04           | U   | 7.37E+03           |     |
| Iron       | µg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Lead       | μg/L  | SW6010B          | 2.02E+01           | U   | 2.02E+01            | U   | 1.97E+01           | U   | 4.3E00             | U   |
| Manganese  | μg/L  | SW6010B          | 5.1E00             |     | 5.5E00              |     | 4.3E00             | В   | 7.6E00             |     |
| Mercury    | µg/L  | SW7470A          | 3.69E+01           |     | 2.98E+03            | N   | 1.14E+03           |     | 5.25E+03           | E   |
| Nickel     | μg/L  | SW6010B          | 2.00E+01           | В   | 1.76E+01            | В   | 4.6E00             | В   | 3.57E+01           |     |
| Nitrate    | μg/L  | AC7074           |                    |     |                     |     |                    |     |                    |     |
| Phosphorus | μg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Potassium  | μg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Selenium   | μg/L  | SW6010B          | 2.67E+01           | U   | 2.67E+01            | U   | 2.17E+01           | U   | 3.2E00             | U   |
| Silver     | μg/L  | SW6010B          | 6.2E00             | U   | 6.2E00              | U   | 3.5E00             | U   | 1.7E00             | U   |
| Sodium     | µg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Sulfur     | μg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| Thallium   | µg/L  | SW6010B          | 2.84E+01           | U   | 2.84E+01            | U   | 2.24E+01           | U   | 4.6E00             | U   |
| Uranium    | μg/L  | AC7920           |                    |     | 1.88E+02            | U   | 1.90E+02           | Ų   | 1.38E+02           | U   |
| Vanadium   | μg/L  | SW6010B          | 3.6E00             | U   | 3.6E00              | U   | 4.3E00             | U   | 2.1E00             | U   |
| Zinc       | μg/L  | SW6010B          | 1.01E+02           |     | 2.60E+02            |     | 5.12E+01           |     | 1.94E+02           | N   |
| Zirconium  | μg/L  | SW6010B          |                    |     |                     |     |                    |     |                    |     |
| UDS        | μg/L  | AC7972           |                    |     |                     |     |                    |     |                    |     |
| TIC        | µg/L  | AC8060           |                    |     | 2.33E+03            | U   | 4.7E+03            | U   | 3.45E+03           | U   |
| TOC        | μg/L  | SW9060           |                    |     | 3.12E+04            |     | 5.22E+04           |     | 2.77E+04           |     |

431.02 02/26/2002 Rev. 10

#### **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0 Page 35 of 42

#### PEWE Condensate Tanks - WL-106, WL-107, & WL-163 (con't.)

Metals, Anions, and Miscellaneous (con't.)

| Analyte    | Units | Method<br>Number | Sample Lo<br>000307 |     | Sample Lo<br>001114 |     | Sample Lo<br>010221 |     | Sample Le<br>010601 |     |
|------------|-------|------------------|---------------------|-----|---------------------|-----|---------------------|-----|---------------------|-----|
|            |       |                  | Results             | LQF | Results             | LQF | Results             | LQF | Results             | LQF |
| рH         |       | EPA150.1         |                     |     |                     |     |                     |     |                     |     |
| Acidity    | N     | AC7012           | 2.2E-01             |     | 1.9E-01             | В   | 6E-01               |     | 5.41E-01            |     |
| Aluminum   | μg/L  | SW6010B          | 2.55E+04            |     | 4.49E+04            |     | 2.41E+04            |     | 3.55E+04            |     |
| Antimony   | μg/L  | SW6010B          | 3.9E00              | U   | 6.7E00              | U   | 2.7E00              | IJ  | 4.9E00              | В   |
| Arsenic    | µg/L  | SW6010B          | 3.9E00              | U   | 4E00                | U   | 4.5E00              | U   | 2.9E00              | U   |
| Barium     | µg/L  | SW6010B          | 1.30E+01            |     | 1.3E00              | В   | 2.8E00              | В   | 2.79E+01            |     |
| Beryllium  | μg/L  | SW6010B          | 1.0E-01             | В   | 3E-01               | В   | 2E-01               | В   | 3E-01               | В   |
| Boron      | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                     |     |
| Cadmium    | µg/L  | SW6010B          | 7.0E-01             | В   | 5E-01               | U   | 3E-01               | В   | 4E-01               | U   |
| Calcium    | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                     |     |
| Chloride   | μg/L  | AC7171           |                     |     |                     |     |                     |     |                     |     |
| Chromium   | μg/L  | SW6010B          | 2.21E+01            |     | 1.25E+01            |     | 5.61E+01            |     | 4.37E+01            |     |
| Cobalt     | μg/L  | SW6010B          |                     |     | 1.2E00              | U   | 9E-01               | В   | 1.1E00              | В   |
| Copper     | μg/L  | SW6010B          | 3.4E00              | В   | 1.47E+01            |     | 1.96E+02            |     | 1.97E+01            |     |
| Fluoride   | μg/L  | AC7093           | 4.27E+03            |     | 5.7E+03             |     | 1.14E+05            | UN  | 3.65E+04            | U   |
| Iron       | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                     |     |
| Lead       | μg/L  | SW6010B          | 5E00                | U   | 4.7E00              | U   | 3.9E00              | U   | 6.3E00              | U   |
| Manganese  | μg/L  | SW6010B          | 3.1E00              |     | 2.1E00              |     | 8E00                |     | 5.4E00              |     |
| Mercury    | μg/L  | SW7470A          | 6.52E+02            |     | 3.37E+04            |     | 4.41E+04            |     | 3.66E+04            |     |
| Nickel     | μg/L  | SW6010B          | 1.26E+01            | В   | 8.2E00              | В   | 3.36E+01            |     | 3.13E+01            |     |
| Nitrate    | μg/L  | AC7074           |                     |     |                     |     |                     |     |                     |     |
| Phosphorus | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                     |     |
| Potassium  | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                     |     |
| Selenium   | μg/L  | SW6010B          | 3.7E00              | U   | 4.8E00              | U   | 2.9E00              | U   | 4.8E00              | U   |
| Silver     | μg/L  | SW6010B          | 3.4E00              | В   | 1.5E00              | U   | 1.7E00              | U   | 2E00                | U   |
| Sodium     | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                     |     |
| Sulfur     | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                     |     |
| Thallium   | μg/L  | SW6010B          | 4.5E00              | U   | 4.2E00              | U   | 3.8E00              | U   | 4E00                | U   |
| Uranium    | μg/L  | AC7920           | 1.41E+02            | U   |                     |     | 3.2E+02             | U   | 3.2E+02             | U   |
| Vanadium   | µg/L  | SW6010B          | 2.6E00              | U   | 2.4E00              | U   | 1.2E00              | U   | 1E00                | U   |
| Zinc       | μg/L  | SW6010B          | 8.4E00              |     | 2.69E+01            |     | 2.26E+02            |     | 5.91E+01            |     |
| Zirconium  | μg/L  | SW6010B          |                     |     |                     |     |                     |     |                     |     |
| UDS        | μg/L  | AC7972           | 5.0E+03             | U   | 5E+03               | U   | 5E+03 TSS           | U   | 1.07E+05<br>TDS     |     |
| TIC        | μg/L  | AC8060           | 1.41E+04            | U   | 1.07E+04            | UE  | 5.9E+03             | UE  | 1.19E+04            | UΕ  |
| TOC        | μg/L  | SW9060           | 3.80E+04            |     | 5.92E+04            | В   | 6.9E+04             |     | 5.43E+04            | В   |

EDF- 2506 Rev. No. 0 Page 36 of 42

#### PEWE Condensate Tanks - WL-106, WL-107, & WL-163 (con't.)

Volatile Organic Compounds and Semi-volatile Organic Compounds

| Analyte                         | Units        | Method<br>Number | Sample L<br>990324 |     | Sample L<br>990327 |          | Sample L<br>99042 |     | Sample Log #<br>9911151 |     |
|---------------------------------|--------------|------------------|--------------------|-----|--------------------|----------|-------------------|-----|-------------------------|-----|
|                                 |              |                  | Results            | LQF | Results            | LQF      | Results           | LQF | Results                 | LQI |
| Semi-Volatile Org               | ganic C      | ompounds         |                    |     |                    |          |                   |     |                         |     |
| 2,4-Dinitrophenol               | μg/L         | SW8270C          | 3.6E+01            | М   | 2.5E+01            | UM       | 2.2E+01           | М   | 6.6E+01                 | М   |
| 2,4-Dinitrotoluene              | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U        | 2E+01             | U   | 2E+01                   | U   |
| 2,6-Dinitrotoluene              | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U        | 2E+01             | U   | 2E+01                   | U   |
| 4-Nitrophenol                   | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U        | 2E+01             | UM  | 4E+01                   | U   |
| 1,6-Dinitro-2-<br>nethylphenol  | μg/L         | SW8270C          | 2.5E+01            | UM  | 2.5E+01            | UM       | 2E+01             | UM  | 4E+01                   | UN  |
| Bis-(2-ethylhexyl)<br>ohthalate | µg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U        | 2E+01             | U   | 3.1E+01                 |     |
| Butylbenzyl phthalate           | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U        | 2E+01             | U   | 2E+01                   | U   |
| Diethylphthalate                | μg/L         | SW8270C          | 2.5E+01            | UM  | 2.5E+01            | UM       | 2E+01             | UM  | 2E+01                   | UM  |
| Di-n-octyl phthalate            | μg/L         | SW8270C          | 2.5E+01            | UΖ  | 2.5E+01            | υz       | 2E+01             | U   | 2E+01                   | υ   |
| Nitrobenzene                    | μg/L         | SW8270C          | 2.5E+01            | UM  | 2.5E+01            | UM       | 2E+01             | UM  | 2E+01                   | U   |
| n-<br>Nitrosodimethylamine      | μ <b>g/L</b> | SW8270C          | 2.5E+01            | UM  | 2.5E+01            | Ų M      | 2E+01             | U   | 2E+01                   | U   |
| Pyridine                        | μg/L         | SW8270C          | 2.5E+01            | U   | 2.5E+01            | U        | 2E+01             | U   | 2E+01                   | U   |
| ri-n-butyl phosphate            | μ <b>g/L</b> | SW8270C          | 2.5E+01            | UM  | 2.5E+01            | UM       | 2E+03             | М   | 2E+01                   | UN  |
| /olatile Organic                | Compo        | unds             |                    |     |                    |          |                   |     |                         |     |
| 1,1-Dichloroethane              | μg/L         | SW8260A          | 1E+01              | U   | 1E+01              | UΖ       | 1E+01             | U   | 1E+01                   | U   |
| 1,1,1-Trichloroethane           | μg/L         | SW8260A          | 1E+01              | U   | 1E+01              | UΖ       | 1E+01             | U   | 1E+01                   | U   |
| 2-Butanone                      | µg/L         | SW8260A          | 1.2E+01            | М   | 1E+01              | U M<br>Z | 8E00              | J.  | 8E00                    | J   |
| 2-Hexanone                      | μg/L         | SW8260A          | 1E+01              | UM  | 1E+01              | U M      | 1E+01             | U   | 1E+01                   | U   |
| 4-Methyl-2-pentanone            | μg/L         | SW8260A          | 3E00               | J   | 1E+01              | U        | 1E+01             | U   | 1E+01                   | U   |
| Acetone                         | μg/L         | SW8260A          | 2E+02              | М   | 1.7E+02            | ΜZ       | 2E+02             | М   | 1.6E+02                 |     |
| Benzene                         | μg/L         | SW8260A          | 1E+01              | U   | 1E+01              | บ        | 1E+01             | UM  | 6E00                    | JM  |
| Bromodichloromethane            | μg/L         | SW8260A          | 1.1E+01            |     | 1E+01              | υ        | 1E+01             | U   | 1E+01                   | U   |
| Bromoform                       | μg/L         | SW8260A          | 2E00               | J   | 1E+01              | U        | 1E+01             | U   | 1E+01                   | U   |
| Bromomethane                    | μg/L         | SW8260A          | 1E+01              | U   | 3E00               | JΖ       | 2.7E+01           |     | 1.4E+01                 |     |
| Carbon disulfide                | μg/L         | SW8260A          | 2E00               | J   | 1E+01              | UΖ       | 1E+01             | U   | 1E+01                   | U   |
| Carbon tetrachloride            | μg/L         | SW8260A          | 5E00               | J   | 1E+01              | υ        | 1E+01             | U   | 1E+01                   | U   |
| Chloroform                      | μg/L         | SW8260A          | 2.3E+01            |     | 1E+01              | UΖ       | 1E+01             | U   | 1E+01                   | U   |
| Chloromethane                   | µg/L         | SW8260A          | 1E+01              | U   | 8E00               | JΖ       | 7.0E+01           |     | 1E+01                   | U   |
| Dibromochloromethane            | µg/L         | SW8260A          | 7E00               | J   | 1E+01              | U        | 1E+01             | U   | 1E+01                   | U   |
| Dichloromethane                 | μ <b>g/L</b> | SW8260A          | 1E+01              | U   | 3E00               | JΖ       | 1E+01             | บ   | 1E+01                   | U   |
| Styrene                         | μg/L         | SW8260A          | 1E+01              | U   | 1E+01              | U        | 1E+01             | U   | 1E+01                   | U   |
|                                 |              |                  |                    |     |                    |          | 1E+01             | U   |                         | UN  |

no. Ided / total conc. µg/L 13 / 1.29E+03 18 / 1.56E+03 19 / 5.46E+02 22 / 1.23E+03

EDF- 2506 Rev. No. 0 Page 37 of 42

#### PEWE Condensate Tanks - WL-106, WL-107, & WL-163 (con't.)

Volatile Organic Compounds and Semi-volatile Organic Compounds (con't.)

| Analyte                         | Units        | Method<br>Number | Sample Lo<br>000307 |     | Sample Lo<br>001114 |     | Sample L<br>010221 |                 | Sample Log #<br>0106011 |     |
|---------------------------------|--------------|------------------|---------------------|-----|---------------------|-----|--------------------|-----------------|-------------------------|-----|
|                                 |              |                  | Results             | LQF | Results             | LQF | Results            | LQF             | Results                 | LQI |
| Semi-Volatile Or                | ganic C      | ompounds         |                     |     |                     |     |                    |                 |                         |     |
| 2,4-Dinitrophenol               | µg/L         | SW8270C          | 1.3E+01             | J   | 3.3E+01             | М   | 4E+01              | D D             | 2.8E+01                 | М   |
| 2,4-Dinitrotoluene              | µg/L         | SW8270C          | 2E+01               | U   | 2E+01               | υ   | 4E+01              | ΟŲ              | 2E+01                   | U   |
| 2,6-Dinitrotoluene              | μ <b>g/L</b> | SW8270C          | 2E+01               | U   | 2E+01               | U   | 4E+01              | αυ              | 2E+01                   | U   |
| 4-Nitrophenol                   | μg/L         | SW8270C          | 2E+01               | U   | 2E+01               | U   | 4E+01              | UD              | 2E+01                   | U   |
| 4,6-Dinitro-2-<br>methylphenol  | μg/L         | SW8270C          | 5E00                | J   | 2E+01               | U   | 4E+01              | U <b>M</b><br>D | 2E+01                   | UN  |
| Bis-(2-ethylhexyl)<br>ohthalate | μg/L         | SW8270C          | 3.1E+01             |     | 6E00                | J   | 2.2E+01            | JÐ              | 2.4E+01                 |     |
| Butylbenzyl phthalate           | μg/L         | SW8270C          | 2E+01               | U   | 2E+01               | U   | 4E+01              | UD              | 2E+01                   | U   |
| Diethylphthalate                | μg/L         | SW8270C          | 2E+01               | UM  | 2E+01               | UМ  | 4E+01              | U M Z<br>D      | 2E+01                   | UN  |
| Di-n-octyl phthalate            | µg/L         | SW8270C          | 2E+01               | U   | 2E+01               | U   | 4E+01              | U D             | 2E+01                   | U   |
| Nitrobenzene                    | µg/L         | SW8270C          | 2E+01               | UM  | 2É+01               | UM  | 4E+01              | UD              | 2E+01                   | UN  |
| n-<br>Nitrosodimethylamine      | μg/L         | SW8270C          | 2E+01               | UM  | 1.5E+02             |     | 2E+02              | D               | 4.5E+02                 | Q   |
| Pyridine                        | μg/L         | SW8270C          | 2E+01               | U   | 2E+01               | U   | 4E+01              | UD              | 2E+01                   | U   |
| Tri-n-butyl phosphate           | μg/L         | SW8270C          | 1.7E+02             | ΕM  | 6.6E+02             | D M | 4.4E+02            | DE              | 3.4E+02                 | DN  |
| Volatile Organic                |              |                  |                     |     |                     |     |                    |                 |                         |     |
| 1,1-Dichloroethane              | μg/L         | SW8260A          | 1E+01               | U   | 1E+01               | U   | 1E+01              | U               | 1E+01                   | U   |
| 1,1,1-Trichloroethane           | μg/L         | SW8260A          | 1E+01               | U   | 1E+01               | U   | 1E+01              | U               | 1E+01                   | U   |
| 2-Butanone                      | µg/L         | SW8260A          | 5E00                | J M | 1E+01               | U   | 1E+01              | U               | 5E00                    | J   |
| 2-Hexanone                      | μg/L         | SW8260A          | 1E+01               | UM  | 1E+01               | U   | 1E+01              | υ               | 1E+01                   | U   |
| 4-Methyl-2-pentanone            | μg/L         | SW8260A          | 1E+01               | U   | 1E+01               | U   | 1E+01              | U               | 1E+01                   | U   |
| Acetone                         | μg/L         | SW8260A          | 1.9E+02             | вм  | 7.2E+01             |     | 5.3E+01            |                 | 8.5E+01                 |     |
| Benzene                         | μg/L         | SW8260A          | 1E+01               | UM  | 1E+01               | U   | 1E+01              | U               | 1E+01                   | U   |
| Bromodichloromethane            | μg/L         | SW8260A          | 1E+01               | U   | 1E+01               | U   | 1E+01              | U               | 1E+01                   | U   |
| Bromoform                       | μg/L         | SW8260A          | 1E+01               | U   | 1E+01               | U   | 1E+01              | υ               | 1E+01                   | U   |
| Bromomethane                    | µg/L         | SW8260A          | 1E+01               | U   | 7E00                | J   | 3.8E+01            |                 | 9E00                    | J   |
| Carbon disulfide                | μg/L         | SW8260A          | 1E+01               | U   | 1E+01               | υ   | 1E+01              | U               | 1E+01                   | U   |
| Carbon tetrachloride            | μg/L         | SW8260A          | 1E+01               | U   | 1E+01               | U   | 1E+01              | U               | 1E+01                   | U   |
| Chloroform                      | μg/L         | SW8260A          | 1E+01               | U   | 1E+01               | U   | 1E+01              | υ               | 1E+01                   | U   |
| Chloromethane                   | μg/L         | SW8260A          | 3E00                | J   | 1E+01               | UM  | 5.6E+01            | М               | 2.3E+01                 | М   |
| Dibromochloromethane            | μg/L         | SW8260A          | 1E+01               | U   | 1E+01               | U   | 1E+01              | U               | 1E+01                   | U   |
| Dichloromethane                 | μg/L         | SW8260A          | 1E+01               | UM  | 1E+01               | U   | 1E+01              | U               | 1E+01                   | U   |
| Styrene                         | μg/L         | SW8260A          | 1E+01               | U   | 1E+01               | U   | 1E+01              | U               | 1E+01                   | U   |
| Trichlorofluoromethane          | μg/L         | SW8260A          | 1E+01               | U   | 1E+01               | U   | 1E+01              | U               | 1E+01                   | U   |
| Tentatively Ident               |              |                  |                     |     |                     |     |                    |                 | ,                       |     |
|                                 |              | J                | 24 / 7.18E+03       |     |                     |     | 13 / 3.64E+02      |                 | 20 / 4.74E+02           | SVO |



431.02 02/26/2002 Rev. 10

#### **ENGINEERING DESIGN FILE**

EDF- 2506 Rev. No. 0 Page 38 of 42

#### LET&D Bottoms Tank - WLL-195

Metals, Anions, and Miscellaneous

| Analyte    | Units | Method<br>Number | Sample L<br>990327 |          | Sample Le<br>990504 |     | Sample Log #<br>0003285 |     |  |
|------------|-------|------------------|--------------------|----------|---------------------|-----|-------------------------|-----|--|
|            |       |                  | Results            | LQF      | Results             | LQF | Results                 | LQF |  |
| pН         |       | EPA150.1         | 0.34               | U        |                     |     |                         |     |  |
| Acidity    | N     | AC7012           |                    |          | 1.21E+01            |     | 1.20E+01                |     |  |
| Aluminum   | μg/L  | SW6010B          | 1.11E+06           | 5.11     | 1.72E+06            |     | 1.71E+06                |     |  |
| Antimony   | μg/L  | SW6010B          | 4.77E+01           | B N<br>E | 1.66E+02            | В   | 3.9E+01                 | U   |  |
| Arsenic    | μg/L  | SW6010B          | 3.57E+01           | В        | 2.89E+02            | В   | 3.9E+01                 | U   |  |
| Barium     | μg/L  | SW6010B          | 2.34E+01           |          | 2.45E+02            |     | 4.30E+01                | В   |  |
| Beryllium  | μg/L  | SW6010B          | 4.6E00             |          | 6.6E00              | В   | 1.10E+01                |     |  |
| Boron      | μg/L  | SW6010B          |                    |          |                     |     |                         |     |  |
| Cadmium    | μg/L  | SW6010B          | 1.58E+01           | В        | 3.30E+01            | В   | 1.50E+01                | В   |  |
| Calcium    | μg/L  | SW6010B          |                    |          |                     |     |                         |     |  |
| Chloride   | μg/L  | AC7171           |                    |          |                     |     |                         |     |  |
| Chromium   | μg/L  | SW6010B          | 3.54E+04           |          | 1.77E+05            |     | 5.28E+04                |     |  |
| Cobalt     | μg/L  | SW6010B          | 3.58E+03           |          | 2.13E+04            |     | 6.04E+03                |     |  |
| Copper     | μg/L  | SW6010B          | 1.86E+03           |          | 1.15E+04            |     | 2.92E+03                |     |  |
| Fluoride   | μg/L  | AC7093           | 9.93E+04           | В        | 6.58E+04            | В   | 2.43E+05                | U   |  |
| Iron       | μg/L  | SW6010B          |                    |          |                     |     |                         |     |  |
| Lead       | μg/L  | SW6010B          | 2.02E+01           | U        | 2.17E+02            | U   | 5.0E+01                 | U   |  |
| Manganese  | μg/L  | SW6010B          | 1.66E+03           |          | 6.08E+03            |     | 1.87E+03                |     |  |
| Mercury    | μg/L  | SW7470A          | 3.83E+04           |          | 5.55E+04            |     | 3.64E+04                | BE  |  |
| Nickel     | µg/L  | SW6010B          | 4.42E+04           |          | 2.27E+05            |     | 7.0E+04                 |     |  |
| Nitrate    | μg/L  | AC7074           |                    |          |                     |     |                         |     |  |
| Phosphorus | μg/L  | SW6010B          |                    |          |                     |     |                         |     |  |
| Potassium  | μg/L  | SW6010B          |                    |          |                     |     |                         |     |  |
| Selenium   | μg/L  | SW6010B          | 2.67E+01           | U        | 2.39E+02            | U   | 3.7E+01                 | U   |  |
| Silver     | μg/L  | SW6010B          | 6.2E00             | UE       | 3.85E+01            | UN  | 1.70E+01                | В   |  |
| Sodium     | μg/L  | SW6010B          |                    |          |                     |     |                         |     |  |
| Sulfur     | μg/L  | SW6010B          |                    |          |                     |     |                         |     |  |
| Thallium   | μg/L  | SW6010B          | 2.84E+01           | U        | 2.79E+02            | В   | 4.5E+01                 | U   |  |
| Uranium    | µg/L  | AC7920           | 1.89E+02           | U        | 1.89E+02            | U   | 2.77E+01                |     |  |
| Vanadium   | µg/L  | SW6010B          | 8.49E+01           |          | 2.45E+02            | В   | 2.6E+01                 | U   |  |
| Zinc       | μg/L  | SW6010B          | 8.80E+02           | Ε        | 1.37E+03            | E   | 6.96E+02                | E   |  |
| Zirconium  | μg/L  | SW6010B          |                    |          |                     |     |                         |     |  |
| UDS        | µg/L  | AC7972           |                    |          |                     |     | 2.22E+04                |     |  |
| TIC        | μg/L  | AC8060           | 2.46E+03           |          | 8.70E+04            |     | 1.41E+02                | U   |  |
| TOC        | μg/L  | SW9060           | 1.41E+04           |          | 4.35E+03            | В   | 7.32E+04                | В   |  |

#### **ENGINEERING DESIGN FILE**

EDF-Rev. No. Page 39 of 42

#### LET&D Bottoms Tank - WLL-195 (con't.)

Volatile Organic Compounds and Semi-volatile Organic Compounds

| Analyte                          | Units        | Method<br>Number | Sample L<br>99032 |              | Sample L<br>99050 |          | Sample L<br>000328 |     |
|----------------------------------|--------------|------------------|-------------------|--------------|-------------------|----------|--------------------|-----|
|                                  |              |                  | Results           | LQF          | Results           | LQF      | Results            | LQF |
| emi-Volatile Or                  | ganic C      | ompounds         |                   |              |                   |          |                    |     |
| ,4-Dinitrophenol                 | μg/L         | SW8270C          | 2.5E+03           | U M<br>D     | 2E+01             | UM       | 1E+03              | U M |
| ,4-Dinitrotoluene                | μg/L         | SW8270C          | 2.5E+03           | U D          | 2E+01             | U        | 1E+03              | U   |
| 6-Dinitrotoluene                 | μg/L         | SW8270C          | 2.5E+03           | U D          | 2E+01             | U        | 1E+03              | U   |
|                                  |              |                  |                   |              |                   |          |                    |     |
| l-Nitrophenol<br>I,6-Dinitro-2-  | µg/L         | SW8270C          | 2.5E+03           | UD<br>U M    | 2E+01             | UM       | 1E+03              | UM  |
| ethylphenol<br>is-(2-ethylhexyl) | µg/L         | SW8270C          | 2.5E+03           | D            | 2E+01             | UM       | 1E+03              | UM  |
| hthalate                         | μg/L         | SW8270C          | 2.5E+03           | QU           | 2E+01             | U        | 1E+03              | U   |
| lutylbenzyl phthalate            | μg/L         | SW8270C          | 2.5E+03           | QU           | 2E+01             | U        | 1E+03              | U   |
| ethylphthalate                   | μg/L         | SW8270C          | 2.5E+03           | U M<br>D     | 2E+01             | UM       | 1E+03              | U   |
| i-n-octyl phthalate              | μg/L         | SW8270C          | 2.5E+03           | UD           | 2E+01             | U        | 1E+03              | U   |
| itrobenzene                      | μg/L         | SW8270C          | 2.5E+03           | U M<br>D     | 2E+01             | UM       | 1E+03              | U   |
| itrosodimethylamine              | µg/L         | SW8270C          | 2.5E+03           | U M<br>D     | 2E+01             | U        | 1E+03              | U   |
|                                  |              |                  |                   |              |                   |          |                    | U   |
| yridine                          | μg/L         | SW8270C          | 2.5E+03           | UD<br>U M    | 2E+01             | U        | 1E+03              | UM  |
| ri-n-butyl phosphate             | μg/L         | SW8270C          | 2.5E+03           | D            | 2.9E+01           | M        | 1E+03              | D   |
| olatile Organic                  | Compo        | unds             |                   |              |                   |          |                    |     |
| 1-Dichloroethane                 | μg/L         | SW8260A          |                   |              | 1E+01             | UY       | 1.5E+02            | U   |
| 1,1-Trichloroethane              | μg/L         | SW8260A          |                   |              | 1E+01             | UY       | 1.5E+02            | U   |
| -Butanone                        | μg/L         | SW8260A          |                   |              | 1E+01             | UY       | 1.5E+02            | UM  |
| Hexanone                         | μg/L         | SW8260A          |                   |              | 1E+01             | UY       | 1.5E+02            | UM  |
| Methyl-2-pentanone               | μg/L         | SW8260A          |                   |              | 1E+01             | U        | 1.5E+02            | UM  |
| etone                            | μg/L         | SW8260A          |                   |              | 1E+01             | U M<br>Y | 9.8E+02            | вм  |
| enzene                           | μg/L         | SW8260A          |                   |              | 1E+01             | UM       | 1.5E+02            | U M |
|                                  |              |                  |                   |              | 1E+01             | U        | 1.5E+02            | U U |
| omodichloromethane               | μg/L<br>     | SW8260A          |                   |              |                   |          |                    |     |
| omoform                          | µg/L         | SW8260A          |                   |              | 1E+01             | UY       | 1.5E+02            | U   |
| omomethane                       | μg/L         | SW8260A          |                   |              | 6.3E+02           | EY       | 4.2E+01            | JM  |
| arbon disulfide                  | µg/L         | SW8260A          |                   |              | 1E+01             | UY       | 1.5E+02            | U   |
| arbon tetrachloride              | µg/L         | SW8260A          |                   |              | 1E+01             | UY       | 1.5E+02            | U   |
| hloroform                        | µg/L         | SW8260A          |                   |              | 1E+01             | UY       | 1.5E+02            | U   |
| nloromethane                     | μg/L         | SW8260A          |                   |              | 1E+01             | UY       | 5.9E+02            |     |
| bromochloromethane               | μg/L         | SW8260A          |                   |              | 1E+01             | UY       | 1.5E+02            | U   |
| chloromethane                    | μ <b>g/L</b> | SW8260A          |                   |              | 1E+01             | UY       | 1.5E+02            | UM  |
| yrene                            | μg/L         | SW8260A          |                   |              | 1E+01             | UY       | 1.5E+02            | UMZ |
| •                                |              |                  |                   |              |                   |          | 1E+01              | U   |
| richlorofluoromethane            | µg/L         | SW8260A          | a. mala           |              | 6E00              | JY       | 15701              | U   |
| entatively Ident                 | iiied Or     | ganic Comp       | ounas             | 0)/0.0       |                   |          |                    |     |
| ded / total conc.                | μg/L         |                  | 12 / 6.93E+05     | SVOC<br>only | 28 / 1.36E+04     |          | 8 / 1.58E+04       |     |



#### TEMPLATE REPORT for WG:

Log Type: \*\* PLANT \*\*

Report for : FUEL Mailstop : 5201

Mailstop : 5201 Phone Number : 3244

Date Received : Date completed : Time Received : Time completed :

GWA charged : 100333S01 Reviewed by

MSA mR/hr : 1 Signature \_\_\_\_\_

Hazard Index : 1E6 Lab QC/QA reviewed by

Quality Level: NO Signature \_\_\_\_\_

COMMENTS: SEND COPY OF FINAL REPORT TO DAVE OLSEN, MS 5111

| Analysis         | Sample     | Method Analyst | Results |
|------------------|------------|----------------|---------|
| AL/F RATIO       | WG         | 1023           |         |
| Acid             | WG         | 7012           |         |
| Aluminum         | WG         | 7100           |         |
| COMPOSITES       | WG         | 7963           |         |
| 00111 02 - 1 - 2 | WG         | 7963           |         |
| Chloride         | WG         | 7171           |         |
| Flash Point      | WG         | 7985           |         |
| Fluoride         | WG         | 7093           |         |
| GROSS BETA       | WG         | 7970           |         |
| Mercury          | WG         | 7802           |         |
| Nitrate          | WG         | 7074           |         |
| Potassium        | WG         | 2118           |         |
| Sodium           | WG         | 2118           |         |
| Sulfate          | WG         | 7168           |         |
| TOC              | WG         | 8060           |         |
| TOC(r)           | WG         | 8060           |         |
| U234             | WG         | 8920           |         |
| U235             | WG         | 8920           |         |
| U236             | WG         | 8920           |         |
| U238             | WG         | 8920           |         |
| URANIUM FOR ACC  | WG         | 8920           |         |
| URANIUM.         | WG         | 8920           |         |
| Uranium          | WG         | 7920           |         |
|                  | WG         | 7920           |         |
| Uranium PreP     | WG         | 7929           |         |
| рН               | WG         | 7016           |         |
| End of Report    | 26 Analyse | s.             |         |

#### TEMPLATE REPORT for WH:

Log Type: \*\* PLANT \*\*

Report for : FUEL Mailstop : 5201

Mailstop : 5201 Phone Number : 3244

Date Received: Date completed: Time Received: Time completed:

GWA charged : 100332524 Reviewed by

MSA mR/hr : 1 Signature \_\_\_\_\_

Hazard Index : 1E6 Lab QC/QA reviewed by

Quality Level: NO Signature \_\_\_\_

COMMENTS: SEND COPY OF FINAL REPORT TO DAVE OLSEN, MS 5111

| Analysis        | Sample     | Method Analyst | Results |
|-----------------|------------|----------------|---------|
| AL/F RATIO      | WH         | 1023           |         |
| Acid            | WH         | 7012           |         |
| Aluminum        | WH         | 7100           |         |
| COMPOSITES      | WH         | 7963           |         |
|                 | WH         | 7963           |         |
| Chloride        | WH         | 7171           |         |
| Flash Point     | WH         | 7985           |         |
| Fluoride        | WH         | 7093           |         |
| GROSS BETA      | WH         | 7970           |         |
| Mercury         | WH         | 7802           |         |
| Nitrate         | WH         | 7074           |         |
| Potassium       | WH         | 2118           |         |
| Sodium          | WH         | 2118           |         |
| Sulfate         | WH         | 7168           |         |
| TOC             | WH         | 8060           |         |
| TOC(r)          | WH         | 8060           |         |
| U234            | WH         | 8920           |         |
| U235            | WH         | 8920           |         |
| U236            | WH         | 8920           |         |
| U238            | WH         | 8920           |         |
| URANIUM FOR ACC | WH         | 8920           |         |
| URANIUM.        | WH         | 8920           |         |
| Uranium         | WH         | 7920           |         |
|                 | WH         | 7920           |         |
| Uranium PreP    | WH         | 7929           |         |
| рН              | WH         | 7016           |         |
| End of Report   | 26 Analyse | s.             |         |

## FINAL REPORT for WG:101 10/28/02 Log Type: \*\* PLANT \*\*

Report for : NWCF Mailstop : 5218 Log Number : 02-10283 Phone Number : 6-5456

Date Approved : Jan 16 2003 Time Approved : 13:46 Date Received : Oct 29 2002 Time Received : 13:20

Reviewed by KIMBERLY WHITEHEAD GWA charged : 100323H55

MSA mR/hr : 1 Signature \_\_\_

Hazard Index : >1E4 Laboratory QA Review

Signature \_\_\_\_ PCBs >50 ppm : NO

COMMENTS: SEND COPY OF FINAL REPORT TO DAVE OLSEN, MS 5111

|               | Lab Field     |                                            |
|---------------|---------------|--------------------------------------------|
| Analysis      | Spl ID Spl ID | Method Analyst Results                     |
| AL/F RATIO    |               | 11023 RAH Ratio Not Performed              |
| Acid          | 2BQ49 WG:101  | 57012 RDW 3.93E-01 +- 8.4E-02 Normal Acid  |
| Aluminum      | 2BQ49 WG:101  | 52900 DSL 2.44934E-03 Molar                |
| Chloride      | 2BQ49 WG:101  | 57171  RDW  5.4E+01 +- 1.3E+01  ug/mL      |
| Flash Point   | 2BQ49 WG:101  | 17985 AWO NO FLASH @ 60.00 deg C corrected |
| Fluoride      | 2BQ49 WG:101  | 57093 AWO Not Detected: MDL=26 ug/mL       |
| GROSS BETA    | 2BQ49 WG:101  | 87970 RAH 8.98E+05 +- 5.2E+04 B/Min/ml     |
| Mercury       | 2BQ49 WG:101  | 77802 RAH 1.65E+00 +- 2.2E-01 ug/ml        |
| Nitrate       | 2BQ49 WG:101  | 97074 BGP 5.22E-03 +- 5.8E-04 Molar        |
| Potassium     | 2BQ49 WG:101  | 52900 DSL 1.19173E-03 Molar                |
| Sodium        | 2BQ49 WG:101  | 52900 DSL 1.08865E-02 Molar                |
| Sulfate       | 2BQ49 WG:101  | 97168  BGP  5.8E+01 +- 1.8E+01  ug/ml      |
| TOC           | 2BQ49 WG:101  | 18060 BGP Not Detected: MDL=9e+01 ug/ml    |
| U234          | 2BQ49 WG:101  | 28920 DDJ 3.4E-03 WEIGHT %                 |
| U235          | 2BQ49 WG:101  | 28920 DDJ 4.919E-01 WEIGHT %               |
| U236          | 2BQ49 WG:101  | 28920 DDJ 2.39E-02 WEIGHT %                |
| U238          | 2BQ49 WG:101  | 28920 DDJ 9.94808E+01 WEIGHT %             |
| URANIUM.      | 2BQ49 WG:101  | 28920 DDJ                                  |
| Uranium       | 2BQ49 WG:101  | 17920 BGP 2.21E-03 +- 5.9E-04 G/L          |
|               | 2BQ49 WG:101  | 17920 BGP 2.43E-03 +- 6.2E-04 G/L          |
| Uranium PreP  | 2BQ49 WG:101  | 17929 AWO 1.0E+00 ml                       |
| End of Report | 21 results.   |                                            |

## FINAL REPORT for WG:101 8 Log Type: \*\* PLANT \*\*

Log Number : 02-04242 Phone Number : 3244 Report for : FUEL Mailstop : 5201

Date Approved : May 28 2002 Time Approved : 15:34 Date Received : Apr 25 2002

Time Received: 10:40

Reviewed by KIMBERLY WHITEHEAD GWA charged : 51R101327

MSA mR/hr : 1 Signature \_\_\_\_

Hazard Index : 1E6 Laboratory QA Review

PCBs >50 ppm : NO Signature \_\_\_\_

COMMENTS: SEND COPY OF FINAL REPORT TO DAVE OLSEN, MS 5111 - Use GWA

51R101327

|                 | Lab Field     |                                            |
|-----------------|---------------|--------------------------------------------|
| Analysis        | Spl ID Spl ID | Method Analyst Results                     |
| AL/F RATIO      | 2AO12 WG      | 11023 GDD Ratio Not Performed              |
| Acid            | 2AO12 WG      | 57012 RAH 4.98E-01 +- 7.9E-02 Normal Acid  |
| Aluminum        | 2AO12 WG      | 87100 GDD 4.37E-03 +- 3.0E-04 MOLAR        |
| Chloride        | 2AO12 WG      | 57171 RAH 8.0E+01 +- 1.2E+01 ug/mL         |
| Flash Point     | 2AO12 WG      | 17985 GDD NO FLASH @ 60.00 deg C corrected |
| Fluoride        | 2AO12 WG      | 57093 AWO Not Detected: MDL=45.37 ug/mL    |
| GROSS BETA      | 2AO12 WG      | 87970 RAH 9.84E+04 +- 4.2E+03 B/Min/ml     |
| Mercury         | 2A012 WG      | 87802 RAH 1.57E+00 +- 4.5E-01 ug/ml        |
| Nitrate         | 2A012 WG      | 97074 GDD 2.887E+04 +- 7.6E+02 ug/mL       |
| Potassium       | 2AO12 WG      | 12800 SDN 4.94E+01 ug/mL                   |
| Sodium          | 2AO12 WG      | 12800 SDN 2.55E+02 ug/mL                   |
| Sulfate         | 2AO12 WG      | 97168 BGP 6.9E+01 +- 1.8E+01 ug/ml         |
| TOC             | 2AO12 WG      | 18060  BGP  9.5E+01 +- 2.8E+01  ug/ml      |
| U234            | 2AO12 WG      | 28920 DDJ 2.5E+00 WEIGHT %                 |
| U235            | 2AO12 WG      | 28920 DDJ 8.0E+00 WEIGHT %                 |
| U236            | 2A012 WG      | 28920 DDJ 0.0E+00 WEIGHT %                 |
| U238            | 2AO12 WG      | 28920 DDJ 8.95E+01 WEIGHT %                |
| URANIUM FOR ACC | 2AO12 WG      | 28920 DDJ 2.9E-04 g/kg                     |
| URANIUM.        | 2AO12 WG      | 28920 DDJ 2.9E-04 g/kg                     |
| Uranium         | 2AO12 WG      | 17920  RAH < 3.94794E-04  G/L              |
|                 | 2AO12 WG      | 17920 RAH < 3.94794E-04 G/L                |
| Uranium PreP    | 2A012 WG      | 17929 BGP 1.0E+00 ml                       |
| End of Report   | 22 results.   |                                            |

# F I N A L R E P O R T for WH:101 Log Type: \*\* PLANT \*\*

Log Number : 02-03272 Phone Number : 3244 Report for : FUEL Mailstop : 5201

Date Approved : Jun 26 2002 Time Approved : 14:24 Date Received : Mar 28 2002

Time Received: 09:21

GWA charged : 51R101327 Reviewed by JEFF LAUG

MSA mR/hr : 10 Signature \_\_\_\_

Laboratory QA Review Hazard Index : 1E6

PCBs >50 ppm : NO Signature \_\_\_\_\_

COMMENTS: SEND COPY OF FINAL REPORT TO DAVE OLSEN, MS 5111.

|                 | Lab Field     |                                                |
|-----------------|---------------|------------------------------------------------|
| Analysis        | Spl ID Spl ID | Method Analyst Results                         |
| AL/F RATIO      | 2AK33         | 11023 AWO Ratio Not Performed                  |
| Acid            | 2AK33         | 57012  AWO  3.24E-01 +- 7.3E-02  Normal Acid   |
| Aluminum        | 2AK33         | 52900 LAM 2.12167E-03 Molar                    |
| Chloride        | 2AK33         | 57171  AWO  7.5E+01 +- 1.2E+01  ug/mL          |
| Flash Point     | 2AK33         | 17985 GDD NO FLASH @ 60.00 deg C corrected     |
| Fluoride        | 2AK33         | 57093 AWO Not Detected: MDL=23.53 ug/mL        |
| GROSS BETA      | 2AK33         | 87970 BGP $8.07E+03 +- 4.4E+02$ B/Min/ml       |
| Mercury         | 2AK33         | 77802 RAH 1.003E+00 +- 7.4E-02 ug/ml           |
| Nitrate         | 2AK33         | 97074 GDD $1.710E+04 +- 3.5E+02 \text{ ug/mL}$ |
| Potassium       | 2AK33         | 12800 SDN 55.2 ug/mL                           |
| Sodium          | 2AK33         | 12800 SDN 236. ug/mL                           |
| Sulfate         | 2AK33         | 97168  GDD  7.1E+01 +- 1.8E+01  ug/ml          |
| TOC             | 2AK33         | 18060  BGP  1.30E+02 +- 2.8E+01  ug/ml         |
| U234            | 2AK33         | 28920 DDJ 0.0E+00 WEIGHT %                     |
| U235            | 2AK33         | 28920 DDJ 4.011E+00 WEIGHT %                   |
| U236            | 2AK33         | 28920 DDJ 0.0E+00 WEIGHT %                     |
| U238            | 2AK33         | 28920 DDJ 9.599E+01 WEIGHT %                   |
| URANIUM FOR ACC | 2AK33         | 28920 DDJ 3.29E-04 g/kg                        |
| URANIUM.        | 2AK33         | 28920 DDJ 3.29E-04 g/kg                        |
| Uranium         | 2AK33         | 17920  BGP < 3.94794E-04  G/L                  |
|                 | 2AK33         | 17920  BGP < 3.94794E-04  G/L                  |
| Uranium PreP    | 2AK33         | 17929 BGP 1.0E+00 ml                           |
| End of Report   | 22 results.   |                                                |

### FINAL REPORT for WH:101 N/A Log Type: \*\* PLANT \*\*

Report for : FUEL Mailstop : 5201 Log Number : 01-08297 Phone Number : 3244

Date Approved : Oct 10 2001 Time Approved : 10:16 Date Received : Aug 30 2001

Time Received: 12:37

GWA charged : 51F1052B3 Reviewed by JEFF LAUG

MSA mR/hr : 3.0 Signature \_\_\_\_

Laboratory QA Review Hazard Index : 1E5

PCBs >50 ppm : NO Signature \_\_\_\_\_

COMMENTS: SEND COPY OF FINAL REPORT TO DAVE OLSEN, MS 5111 - Use GWA

51f10a20

| Analysis        | Lab Field<br>Spl ID Spl ID | Method Analyst Results                     |
|-----------------|----------------------------|--------------------------------------------|
| AL/F RATIO      | 1CN57                      | 11023 BCS Ratio Not Performed              |
| Acid            | 1CN57                      | 57012 RNR 3.62E-01 +- 1.1E-02 Normal Acid  |
| Aluminum        | 1CN57                      | 87100 BCS 1.07E-03 +- 2.3E-04 MOLAR        |
| Chloride        | 1CN57                      | 57171 RNR 6.18E+01 +- 5.1E+00 ug/mL        |
| Flash Point     | 1CN52 WH-101               | 17985 BCS NO FLASH @ 60.00 deg C corrected |
| Fluoride        | 1CN57                      | 57093 RAH Not Detected: MDL=69.88 ug/mL    |
| GROSS BETA      | 1CN57                      | 87970 BCS 1.688E+05 +- 9.1E+03 B/Min/ml    |
| Mercury         | 1CN57                      | 87802 RAH 7.6E-01 +- 1.2E-01 ug/ml         |
| Nitrate         | 1CN52 WH-101               | 97074 BCS 3.412E-01 +- 8.0E-03 Molar       |
| Potassium       | 1CN57                      | 12800 SDN 43.8 ug/mL                       |
| Sodium          | 1CN57                      | 12800 SDN 186. ug/mL                       |
| Sulfate         | 1CN57                      | 97168  BCS  5.93E+01 +- 4.3E+00  ug/ml     |
| TOC             | 1CN57                      | 18060 BGP 1.290E+02 +- 9.0E+00 ug/ml       |
| U234            | 1CN57                      | 24900 DDJ 1.6E-01 WEIGHT %                 |
| U235            | 1CN57                      | 24900 DDJ 6.37E+00 WEIGHT %                |
| U236            | 1CN57                      | 24900 DDJ 3.8E-01 WEIGHT %                 |
| U238            | 1CN57                      | 24900 DDJ 9.31E+01 WEIGHT %                |
| URANIUM FOR ACC | 1CN57                      | 24900 DDJ 1.28E-04 g/kg                    |
| URANIUM.        | 1CN57                      | 24900 DDJ 1.28E-04 g/kg                    |
| Uranium         | 1CN57                      | 17920 BCS < 3.24219E-04 G/L                |
|                 | 1CN57                      | 17920 BCS < 3.24219E-04 G/L                |
| Uranium PreP    | 1CN57                      | 17929 BGP 1.0E+00 ml                       |
| End of Report   |                            |                                            |



#### FINAL REPORT for WL-103 T/D

Log Type: \*\* PLANT \*\*

Log Number : 96-100815 Phone Number : 6-3226 Report for : NEILL Mailstop : 5116

Date Approved : Oct 12 1996 Time Approved : 16:48 Date Received : Oct 08 1996

Time Received: 22:06

GWA charged : 522020702 Reviewed by CLAYNE GRIGG

Signature \_\_\_\_\_ MSA mR/hr : <0.1

Hazard Index : <1E4 Laboratory QA Review

PCBs >50 ppm : NO Signature \_\_\_\_\_

COMMENTS:

|               | Lab Field     |                                         |
|---------------|---------------|-----------------------------------------|
| Analysis      | spl ID spl ID | Method Analyst Results                  |
|               |               |                                         |
| Acid          | 6DC01 WL-103  | 17012 RAH titrated less than .5ml       |
| Chloride      | 6DC01 WL-103  | 57171 RAH < 1.25947E+01 ug/ml           |
| Fluoride      | 6DC01 WL-103  | 87092 RAH 2.40E+01 +- 1.7E+00 ug/ml     |
| SpGr          | 6DC01 WL-103  | 47981 BCS 9.98685E-01 +- 2.6E-04 @ 25/4 |
| Sulfate       | 6DC01 WL-103  | 97168 BCS < 9.03652E+00 uG/mL           |
| Uranium       | 6DC01 WL-103  | 17920 RAH 1.99E-02 +- 1.2E-03 G/L       |
|               | 6DC01 WL-103  | 17920 RAH 2.02E-02 +- 1.2E-03 G/L       |
| рН            | 6DC01 WL-103  | 87017 RLC 2.46E+00 +- 1.6E-01 pH        |
| End of Report | 8 results.    |                                         |

#### FINAL REPORT for WL-104 T/D

Log Type: \*\* PLANT \*\*

Log Number : 96-100816 Phone Number : 6-3226 Report for : NEILL Mailstop : 5116

Date Approved : Dec 23 1996 Time Approved : 15:11 Date Received : Oct 09 1996

Time Received: 08:52

GWA charged : 522020702 Reviewed by JACQUIE JANIBAGIAN

MSA mR/hr : None Signature \_\_\_\_\_

Laboratory QA Review Hazard Index : None

Signature \_\_\_\_\_ PCBs >50 ppm : NO

COMMENTS:

|               | Lab Field     |                                         |
|---------------|---------------|-----------------------------------------|
| Analysis      | Spl ID Spl ID | Method Analyst Results                  |
|               |               |                                         |
| Acid          | 6DC30 WL-104  | 17012 RAH titrated less than .5 ml      |
| Chloride      | 6DC30 WL-104  | 57171 RAH < 1.25947E+01 ug/ml           |
| Fluoride      | 6DC30 WL-104  | 87092 RAH 3.49E+01 +- 1.7E+00 ug/ml     |
| SpGr          | 6DC30 WL-104  | 47981 BCS 9.99012E-01 +- 2.6E-04 @ 25/4 |
| Sulfate       | 6DC30 WL-104  | 97168 BCS < 9.03652E+00 uG/mL           |
| Uranium       | 6DC30 WL-104  | 17920 RAH 2.35E-02 +- 1.3E-03 G/L       |
|               | 6DC30 WL-104  | 17920 RAH 2.23E-02 +- 1.6E-03 G/L       |
| рН            | 6DC30 WL-104  | 87017 RLC 2.75E+00 +- 1.6E-01 pH        |
| End of Report | 8 results.    |                                         |

#### FINAL REPORT for WL-105:105 DEMIN

Log Type: \*\* PLANT \*\*

Log Number : 97-09169 Phone Number : 6-3846 Report for : R L HASTINGS Mailstop : 5111

Date Approved : Sep 29 1997 Time Approved : 17:30 Date Received : Sep 16 1997

Time Received: 22:48

GWA charged : 522020602 Reviewed by ROBERTA JORDAN

MSA mR/hr : None Signature \_\_\_\_

Hazard Index : None Laboratory QA Review

PCBs >50 ppm : NO Signature \_\_\_\_\_

COMMENTS:

| Analysis   | Lab Field<br>Spl ID Spl ID | Method Analyst Results                   |
|------------|----------------------------|------------------------------------------|
| Acid       | 7HR36 SAMPLE               | 3 87012 SRT <.0241 Normal Acid           |
| Aluminum   | 7HR36 SAMPLE               | 3 87100 BCS < 4.74571E-04 MOLAR          |
|            | 7HR36 SAMPLE               | 3 87100 BCS < 6.72322E-04 MOLAR          |
| Chloride   | 7HR36 SAMPLE               | 3 57171 RAH < 4.11211E+00 ug/mL          |
| Fluoride   | 7HR36 SAMPLE               | 3 87092 RAH 5.07E-04 +- 8.1E-05 molar    |
| GROSS BETA | 7HR36 SAMPLE               | 3 87970 KFM 2.05E+03 +- 1.9E+02 B/Min/ml |
| Sulfate    | 7HR36 SAMPLE               | 3 97168 BCS < 4.06935E+00 ug/ml          |
| Uranium    | 7HR36 SAMPLE               | 3 17920 KFM < 3.46607E-01 ug/mL          |
|            | 7HR36 SAMPLE               | 3 17920 KFM < 3.46607E-01 ug/mL          |
| pН         | 7HR36 SAMPLE               | 3 87017 SRT 2.404E+00 +- 5.6E-02         |

pH 7HR36 SAMPLE 3 End of Report -- 10 results.



#### **COVER PAGE**

1. SDG Transmittal Date: JUN 1 3 2000 2. Subcontractor Name: INTEC ANALYTICAL CHEMISTRY LABORATORY Analytical Laboratories Department Bechtel BWXT Idaho, LLC 3. Contract Number: ER-SOW-169 4. SDG Type: Semivolatile Organics by GC/MS 5. Reporting Tier: Tier II 6. SDG Number: NCD-123 7. SAP Number: N/A ORIGINAL 8. Applicable TOS Modification Numbers: N/A Catherine A. Crowder ALD Organic Analyses Supervisor 12/2000

Patrick D. Troescher

Mariam R. Thomas

ALD Assistant Quality Assurance Officer

Semivolatile Analyses Technical Leader

Date

#### 1D SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET APPENDIX IX ANALYTES

|                                        | INEEL Sample No.                   | NCD-123            |
|----------------------------------------|------------------------------------|--------------------|
|                                        |                                    |                    |
| Lab Name: Analytical Chemistry Lab     | Contract: NA                       |                    |
| Lab Code: ALD-INTEC TOS No: NA         | Method No: 9270 SDG N              | No: <u>NCD-123</u> |
| Matrix (soil/water): WATER             | Lab Sample ID: 9AH61: 9A           | H61DL10            |
| Sample wt/vol: 100 (g/mL) mL           | Lab File ID: <u>SS200192</u> ; SS2 | 200303             |
| Level: (low/med) LOW                   | Date Received: 02/10/99            | ····               |
| % Moisture: NA Decanted (Y/N): NA      | Date Extracted: 02/11/99           |                    |
| Concentrated Extract Volume: 1000 (µL) | Date Analyzed: 02/16/99: 0         | 3/08/99            |
| Injection Volume:1 (µL)                | Dilution Factor: 1: 10             |                    |
| GPC Cleanup (Y/N): NO                  | pH: <u>NA</u>                      |                    |

| CAS NO.  | COMPOUND                    | CONCENTRATION UNITS 'ug/L | Q   |
|----------|-----------------------------|---------------------------|-----|
| 62-75-9  | N-Nitrosodimethylamine      | 250                       | UD  |
| 110-86-1 | Pyridine                    | 250                       | UD  |
| 108-95-2 | Phenol                      | 250                       | UD  |
| 111-44-4 | bis(2-Chloroethyl)ether     | 250                       | UD  |
| 95-57-8  | 2-Chlorophenol              | 250                       | UD  |
| 541-73-1 | 1,3-Dichlorobenzene         | 250                       | UD. |
| 106-46-7 | 1,4-Dichlorobenzene         | 250                       | UD  |
| 95-50-1  | 1,2-Dichlorobenzene         | 250                       | UD  |
| 95-48-7  | 2-Methylphenol              | 250                       | UD  |
| 108-60-1 | bis(2-Chloroisopropyl)ether | 250                       | UDM |
| 106-44-5 | 3 & 4-Methylphenol          | 250                       | UD  |
| 621-64-7 | N-Nitroso-di-n-propylamine  | 250                       | UD  |
| 67-72-1  | Hexachloroethane            | 250                       | UD  |
| 98-95-3  | Nitrobenzene                | 25                        | U   |
| 78-59-1  | Isophorone                  | 25                        | U   |
| 88-75-5  | 2-Nitrophenol               | 25                        | Ŭ   |
| 105-67-9 | 2,4-Dimethylphenol          | 25                        | U   |
| 111-91-1 | bis(2-Chloroethoxy)methane  | 25                        | บ   |
| 120-83-2 | 2,4-Dichlorophenol          | 25                        | U   |
| 120-82-1 | 1,2,4-Trichlorobenzene      | . 25                      | υ   |
| 91-20-3  | Naphthalene                 | 25                        | Ū.  |
| 106-47-8 | 4-Chloroaniline             | 25                        | Ū   |
| 87-68-3  | Hexachlorobutadiene         | 25                        | U.  |

#### 1E SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET APPENDIX IX ANALYTES

| INEEL Sample No. | NCD-123  |
|------------------|----------|
|                  | <u> </u> |

| ••                                     | ·                                              |
|----------------------------------------|------------------------------------------------|
| Lab Name: Analytical Chemistry Lab     | Contract: NA                                   |
| Lab Code: ALD-INTEC TOS No: NA         | Method No: <u>9270</u> SDG No: <u>NCD-123</u>  |
| Matrix (soil/water): WATER             | Lab Sample ID: 9AH61: 9AH61DL10                |
| Sample wt/vol: 100 (g/mL) mL           | Lab File ID: <u>SS200192</u> ; <u>SS200303</u> |
| Level: (low/med) LOW                   | Date Received: 02/10/99                        |
| % Moisture: NA Decanted (Y/N): NA      | Date Extracted: 02/11/99                       |
| Concentrated Extract Volume: 1000 (µL) | Date Analyzed: 02/16/99 : 03/08/99             |
| Injection Volume:1_(µL)                | Dilution Factor: 1; 10                         |
| GPC Cleanup (Y/N) NO                   | nH. NA                                         |

| CAS NO.   | COMPOUND                   | CONCENTRATION UNITS ug/L | Q  |
|-----------|----------------------------|--------------------------|----|
| 59-50-7   | 4-Chloro-3-methylphenol    | 25                       | U  |
| 91-57-6   | 2-Methylnaphthalene        | 25                       | Ü  |
| 77-47-4   | Hexachlorocyclopentadiene  | 25                       | U  |
| 88-06-2   | 2,4,6-Trichlorophenol      | 25                       | U  |
| 95-95-4   | 2,4,5-Trichlorophenol      | 25                       | U  |
| 91-58-7   | 2-Chloronaphthalene        | 25                       | U  |
| 88-74-4   | 2-Nitroaniline             | 25                       | U  |
| 131-11-3  | Dimethylphthalate          | 25                       | U  |
| 606-20-2  | 2,6-Dinitrotoluene         | 25                       | Ū- |
| 208-96-8  | Acenaphthylene             | 25                       | υ  |
| 99-09-2   | 3-Nitroaniline             | 25                       | U  |
| 83-32-9   | Acenaphthene               | 25                       | U  |
| 51-28-5   | 2,4-Dinitrophenol          | 76                       | М  |
| 100-02-7  | 4-Nitrophenol              | 25                       | υ  |
| 132-64-9  | Dibenzofuran               | 25                       | Ŭ  |
| 121-14-2  | 2,4-Dinitrotoluene         | 25                       | υ  |
| 84-66-2   | Diethylphthalate           | 25                       | ŬМ |
| 7005-72-3 | 4-Chlorophenyl-phenylether | 25                       | υ  |
| 86-73-7   | Fluorene                   | 25                       | Ū  |
| 100-01-6  | 4-Nitroaniline             | 25                       | Ŭ  |
| 534-52-1  | 4,6-Dinitro-2-methylphenol | 25                       | Ü  |
| 86-30-6   | N-Nitrosodiphenylamine     | 25                       | Ŭ  |
| 126-73-8  | Tri-n-butyl phosphate      | 25                       | UM |

#### 1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET APPENDIX IX ANALYTES

|                                        | INEEL Sample No.                               | NCD-123 |
|----------------------------------------|------------------------------------------------|---------|
|                                        |                                                |         |
| Lab Name: Analytical Chemistry Lab     | Contract: NA                                   |         |
| Lab Code: ALD-INTEC TOS No: NA         | Method No: 9270 SDG No: NCD-123                |         |
| Matrix (soil/water): WATER             | Lab Sample ID: 9AH61: 9AH61DL10                |         |
| Sample wt/vol: 100 (g/mL) mL           | Lab File ID: <u>SS200192</u> ; <u>SS200303</u> |         |
| Level: (low/med) LOW                   | Date Received: 02/10/99                        |         |
| % Moisture: NA Decanted (Y/N): NA      | Date Extracted: 02/11/99                       |         |
| Concentrated Extract Volume: 1000 (µL) | Date Analyzed: 02/16/99; 03/08/99              |         |
| Injection Volume:1 (µL)                | Dilution Factor: 1: 10                         |         |
| GPC Cleanup (Y/N): NO                  | pH: NA                                         |         |

| CAS NO.  | COMPOUND                   | CONCENTRATION UNITS ug/L | Q  |
|----------|----------------------------|--------------------------|----|
| 103-33-3 | Azobenzene                 | 25                       | U  |
| 101-55-3 | 4-Bromophenyl-phenylether  | 25                       | U  |
| 118-74-1 | Hexachlorobenzene          | 25                       | U  |
| 87-86-5  | Pentachlorophenol          | 25                       | Ü  |
| 85-01-8  | Phenanthrene               | 25                       | U  |
| 120-12-7 | Anthracene                 | 25                       | U  |
| 86-74-8  | Carbazole                  | 25                       | U  |
| 84-74-2  | Di-n-butylphthalate        | 25                       | Ŭ  |
| 206-44-0 | Fluoranthene               | 25                       | Ŭ. |
| 129-00-0 | Pyrene                     | 25                       | U  |
| 85-68-7  | Butylbenzylphthalate       | . 25                     | U  |
| 91-94-1  | 3,3'-Dichlorobenzidine     | 25                       | U  |
| 218-01-9 | Chrysene                   | 25                       | U  |
| 56-55-3  | Benzo(a)anthracene         | 25                       | U  |
| 117-81-7 | bis(2-Ethylhexyl)phthalate | 47                       |    |
| 117-84-0 | Di-n-octylphthalate        | 25                       | U  |
| 205-99-2 | Benzo(b)fluoranthene       | 25                       | ΰ  |
| 207-08-9 | Benzo(k)fluoranthene       | 25                       | U  |
| 50-32-8  | Benzo(a)pyrene             | 25                       | U  |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 25                       | U  |
| 53-70-3  | Dibenzo(a,h)anthracene     | 25                       | U  |
| 191-24-2 | Benzo(g,h,i)perylene       | 25                       | U  |

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS APPENDIX IX ANALYTES

|                                        | INEEL Sample No.                               | NCD-123 |
|----------------------------------------|------------------------------------------------|---------|
| Lab Name: Analytical Chemistry Lab     | Contract: NA                                   |         |
| Lab Code: ALD-INTEC TOS No: NA         | Method No: <u>9270</u> SDG No: <u>NCD-123</u>  |         |
| Matrix (soil/water): WATER             | Lab Sample ID: 9AH61: 9AH61DL10                |         |
| Sample wt/vol: 100 (g/mL) mL           | Lab File ID: <u>SS200192</u> : <u>SS200302</u> |         |
| Level: (low/med) LOW                   | Date Received: 02/10/99                        |         |
| % Moisture: NA Decanted (Y/N): NA      | Date Extracted: 02/11/99                       |         |
| Concentrated Extract Volume: 1000 (µL) | Date Analyzed: 02/16/99; 03/08/99              |         |
| Injection Volume:1_(µL)                | Dilution Factor: 1: 10                         |         |
| GPC Cleanup (Y/N): NO pH: N/A          | Concentration Units: ug/L                      |         |
| No. TICs Found: 20                     |                                                |         |

|    | CAS NO. | COMPOUND     | RT    | EST. CONC.<br>ug/L | Q  |
|----|---------|--------------|-------|--------------------|----|
| 1  |         | Unknown      | 8:45  | 550                | ло |
| 2  |         | Unknown      | 10:49 | 1900               | )D |
| 3  |         | Unknown      | 10:54 | 2000               | JD |
| 4  |         | Unknown      | 11:07 | 2200               | JD |
| 5  |         | Unknown      | 13.97 | 21                 | J  |
| 6  | 65-85-0 | Benzoic Acid | 13.98 | 21                 | JN |
| 7  |         | Unknown      | 14.08 | 31                 | J  |
| 8  |         | Unknown      | 15.82 | 35                 | J  |
| .9 |         | Unknown      | 16.52 | 20                 | J  |
| 10 |         | Unknown      | 17.50 | 24                 | J  |
| 11 |         | Unknown      | 18.22 | 38                 | J  |
| 12 |         | Unknown      | 19.27 | 19                 | J  |
| 13 |         | Unknown      | 19.87 | 56                 | J  |
| 14 |         | Unknown      | 21.43 | 35                 | J  |
| 15 |         | Unknown      | 22.94 | 19                 | J  |
| 16 |         | Unknown      | 29.32 | 41                 | J  |
| 17 | • • •   | Unknown      | 32.88 | 320                | J  |
| 18 |         | Unknown      | 38.06 | 820                | J  |
| 19 |         | Unknown      | 44.50 | 1200               | J  |
| 20 |         | Unknown      | 52.83 | 1100               | J  |

FORM I SV-TIC

6/95 Rev.

#### **COVER PAGE**

| 1. SDG Transmittal Date: July 19, 2000                                                                    |                    |
|-----------------------------------------------------------------------------------------------------------|--------------------|
| 2. Subcontractor Name: INTEC ANALYTICAL CHEMIS Analytical Laboratories Department Bechtel BWXT Idaho, LLC |                    |
| 3. Contract Number: ER-SOW-169                                                                            | , ~                |
| 4. SDG Type: Semivolatile Organics by GC/MS                                                               | 5003013            |
| 5. Reporting Tier: Tier II                                                                                | 600,30             |
| 6. SDG Number: NCC101/119-000301                                                                          |                    |
| 7. SAP Number: N/A                                                                                        |                    |
| 8. Applicable TOS Modification Numbers: N/A                                                               |                    |
| Jeffrey L. Jeter                                                                                          | 7/19/00<br>Date    |
| Acting ALD Organic Analyses Supervisor                                                                    |                    |
| Shelly J. Sailer ALD Quality Assurance Officer                                                            | 07/19/2000<br>Date |
| Mariam R. Thomas                                                                                          | 7/19/00<br>Date    |

ORIGINAL

-- 001/70

Semivolatile Analyses Technical Leader

# 1D SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET APPENDIX IX ANALYTES

INEEL Sample No.

WL-106-000307

| Lab Name: Analytical Chemistry Lab     | Contract: N/A                             |  |
|----------------------------------------|-------------------------------------------|--|
| Lab Code: ALD-INTEC TOS No: N/A        | Method No: 9270 SDG No: NCC101/119-000301 |  |
| Matrix (soil/water): WATER             | Lab Sample ID: 0AN16                      |  |
| Sample wt/vol: 100 (g/mL) mL           | Lab File ID: SS201499                     |  |
| Level: (low/med) LOW                   | Date Received: 03/08/00                   |  |
| % Moisture: N/A Decanted (Y/N): N/A    | Date Extracted: 03/08/00                  |  |
| Concentrated Extract Volume:1000_ (µL) | Date Analyzed: 03/20/00                   |  |
| Injection Volume:1 (µL)                | Dilution Factor: 1                        |  |
| GPC Cleanup (Y/N): NO                  | pH: <u>N/A</u>                            |  |

| CAS NO.  | COMPOUND                    | CONCENTRATION UNITS ug/L | Q    |
|----------|-----------------------------|--------------------------|------|
| 62-75-9  | N-Nitrosodimethylamine      | 20                       | UM   |
| 110-86-1 | Pyridine                    | 20                       | U    |
| 108-95-2 | Phenol                      | 20                       | U    |
| 111-44-4 | bis(2-Chloroethyl)ether     | 20                       | Ū    |
| 95-57-8  | 2-Chlorophenol              | 20 .                     | U    |
| 541-73-1 | 1,3-Dichlorobenzene         | 20                       | U    |
| 106-46-7 | 1,4-Dichlorobenzene         | 20                       | υ    |
| 95-50-1  | 1,2-Dichlorobenzene         | 20                       | U    |
| 95-48-7  | 2-Methylphenol              | 20                       | U    |
| 108-60-1 | bis(2-Chloroisopropyl)ether | 20`                      | U    |
| 106-44-5 | 3 & 4-Methylphenol          | 20                       | U    |
| 621-64-7 | N-Nitroso-di-n-propylamine  | 20                       | U    |
| 67-72-1  | Hexachloroethane            | 20                       | U    |
| 98-95-3  | Nitrobenzene                | 20                       | UM ' |
| 78-59-1  | Isophorone                  | . 20                     | U    |
| 88-75-5  | 2-Nitrophenol               | 20                       | U    |
| 105-67-9 | 2,4-Dimethylphenol          | 20                       | U    |
| 111-91-1 | bis(2-Chloroethoxy)methane  | 20                       | U    |
| 120-83-2 | 2,4-Dichlorophenol          | 20                       | U    |
| 120-82-1 | 1,2,4-Trichlorobenzene      | 20                       | บ    |
| 91-20-3  | Naphthalene                 | 20 ·                     | U    |
| 106-47-8 | 4-Chloroaniline             | 20                       | U    |
| 87-68-3  | Hexachlorobutadiene         | 20                       | U    |

#### 1E SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET APPENDIX IX ANALYTES

| INEEL | Sample | No. |
|-------|--------|-----|
|-------|--------|-----|

WL-106-000307

| Lab Name: _Analytical Chemistry Lab         Lab Code: _ALD-INTEC_ TOS No: _N/A         Matrix (soil/water): _WATER         Sample wt/vol: _100 | Contract: N/A  Method No: 9270 SDG No: NCC101/119-000301  Lab Sample ID: 0AN16  Lab File ID: SS201499  Date Received: 03/08/00  Date Extracted: 03/08/00  Date Analyzed: 03/20/00  Dilution Factor: 1 |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPC Cleanup (Y/N): NO                                                                                                                          | pH: <u>N/A</u>                                                                                                                                                                                        |

| CAS NO.   | COMPOUND                   | CONCENTRATION UNITS ug/L | Q  |
|-----------|----------------------------|--------------------------|----|
| 59-50-7   | 4-Chloro-3-methylphenol    | 20                       | U  |
| 91-57-6   | 2-Methylnaphthalene        | 20                       | U  |
| 77-47-4   | Hexachlorocyclopentadiene  | 20                       | U  |
| 88-06-2   | 2,4,6-Trichlorophenol      | 20                       | U  |
| 95-95-4   | 2,4,5-Trichlorophenol      | 20                       | U  |
| 91-58-7   | 2-Chloronaphthalene        | . 20.                    | U  |
| 88-74-4   | 2-Nitroaniline             | 20                       | UM |
| 131-11-3  | Dimethylphthalate          | 20                       | U  |
| 606-20-2  | 2,6-Dinitrotoluene         | 20                       | U  |
| 208-96-8  | Acenaphthylene             | 20                       | Ŭ  |
| 99-09-2   | 3-Nitroaniline             | 20                       | U  |
| 83-32-9   | Acenaphthene               | 20                       | U  |
| 51-28-5   | 2,4-Dinitrophenol          | 13                       | J  |
| 100-02-7  | 4-Nitrophenol              | 20                       | U  |
| 132-64-9  | Dibenzofuran               | 20                       | U  |
| 121-14-2  | 2.4-Dinitrotoluene         | 20                       | U  |
| 84-66-2   | Diethylphthalate           | 20                       | UM |
| 7005-72-3 | 4-Chlorophenyl-phenylether | 20                       | U  |
| 86-73-7   | Fluorene                   | 20                       | U  |
| 100-01-6  | 4-Nitroaniline             | 20                       | U  |
| 534-52-1  | 4,6-Dinitro-2-methylphenol | 5                        | J  |
| 86-30-6   | N-Nitrosodiphenylamine     | 20                       | U  |
| 126-73-8  | Tri-n-butyl phosphate      | 170                      | EM |

FORM I SV-2
- 030/70

Page 2 of 3

6/95 Rev.

### 1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET APPENDIX IX ANALYTES

INEEL Sample No.

WL-106-000307

| Lab Name: Analytical Chemistry Lab  Lab Code: ALD-INTEC TOS No: N/A  Matrix (soil/water): WATER  Sample wt/vol: 100 (g/mL) mL  Level: (low/med) LOW  % Moisture: N/A Decanted (Y/N): N/A  Concentrated Extract Volume: 1000 (µL) | Contract: N/A  Method No: 9270 SDG No: NCC101/119-000301  Lab Sample ID: 0AN16  Lab File ID: SS201499  Date Received: 03/08/00  Date Extracted: 03/08/00  Date Analyzed: 03/20/00  Dilution Factor: 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Injection Volume: 1 (μL)  GPC Cleanup (Y/N): NO                                                                                                                                                                                  | Dilution Factor: _1pH: _N/A                                                                                                                                                                           |

| ip (Y/N): <u>NC</u><br>———————————————————————————————————— | COMPOUND                   | · CONCENTRATION UNITS ug/L | Q                                                |
|-------------------------------------------------------------|----------------------------|----------------------------|--------------------------------------------------|
| CAS NO.                                                     |                            | 20                         | UM                                               |
| 103-33-3                                                    | Azobenzene                 | 20                         | , U                                              |
| 101-55-3                                                    | 4-Bromophenyl-phenylether  | 20                         | U                                                |
| 118-74-1                                                    | Hexachlorobenzene          | 20                         | U                                                |
| 87-86-5                                                     | Pentachlorophenol          | 20                         | U                                                |
| 85-01-8                                                     | Phenanthrene               | 20                         | U                                                |
| 120-12-7                                                    | Anthracene                 | 20                         | U                                                |
| 86-74-8                                                     | Carbazole                  | 20                         | UM                                               |
| 84-74-2                                                     | Di-n-butylphthalate        | 20                         | U                                                |
| 206-44-0                                                    | Fluoranthene               | 20                         | U                                                |
| 129-00-0                                                    | Pyrene                     | 20                         | U                                                |
| 85-68-7                                                     | Butylbenzylphthalate       | 20                         | U                                                |
| 91-94-1                                                     | 3,3'-Dichlorobenzidine     | 20                         | U                                                |
| 218-01-9                                                    | Chrysene                   |                            | U                                                |
| 56-55-3                                                     | Benzo(a)anthracene         | 20                         | <del>                                     </del> |
| 117-81-7                                                    | bis(2-Ethylhexyl)phthalate | 31                         | U                                                |
| 117-84-0                                                    | Di-n-octylphthalate        | 20                         | U                                                |
| 205-99-2                                                    | Benzo(b)fluoranthene       | 20                         | T <sub>U</sub>                                   |
| 207-08-9                                                    | Benzo(k)fluoranthene       | 20                         | T U                                              |
| 50-32-8                                                     | Benzo(a)pyrene             | . 20                       | U                                                |
| 193-39-5                                                    | Indeno(1,2,3-cd)pyrene     | 20                         | <u>U</u>                                         |
| 53-70-3                                                     | Dibenzo(a,h)anthracene     | 20                         | <del>  U</del>                                   |
| 191-24-2                                                    | Benzo(g,h,i)perylene       | 20                         |                                                  |

FORM I SV-3

6/95 Rev.

#### 1M SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS APPENDIX IX ANALYTES

| INEEL | Sample | No. |
|-------|--------|-----|
|-------|--------|-----|

WL-106-000307

| ab Code: ALD-INTEC TOS No: N/A  Matrix (soil/water): WATER | Contract: N/A  Method No: 9270 SDG No: NCC101/119-00030 1  Lab Sample ID: 0AN16  Lab File ID: SS201499  Date Received: 03/08/00 |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| _evel: (low/med) _LOW                                      | Date Extracted: 03/08/00  Date Analyzed: 03/20/00  Dilution Factor: 1                                                           |
| Injection Volume:                                          | pH: <u>NA</u>                                                                                                                   |

| Г               | CAS NO.    | COMPOUND            | RT<br>(min) | EST. CONC.<br>ug/L | Q  |
|-----------------|------------|---------------------|-------------|--------------------|----|
| <del>.  -</del> |            | Unknown             | 3:56        | 14                 | J  |
| 1               |            | Unknown             | 5:57        | 11                 | J  |
| 2               | : (7. (6.2 | Chloroform          | 4:17        | 12                 | J  |
| 3               | 67-66-3    | Unknown             | 7:28        | 85                 | J  |
| 4               |            | Unknown             | 13:06       | 6300               | J  |
| 5               |            | Unknown             | 16:10       | 350                | J  |
| 6               |            | Substituted benzene | 21:36       | 37                 | J  |
| 7               |            | Substituted benzene | 21:56       | 23                 | J  |
| 8               |            | Substituted benzene | 22:00       | 24                 | J  |
| 9               |            | Substituted benzene | 22:12       | 23                 | J  |
| 10              |            | Substituted benzene | 22:32       | 28                 | J  |
| 11              |            | Substituted benzene | 23:20       | 24                 | 1  |
| 12              |            | Substituted benzene | 23:26       | 14                 | J  |
| 13              |            | Substituted benzene | 23:38       | 13                 | J  |
| 14              |            | Substituted benzene | 23:59       | 11                 | J  |
| 15              |            |                     | 24:07       | 19                 | ЛВ |
| 16              |            | Unknown             | 24:30       | 27                 | J  |
| 17              |            | Substituted benzene | 28:44       | 21                 | J  |
| 18              |            | Unknown             | 29:31       | 22                 | 1  |
| 19              |            | Unknown             | 30:18       | 65                 | 1  |
| 20              |            | Unknown             | 30.16       |                    |    |

FORM I SV-TIC | 70

. 6/95 Rev.